
Electronic Transactions on Numerical Analysis.
Volume 15, pp. 78-93, 2003.
Copyright  2003, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

COMPARISON OF NON-LINEAR SOLVERS FOR THE SOLUTION OF
RADIATION TRANSPORT EQUATIONS∗

LINDA STALS†

Abstract. We compare the performance of an inexact Newton-multigrid method and Full Approximation Stor-
age multigrid when solving radiation transport equations. We also present an adaptive refinement algorithm and
explore its impact on the solution of such equations.

Key words. FAS, Multigrid, Newton Method, Radiation Transport

AMS subject classifications. 35K55, 65M55, 65M60, 49M15

1. Introduction. Interest in the solution of radiation transport equations stems from the
modeling of applications found in, for example, combustion, astrophysics and laser fusion.
Features such as strong nonlinearities and large jumps in the coefficients make these equa-
tions difficult to solve and they can consume considerable computational resources if efficient
solution techniques are not used. Two examples of efficient solution methods are the inex-
act Newton-multigrid method and the Full Approximation Storage (FAS) multigrid; both of
which are nonlinear multigrid techniques.

The solution of radiation transport equations usually contains a wave front. Adaptively
refined grids are well suited to capture the information along the front and thus give high
resolution results.

In this paper we compare the performance of an inexact Newton-multigrid method and
the FAS method for the solution of time-dependent radiation transport equations. We also
explore the use of adaptive refinement techniques.

2. Physical Model. Under certain assumptions, such as isotropic radiation, optically
thick material and temperature equilibrium, radiation transport may be modeled by the equa-
tion:

∂E

∂t
−∇.(D(E)∇E) = 0 on Ω× I,(2.1)

where E is the radiation energy.
More physically meaningful models of radiation transport are represented by systems of

equations like those described in [4, 12, 14]; however, Equation (2.1) contains many of the
features seen in the more general system, such as strong nonlinearities and large jumps in
the coefficients, and therefore is a good place to start our investigation into different solution
techniques.

One definition of the diffusivity term, D(E), is:

D1(E) = ZαEβ ,(2.2)

with α < 0, 0 ≤ β ≤ 1. Typically α is taken to be between -1 and -3 while β is taken
to be 1/4 or 3/4. Z is the atomic mass number and may vary within the domain to reflect
inhomogeneities in the material. The constant β controls the strength of the nonlinearity
while α affects the size of the jumps in the coefficients.

∗This research was supported by the U.S. Department of Energy under the ASCI ASAP program (subcontract
B347882 from the Lawrence Livermore National Laboratory). Received May 22, 2001. Accepted for publication
October 20, 2001. Recommended by Van Henson.

†Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA AND ICASE, NASA
Langley Res. Ctr, Hampton, VA 23681-2199, USA.

78



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 79

@
@

@
@

@
@

@@

@
@

@
@

��
��

Z = 1

Z = 2

Z = 4

Z = 3

Z = 1

FIG. 2.1. The values for the atomic mass number Z depend on the topology of the material. In our model
problem, we define Z as shown above.

The definition of D(E) given in Equation (2.2) may produce results that shows the en-
ergy moving through the system at a rate faster than the speed of light. Consequently a flux
limiter is included to slow down the movement and the diffusivity term is rewritten as:

D2(E) =

(
1

ZαEβ
+
|∇E|

E

)
−1

.(2.3)

The domain, Ω, is a square domain ([0, 1]× [0, 1]) with the following mixture of Newton
and Neumann boundary conditions;

∂E/∂n = 0 on ΓN × I,
nT D(E)∇E + E/2 = 2 on ΓF0

× I,
nT D(E)∇E + E/2 = 0 on ΓF1

× I,

where ΓN represents the lines y = 0 and y = 1, ΓF0
is the line x = 0 and ΓF1

is the line
x = 1, n is the outward unit normal and I is the time interval.

In our model problem we take Z to be 1.0 except in the following regions:√
(x− 0.5)2 + (y − 0.5)2 ≤ 0.125, y ≤ 0.5 − x and y ≥ 1.75− x where Z = 4, Z = 2

and Z = 3 respectively. See Figure 2.1.
Initially, the energy, E is set to be the constant value E = 10−5.
Additional papers that look at these equations include [3, 4, 5, 7, 12, 16] and their ac-

companying references. The radiation transport model described here is very similar to that
presented in [7, 12, 16], except that we use the finite element method instead of the finite
difference method, as this more readily allows the use of adaptive refinement.

3. Discretization. To solve Equation (2.1), we use the following variational formula-
tion, similar to that given in [6]: Find u(t) ∈ V = H1(Ω), t ∈ I , such that

(u̇(t), v)Ω + a(D(u(t)); u(t), v)Ω =< g, v >∂Ω ∀v ∈ V,(3.1)

where

a(D(u); v, w)Ω =

∫

Ω

D(u)∇v∇w dΩ +

∫

ΓF0

vw

2
dΓ +

∫

ΓF1

vw

2
dΓ,



ETNA
Kent State University 
etna@mcs.kent.edu

80 Radiation transport equations

< v, w >∂Ω=

∫

∂Ω

vw dΩ,

and

g =





0 on ΓN × I,
2 on ΓF0

× I,
0 on ΓF1

× I.

The time derivative is dealt with by either an implicit Euler or the Crank-Nicolson
method.

4. Node-Edge Data Structure. A node-edge data structure similar to the one described
in [15, 17, 18, 20] is used to store the finite element grid. In this data structure, a gridMm is
defined in terms of its geometrical, topological and algebraic attributes. The geometrical and
topological attributes are simply the set of nodes,Nm, and edges, Em. The stiffness matrix is
associated with the algebraic attribute and is stored in the set of connections, Cm

A , as a graph.
The node-edge data structure does not explicitly contain any information about the el-

ements in the grid. Consequently, the same data structure can be used to store triangular,
quadrilateral or tetrahedral grids. Information about the elements may be extracted by loop-
ing through the nodes and edges if necessary. The advantage of such a data structure is its
flexibility. Although we concentrate on serial results in this paper, the code has been imple-
mented in parallel and those results will be presented in a future paper.

We use a refinement algorithm to build the hierarchy of grids needed by our solution tech-
niques (multigrid methods). In notational form this nested sequence of grids is represented
byM1 ⊂ M2 ⊂ ... ⊂ Mn. A more thorough description of this refinement algorithm is
given in Section 6.

Information is moved from the coarse grid Mm−1 to the fine grid Mm by the linear
interpolation matrix Im

m−1. The restriction matrix Im−1
m is defined to be the transpose of the

interpolation matrix and moves the information from the fine grid Mm to the coarse grid
Mm−1. This extra algebraic information is stored in the table of connections. That is, if Cm

I ,
Cm

R and Cm
A hold the interpolation, restriction and stiffness matrices, respectively, then the

algebraic information for a multigrid grid is the set of connections, Cm, where

Cm = Cm
A ∪ C

m
I ∪ C

m
R ,

for 1 < m < n, C1 = C1
A ∪ C

1
I and Cn = Cn

A ∪ C
n
R.

Finally, the gridMm is given byMm = {Nm, Em, Cm}.
Conceptually the user views Em as a set of edges, but internally they are stored as sets of

neighbor endpoints. Given a node Ni it’s set of neighbor endpoints is defined to be:

B(E , Ni) = {Nj : (Ni, Nj) ∈ E}.

The neighbor endpoints readily allow us to find information about the triangles in the grid.
For example, to build a table of triangles, T , the following algorithm can be used:
for Ni ∈ N

for Nj ∈ B(E , Ni)
for Nk ∈ B(E , Ni)

if (Nj , Nk) ∈ E
T ← {Ni, Nj , Nk} ∪ T



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 81

5. Solution Techniques. We compare two different solution techniques: the inexact
Newton-multigrid method and the Full Approximation Storage (FAS) multigrid. Note that
Newton’s method relies on a global linearisation sweep whereas the FAS scheme uses local
linearisations.

5.1. Inexact Newton-Multigrid. Our implementation is a standard implementation of
Newton’s method, but we have included a brief description below to aid in the discussion of
the numerical results.

Suppose we want to solve the nonlinear system N[x] = b where N is a nonlinear opera-
tor. Let F[x] = b−N[x] and take an initial guess x0. A high level algorithm for the inexact
Newton-multigrid method is;

While |F[xk]| > a given tolerance
Calculate the Jacobian F′(xk)
Construct the coarse grid operator
Solve the linear system F′(xk)y = −F[xk] by using the multigrid method
Find the scaling factor γ
Set xk+1 = γy + xk

The method is inexact because the linear system is not solved exactly; we just require
that

||F[xk ] + F′(xk)y|| < ||F[xk ]||/10.

The scaling factor is defined as

γ = min {1, 1/||c||2}
1

4 ,(5.1)

where ci = yi/(xk)i. It is necessary to include a scaling factor when solving the time-
dependent problems as the solution changes rapidly near wave fronts. This is similar to the
scaling factor defined in [16].

When using the multigrid algorithm to solve a linear system Any = fn given on a fine
grid, the coarse grid operators are defined by the equation;

Am−1 = Im−1
m AmIm

m−1,(5.2)

where Am (1 < m ≤ n) is the matrix defined on the gridMm, and Im−1
m and Im

m−1 are the
restriction and interpolation matrices introduced in Section 4.

A nested iteration scheme was used to obtain the initial guess x0.

5.2. FAS Scheme. A high level algorithm of the FAS scheme is given below. A more
thorough description can be found in, for example, [1, 2, 8].

While |F[xk]| > a given tolerance
If not at coarsest grid

Apply a nonlinear smoother µ1 times to the system Nm[xm] = bm

Compute the defect dm = bm −Nm[xm]
Restrict the defect dm−1 = Im−1

m dm

Restrict the current approximation xm−1 = Îm−1
m xm

Compute the approximation to
Nm−1[ym−1] = dm−1 + Nm−1[xm−1]

by calling the FAS Scheme again using xm−1 as an initial guess



ETNA
Kent State University 
etna@mcs.kent.edu

82 Radiation transport equations

Calculate the correction x̂m−1 = ym−1 − xm−1

Interpolate the correction x̂m = Im
m−1x̂

m−1

Correct the current approximation xm = xm + x̂m

Apply a nonlinear smoother µ2 times to the system Nm[xm] = bm

else
Solve the coarse grid problem N1[x1] = b1 by using Newton’s method.

Notice that the Jacobian matrix is not formed, except on the coarsest grid, so the FAS
scheme requires less storage than Newton’s method.

The matrix Îm−1
m is a restriction operator, but not necessarily the same as Im−1

m . We used
injection for this operation.

The nonlinear SOR method [13] was used as a smoother by the FAS scheme. The lineari-
sation phase is incorporated in the smoother by applying a point-Newton method to a given
grid node after ‘fixing’ the value at all of the other nodes. To apply the point Newton method,
the diffusivity term (and its derivative) must be evaluated, which is expensive.

6. Grid Refinement. The refinement algorithm is based on the newest node bisection
method. In this method, the triangles are subdivided by bisecting the edges that sit opposite
the newest nodes. For example, if the dark points in Figure 6.1 are the newest nodes, then the
resulting grid after one and two refinement sweeps are shown in Figure 6.2.

c s c

s c s

c s c

1 2 3

6
5

4

7 8 9

�
�

�
�

�
�

��@
@

@
@

@
@

@@

B

B

B

B

FIG. 6.1. Example grid that may be stored in the node-edge data structure.

c c c

c c c

c c c

s

s

s

s

B

B

B

B

B

B

B

B

B

B

B

B

�
�

�
�

�
�

��

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

@
@

@
@

@
@

@@ c c c

c c c

c c c

c

c

c

c

s

s

s

s

s

s

s

s

s

s

s

s

�
�

�
�

�
�

��

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

@
@

@
@

@
@

@@

FIG. 6.2. Resulting grid after two non-adaptive refinement sweeps of the grid in Figure 6.1. Note that the
edges have been bisected along the base edges marked by a B.

In terms of the node-edge data structure, it is easier to work with the base edges rather
then the newest nodes, where the base edges are the edges that sit opposite the newest nodes,
such as those marked by B in Figure 6.1.

6.1. Controlling the order of refinement. The most difficult part of the adaptive re-
finement routine is ensuring that the edges are bisected in the correct order to avoid long thin
triangles. For example, suppose a triangle in Figure 6.1 is refined along one of the base edges
as shown in Figure 6.3; then several of the triangles in the resulting grid will have two base
edges. If the edges B1 and B2 are bisected during the next refinement sweep, then it is not



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 83

s s s

s s s

s s s
s

�
�

�
�

�
�

��@
@

@
@

@
@

@@

@
@

@
@

B1 B2

B B

B

B

B

FIG. 6.3. Result after bisecting the grid in Figure 6.1 along one of the base edges.

s s s

s s s

s s s
sss

�
�

�
�

�
�

��@
@

@
@

@
@

@@

@
@

@
@

HHHH

�
�

FIG. 6.4. If the wrong edge (B1) is bisected first, then the triangles can become long and thin.

clear which base edge should be bisected first. If the wrong edge is chosen, as in Figure 6.4,
we get long thin triangles that reduce the grids efficiency.

To determine the order in which to bisect the edges, we use a method similar to Mitchell’s
Compatibly Divisible Triangles [9, 10, 11].

t t t

t t t

t t t

�
�

�
�

�
�

�
��@

@
@

@
@

@
@

@@

@
@

@
@@

B4

B3

B5

B6

B7I1

I2

t t t

t t t

t t t
t t

�
�

�
�

�
�

�
��@

@
@

@
@

@
@

@@

@
@

@
@@

�
�

�
��

B4 B5

B1

B6

B7

I2

B9

B10

I8

t t t

t t t

t t t
t tt

�
�

�
�

�
�

�
��@

@
@

@
@

@
@

@@

@
@

@
@@

�
�

�
��

B4 B5

B6

B7

I2

B9

B10

I8

I11

I13

I12

I14

FIG. 6.5. The interface-base edges marked by I sit between two different levels of refinement. Once an
interface-base edge has been updated to a base edge, it may be bisected.

We define an interface-base edge to be an edge that sits between two different levels of
refinement. For example, in Figure 6.5, we have redrawn the grid from Figure 6.3 and marked
the interface-base edges by an I. The neighboring coarse triangles must be refined before the
interface-base edges are bisected. So B3 in Figure 6.5 must be bisected before I1. Note that
it may be necessary to refine more then one neighboring triangle. For example, to bisect edge
I11 in Figure 6.5, edges B4 and I8 should be bisected first.

6.2. Error Indicator (Stationary Problem). The idea behind our error indicator is to
determine if the addition of a new node will significantly reduce the error.

Let vm be the current approximation to the system of equations Nm[um] = bm, where
Nm and bm are the stiffness matrix and load vector defined on the current grid, Mm.
Then, each base edge and interface-base edge is assigned an error indicator that is equal
to a weighted residual calculated at its midpoint. That is, if node i is the midpoint of a edge
then the error indicator em assigned to that edge is:



ETNA
Kent State University 
etna@mcs.kent.edu

84 Radiation transport equations

em =
rm+1

i

Nm+1
i,i [Im+1

m vm]
,(6.1)

where

rm+1 = bm+1 −Nm+1[Im+1
m vm].

Nm+1 and bm+1 are the resulting stiffness matrix and load vector that would result if
the edge was bisected at node i to form a new set of triangles. Note that it is not necessary to
construct the whole stiffness matrix (or load vector); we only need the row corresponding to
node i.

The motivation behind the error indicator is the question: how much will the error be
reduced if we add node i? In regions of the domain where the solution is well approximated
by the coarse grid we would expect the residual rm+1 to be small. In other regions where the
solution is rapidly changing, and not well approximated by the coarse grid, the residual will
be large. We divide by Nm+1

i,i [Im+1
m vm] to normalize the residual.

This error indicator is similar to the error indicator described by Mitchell [9, 10, 11],
Rüde [15] or Villegas [21].

6.3. Moving Grids. When modeling non-stationary problems it is advantageous to ad-
just the shape of the grid to match the movement of the wave front. By noting that we store a
sequence of nested grids, not just a single FEM grid, we are able to implement a very cheap
de-refinement procedure. We simply shuffle the grids up one level, i.e. set M̄m toMm−1

where M̄m is the de-refined grid. The interpolation and restriction information at the coarsest
and finest grids has to be updated, but otherwise this is a simple copy. Once all of the levels
have been updated, we can apply the refinement algorithm described above.

6.4. Error Indicator (Non-Stationary Problem). The next issue is how to calculate
the error indicator when taking the time derivative into account. To calculate the indicator
at the next time-step, we need an approximation of the solution at that time-step. Applying
an implicit algorithm to approximate the solution is cost-prohibitive, so we use an explicit
method instead. We only use an explicit method to find the error indicator; once the grid
has been refined, we use an implicit method to calculate the solution. Recall that the explicit
Euler method is

Mmv̄m = Mmvm + ∆t(bm −Nm[vm]),

where Mm is the mass matrix, vm is the solution at the current time-step, v̄m is the solution
at the next time-step and ∆t is the step size. Based on this equation we then define the error
indicator for non-stationary problems to be:

em =
rm+1

i(
Mm+1

i,i

)1/4
,(6.2)

rm+1 = gm+1 −Mm+1Im+1
m v̄m,

gm+1 = Im+1
m (Mmvm + ∆t(bm −Nm[vm]))

Note that this indicator only needs to evaluate Nm once on the original de-refined grid,
to form the right-hand-side, and is thus a lot cheaper than the indicator used for the stationary
problem.



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 85

Figures 6.6, 6.7 and 6.8 show examples of the moving grid, if α = −3, β = 3/4. The
values of Z are as given in Figure 2.1 and D(E) = D1(E). The step size is 0.5/1024, and
the figures show the results at time step 110, 220 and 440 respectively. The indicator should
pick up the regions where the solution is changing rapidly, which it does.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 6.6. Example grid at time step 110∆t (∆t = 0.5/1024), which contains 5457 nodes. This grid was
used to obtain the results given in Figure 7.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 6.7. Example grid at time 220∆t (∆t = 0.5/1024), which contains 12713 nodes. This grid was used to
obtain the results given in Figure 7.7.

7. Results. All of the test examples were run on 1.7 GHz Pentium 4 processors with
1024 MB of 400 MHz RAM. Further particulars of the machine can be found at
http://www.icase.edu/.

7.1. Solution of Stationary Problem. To better understand the behavior of the two
nonlinear multigrid methods we firstly considered the stationary problem.

7.1.1. Test Problems. We looked at four different test problems, low, low J, high
and high J.

In the first two examples, low and low J, α = −1 and β = 1/4. The value of Z is
fixed at 2 throughout the whole domain for low, but in low J it varies as shown in Figure
2.1. Figure 7.1 shows examples solutions of low and low J. For the other two examples,
high and high J, the nonlinearity and jump size were set at α = −3 and β = 3/4. Again,



ETNA
Kent State University 
etna@mcs.kent.edu

86 Radiation transport equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 6.8. Example grid at time 440∆t (∆t = 0.5/1024), which contains 5583 nodes. This grid was used to
obtain the results given in Figure 7.8.

Z is fixed at 2 for high, but is spatially dependent for high J. Figure 7.2 shows example
solutions of high and high J.

The flux limiter was included in the test problems so the definition of the diffusivity term
is as shown in Equation (2.3).

The initial value for the energy was E = 10−5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
47

97
0.

47
97

0.4797

0.
62

39
4

0.
62

39
4

0.73933

0.
73

93
3

0.
73

93
3

0.88357

0.
88

35
7

0.
99

89
7

0.99897

1.1144

1.
11

44

1.1144

1.
25

86

1.2586

1.
25

86

1.
37

4

1.374
1.374

1.5182
1.5182

1.
51

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.47752

0.
47

75
2

0.61662

0.
61

66
2

0.
72

79
1

0.
72

79
1

0.72791

0.86701

0.
86

70
1

0.
86

70
1

0.
97

82
9

0.
97

82
9

0.
97

82
9

1.
08

96
1.

08
96

1.
08

96

1.
22

87

1.
22

87

1.2287

1.34

1.
34

1.34

1.4791
1.4791

1.4791

FIG. 7.1. Example solutions of the test problems low and low J respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
31

50
8

0.
31

50
8

0.50488

0.
50

48
8

0.
50

48
8

0.
65

67
3

0.
65

67
3

0.
65

67
3

0.
84

65
3

0.84653

0.
99

83
8

0.99838

0.
99

83
8

1.
15

02
1.

15
02

1.
15

02

1.34
1.34

1.34

1.
49

19

1.4919
1.4919

1.
68

17

1.6817
1.6817

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25311
0.44034

0.
44

03
4

0.59013

0.
59

01
3

0.
59

01
3

0.
77

73
7

0.
77

73
7

0.77737

0.
92

71
6

0.
92

71
6

0.92716

1.
07

69

1.
07

69

1.
07

69

1.2642

1.
26

42

1.2642

1.414

1.
41

4

1.414

1.6012

FIG. 7.2. Example solutions of the test problems high and high J respectively.

7.1.2. Newton’s method. The first sets of results we present are those for Newton’s
method, which are given in Tables 7.1 and 7.2.

The timing results have been broken down into the total time (Total Time), time required
to solve the nonlinear system using Newton’s method (Newton), the time spent solving the



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 87

TABLE 7.1
Solution time, in seconds, when solving the test problems using Newton’s method on an uniformly refined grid.

low low J high high J

No. Nodes 66049 66049 66049 66049
No. It. 7 7 7 7
Total Time 160.7 169.3 148.1 175.0
Newton 152.4 161.0 140.0 166.8
V-cycle 55.6 62.8 45.6 66.5
Grid Refine 3.7 3.8 3.7 3.7
FEM 4.5 4.5 4.4 4.4

TABLE 7.2
Solution time, in seconds, when solving the test problems using Newton’s method on an adaptively refined grid.

low low J high high J

No. Nodes 51583 35664 64490 14911
No. It. 8 8 9 9
Total Time 376.9 240.7 334.7 75.1
Newton 353.6 223.7 304.1 68.3
V-cycle 243.7 145.7 161.7 35.4
Grid Refine 19.1 14.0 25.3 5.6
FEM 4.2 3.0 5.3 1.2

linearized system with the aid of the V-cycle (V-cycle), the time needed to build the nested
sequence of grids (Grid Refine) and the time to build the load vector (FEM). Strictly speaking
we do not have to evaluate the load vector, we could just automatically set the values to zero.
But this will not be the case when we look at systems of equations, so for functionality reasons
we still evaluate the load vector. The time given for Newton’s method includes the time to
solve the linearized system of equations (‘V-cycle’). So, Total Time = Newton + Grid Refine
+ FEM.

The scaling factor given in Equation 5.1, was also included in the algorithm. This was
necessary otherwise the high J test example diverged when solving the problem on coarser
grids. The factor generally evaluated to 1 on the finer grids.

Six pre-smoothers and six post-smoothers were used in the V-cycle solver.
As part of Newton’s method, the solution of the linearized system is added to the current

approximation to get the new approximation (see the Newton-multigrid algorithm given in
Section 5.1). After applying this update some of the energy values may be negative. This is
not physically meaningful and it causes a numerical error when the negative energy values
are passed into the diffusivity functions, D1(E) or D2(E). Physically, the energy should not
go below 10−5 (the initial energy value), so after adding the solution of the linear system we
sweep through the grid and change any negative values to 10−5. As a consequence, if the grid
is not fine enough Newton’s method may stall.

Recall that the initial guess on the fine grid was obtained by the use of nested iteration.
Such an approach is especially appropriate in the case of adaptive refinement where we need
to approximate the solution on each grid before we can calculate the error indicator. However,
as explained above, Newton’s method stalls if the grid is too coarse. Therefore, when using
the coarse grid to find an initial guess we limit the maximum number of iterations to 10. We
chose 10 because the coarse grid solves either stalled or converged within 10 iterations.



ETNA
Kent State University 
etna@mcs.kent.edu

88 Radiation transport equations

TABLE 7.3
Solution time, in seconds, when solving the test problems using the FAS scheme on an uniformly refined grid.

low low J high high J

No. Nodes 66049 66049 66049 66049
No. It. 10 14 6 15
Total Time 404.7 555.0 272.0 600
FAS 396.7 546.8 263.9 591.7
Nonlin. SOR 308.5 422.9 203.8 460.4
Grid Refine 3.7 3.8 3.8 3.9
FEM 4.2 4.4 4.2 4.4
Newton 1.1 1.4 0.7 2.0

TABLE 7.4
Solution time, in seconds, when solving the test problems using FAS scheme on an adaptively refined grid

low low J high high J

No. Nodes 51583 35664 64490 14911
No. It. 22 21 10 11
Total Time 1683.9 1020.6 946.4 247.7
FAS 1662.0 1004.0 916.5 240.8
Nonlin. SOR 1485.7 896.0 818.0 216.4
Grid Refine 17.7 13.6 24.7 5.7
FEM 4.2 3.0 5.3 5.7
Newton 1.2 1.0 0.7 0.8

The times given in the tables is the overall time for the nested iteration, not just the time
required to solve the fine grid problem.

The number of iterations, labeled as ‘No. It.’, is the number of iterations required to
solve the problem on the finest grid level. The iterations were terminated when the residual
F[xk] was less than 10−10. Setting the tolerance to 10−10 meant that both the FAS and
Newton’s method required several iterations on the fine grid to converge. This challenged the
two solvers and better allowed us to compare the performance.

Six levels of uniformly refined grids were used to obtain the results presented in Table
7.1. The initial coarse grid contained 25 nodes. The number of nodes on the finest grid was
66049.

Five levels of adaptively refined grids form the basis of the results given in Table 7.2. The
initial coarse grid contained 25 nodes. The number of nodes on the finest grid level ranges
from 64490 to 14911, which is an artifact of the refinement routine. If the error indicator is
reduced by a factor of four the refinement algorithm exits, which does not necessarily imply
that the number of nodes in one grid level to the next increased by a factor of four.

When using adaptive refinement the number of nodes in certain regions of the domain
may vary greatly from one grid level to the next. Consequently the convergence rate for the
linear solver decreased when using adaptive grids. This is why the percentage of time spent
in the V-cycle is high for the adaptively refined grids. The convergence rate of the V-scheme
when solving the low J test problem, for example, was better than 0.1 for uniform grids but
decreased to 0.6 for the adaptively refined grids.

7.1.3. FAS. Tables 7.3 and 7.4 give the timing results when the FAS scheme was used.
Much of the discussion given in Section 7.1.2 on how the timing results were obtained also



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 89

applies here.
The results labeled ‘Nonlin. SOR’ show the amount of time spent in the nonlinear SOR

routine. Two pre-smoothers and two post-smoothers were used for the uniform grids and six
pre-smoothers and six-post smoothers were used for the adaptive grids. It was necessary to
apply more pre and post smoothers for the adaptive grids to ensure that the method converged.

The convergence rate for the FAS method when solving low J was 0.4 with uniform
grids and 0.5 with adaptive grids. The rate for the uniform grids is less than that reported
for Newton’s method, but we only used two pre and two post smoother for the FAS scheme
where as we used six pre and six post smoothers for Newton’s method.

To choose the number of pre and post smoothers we took the low J test problem and
tried different numbers of pre and post smoothers and choose the combination that gave the
smallest run time for each method (Newton or FAS).

We used Newton’s method as the coarse grid solver in the FAS routine. The results
labeled ‘Newton’ show how long it took to solve the problem on the coarse grid, which
contained 25 nodes.

The time spent in the nonlinear SOR routine and Newton’s method contribute to the time
reported for the FAS scheme. Hence Total Time = FAS + Grid Refine + FEM.

The nonlinear SOR routine, as with Newton’s method, may produce negative values for
the energy. If this happened, the negative values were changed to 10−5. If the grid is too
coarse the FAS scheme stalled, as with Newton’s method. Hence the maximum number of
times the FAS scheme was called to solve the problem on a given grid was 30.

The times for the FAS scheme are slower than Newton’s method. We have also observed
this for other test problems. This does not mean that the FAS scheme performed badly in
terms of the number of updates per node. As a specific example, consider the test problem
low J on a uniformly refined grid. Fourteen iterations of the FAS-scheme were required
to solve this problem. When Newton’s method was used a total of fourteen V-cycles were
also called to solve the linearized system. Taking into account that we had two pre and post
smoothers for the FAS scheme, but used six pre and post smoothers for the V-cycle, we see
that in terms of number of node updates the FAS scheme was cheaper for this particular
example.

The main reason why FAS is slower is the high cost of calculating the effect of the
diffusivity term, and it’s derivative. Every time the value of a node is changed a(D(u); v, w)
has to be reevaluated. This must be done by looping over all of the triangles that have the node
as one of their vertices, forming the appropriate basis functions and calculating an integral.
Our data structure is not triangle based, so there is some extra overhead in finding the triangles
around a given node, although we use the neighbor endpoints and have been very careful in
the way we implement the data structure so the overhead is very small. Irrespective of what
data structure is implemented, updating the nodal values when using a linear smoother is
much cheaper than updating the nodal values when using a non-linear smoother. In the first
case we simply update the nodal values by finding some weighted average of the neighboring
nodes. In the second case we have, at least, the additional cost of evaluating an integral by the
use of some quadrature rule. Such characteristics have also been observed when using other
codes, see [7].

Note that the radiation transport model used here is fairly simple, so the diffusivity term
would become more complex if some of the underlying assumptions were removed. In which
case we would expect the cost of evaluating the diffusivity term to become an even bigger
bottleneck.

7.2. Non-Stationary. The Crank-Nicolson method was used in all of the test runs.



ETNA
Kent State University 
etna@mcs.kent.edu

90 Radiation transport equations

7.2.1. Jump Size and Non-Stationary Solutions. We now look at how the jump size
affects the movement of the energy wave. We used the inexact Newton-multigrid method to
solve the problem.

In the first example α = −1 and β = 3/4. The values of Z are as given in Figure 2.1.
For simplicity the flux limiter was not used. The step sizes have to be greatly reduced if the
limiter is included and we leave this calculation to our report on the parallel performance. We
took time steps of size 0.5/1024 and the results in Figures 7.3, 7.4 and 7.5 show the energy
at time steps 110, 220 and 440 respectively. The nonlinear iterations were terminated when
the residual was less than 10−6. We chose this stopping criteria as it is small enough to get
physically meaningful results.

We have observed that for non-stationary problems it is important that the grid is fine
enough otherwise Newton’s method (and the FAS scheme) tends to stall. Hence the use of
adaptive refinement is beneficial, especially in the first few time steps where the energy values
near the left boundary increase rapidly.

Four levels of adaptive refinement was used to build the grid levels. The coarsest grid in
this case contained 9 nodes.

Recall that the atomic mass number in the lower left corner of the domain is higher than
that in the upper left corner. We can clearly see how this influences the movement of the wave
front.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
1

0.
1

0.13626

0.
13

62
6

0.
13

62
6

0.
18

15
9

0.
18

15
9

0.
21

78
5

0.
21

78
5

0.21785

0.
26

31
8

0.26318

0.
29

94
4

0.29944
0.29944

0.
33

57

0.3357
0.3357

0.
38

10
3

0.38103
0.38103

0.41729
0.46261

FIG. 7.3. Example solution at time step 110∆t (∆t = 0.5/1024) with α = −1 and β = 1/4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.
1

0.
1

0.15583

0.
15

58
3

0.22561

0.
22

56
1

0.
22

56
1

0.
28

14
4

0.
28

14
4

0.28144

0.
35

12
2

0.
35

12
2

0.35122

0.
40

70
4

0.
40

70
4

0.40704

0.
46

28
7

0.46287

0.
53

26
5

0.53265

0.53265

0.58848
0.65826

FIG. 7.4. Example solution at time step 220∆t (∆t = 0.5/1024) with α = −1 and β = 1/4.



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
1

0.
1

0.
17

56
9

0.
17

56
9

0.
27

03
1

0.
27

03
1

0.346

0.
34

6

0.346

0.44061

0.
44

06
1

0.5163

0.
51

63

0.5163

0.59199

0.
59

19
9

0.68661
0.68661

0.7623
0.7623

0.7623

0.85691

FIG. 7.5. Example solution at time step 440∆t (∆t = 0.5/1024) with α = −1 and β = 1/4.

In the next set of examples we set α = −3 and β = 3/4. All of the other parameters are
the same as those given above. The results in Figures 7.6, 7.7 and 7.8 show the energy at time
steps 110, 220 and 440 respectively.

These graphs show how an increase in the mass number slows the movement of the wave
front.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
1

0.1

0.17005

0.
17

00
5

0.17005

0.2576

0.
25

76

0.2576
0.32765

0.
32

76
5

0.32765
0.41521

0.41521
0.41521

0.48525
0.5553

0.64286
0.7129

0.80046

FIG. 7.6. Example solution at time step 110∆t (∆t = 0.5/1024) with α = −3 and β = 3/4.

8. Conclusion. The experiments that we carried out imply that the inexact Newton-
multigrid method is faster than the FAS scheme when solving radiation transport equations.
The reason is that calculating the diffusivity term;

a(D(u); v, w)Ω =

∫

Ω

D(u)∇v∇w dΩ +

∫

ΓF0

vw

2
dΓ +

∫

ΓF1

vw

2
dΓ,

is relatively expensive. In Newton’s method we only have to evaluate the diffusivity term
once for each node on the finest grid level to form the Jacobian, but with the FAS scheme it
must be evaluated several times for each node on each grid level.

The cost of evaluating the diffusivity term may not be so influential when using, say, the
finite difference method. However we believe that even in this case it will still become an
issue if the diffusivity term was made more complex to include more physics (remove some
of the current simplifications).



ETNA
Kent State University 
etna@mcs.kent.edu

92 Radiation transport equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
1

0.
1

0.
18

78
9

0.
18

78
9

0.
18

78
9

0.
29

77
5

0.
29

77
5

0.
29

77
5

0.
38

56
4

0.
38

56
4

0.
38

56
4

0.
49

55
1

0.49551

0.
58

34

0.5834

0.5834
0.67129

0.78115
0.869040.9789

FIG. 7.7. Example solution at time step 220∆t (∆t = 0.5/1024) with α = −3 and β = 3/4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.1

0.
1

0.
20

64
2

0.
20

64
2

0.
20

64
2

0.
33

94
5

0.
33

94
5

0.
33

94
5

0.
44

58
8

0.
44

58
8

0.
57

89
1

0.
57

89
1

0.
68

53
3

0.68533

0.
68

53
3

0.79176
0.92479
1.0312

1.1642

FIG. 7.8. Example solution at time step 440∆t (∆t = 0.5/1024) with α = −3 and β = 3/4.

The finite element method is also better suited to the use of adaptive refinement. We also
showed that adaptive refinement helps to capture the information along the wave front.

Note that we only presented serial results in this report and our initial study into the
parallel performance suggests that the FAS scheme scales better.

9. Future Work. Both of the solvers have difficulty converging during the first few time
steps, so we plan to investigate some adaptive time-stepping techniques.

We also plan to study the parallel scalability of the solvers.

REFERENCES

[1] A. BRANDT, Multi-level adaptive solutions to boundary-value problems. Math Comput., 31(138):333–390,
April 1977.

[2] W. L. BRIGGS, V. E. HENSON, AND S. F. MCCORMICK, A Multigrid Tutorial. SIAM, 2000.
[3] P N. BROWN, B. CHANG, F. GRAZIANI AND C. S. WOODWARD, Implicit solution of large-scale radiation-

material energy transfer problems, Technical Report UCRL-JC-132831, Lawrence Livermore National
Laboratory, Jan. 1999. To appear in Proceedings of the Fourth IMACS International Symposium on
Iterative Methods in Scientific Computations.

[4] P N. BROWN AND C. S. WOODWARD, Preconditioning Strategies for Fully Implicit Radiation Diffusion with
Material-Energy Transfer, Technical Report UCRL-JC-139087, Lawrence Livermore National Labora-
tory, May. 2000. To appear in SIAM J. Sci. Comput.



ETNA
Kent State University 
etna@mcs.kent.edu

L. Stals 93

[5] D. A. KNOLL, W. J. RIDER AND G. L. OLSON, An efficient nonlinear solution method for non-equilibrium
radiation diffusion, Technical Report LA- UR-98-2154, Los Alamos National Laboratory, 1998. Submit-
ted to J. Quant. Spec. and Rad. Trans.

[6] M. KŘ ÍŽEK AND L. LIU, Finite element approximation of a nonlinear heat conduction problem in anisotropic
media, Technical Report 4/1997, Laboratory of Scientific Computing, University of Jyväskylä, Finland,
1997.

[7] D. J. MAVRIPLIS,Multigrid approaches to non-linear diffusion problems on unstructured meshes, Technical
Report ICASE Report No. 2001-3, (NASA/CR-2001-210660), February 12, 2001, 16 pages. Submitted
to the Journal of Numerical Linear Algebra with Applications.

[8] S. F. MCCORMICK, Multigrid Methods. SIAM Frontiers In Applied Mathematics, 1987.
[9] W. F. MITCHELL, Unified Multilevel Adaptive Finite Element Methods For Elliptic Problems. PhD the-

sis, Department Of Computer Science, University Of Illinois at Urbana-Champaign, Urbana, IL, 1988.
Technical Report UIUCDCS-R-88-1436.

[10] W. F. MITCHELL, A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math.
Software, 15(4):326–347, December 1989.

[11] W. F. MITCHELL, Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput,
13(1):146–167, January 1992.

[12] V. A. MOUSSEAU, D. A. KNOLL AND W. J. RIDER, Physics-based preconditioning and the Newton-Krylov
method for non-equilibrium radiation diffusion. Journal of Computational Physics, 160:743-765, 2000.

[13] J .M. ORTEGA AND W .C. RHEINBOLDT, Iterative solution of nonlinear equations in several variables,
Academic Press, New York and London, 1970.

[14] G. C. POMRANING, The equations of radiation hydrodynamics, Pergamon, New York, 1973.
[15] U. RÜDE, Mathematical and computational techniques for multilevel adaptive methods, SIAM, Philadelphia,

1993.
[16] W. J. RIDER, D. A. KNOLL AND G. L. OLSON, A multigrid Newton- Krylov method for multimaterial

equilibrium radiation diffusion, Technical Report LA-UR-98-2153, Los Alamos National Laboratory,
1998, 34 pages.

[17] L. STALS, Adaptive multigrid in parallel, in Proceedings of Seventh SIAM Conference on Parallel Processing
for Scientific Computing, D. Bailey, P. Bjørstad, J. Gilbert, M. Mascagni, R. Schreiber, H. Simon, V.
Torczon and L. Watson, eds, SIAM, Philadelphia, 1995, pp. 367-372.

[18] L. STALS, Parallel multigrid on unstructured grids using adaptive finite element methods, PhD thesis, De-
partment of Mathematics, Australian National University,Canberra, Australia, 1995.

[19] L. STALS, Implementation of multigrid on parallel machines using adaptive finite element methods, in Pro-
ceedings of 9th International Conference on Domain Decomposition, P. Bjørstad, M. Espedal and D.
Keyes, eds, 1998, pp. 488-496.

[20] L. STALS, A flexible data structure for the adaptive refinement of unstructured grids in parallel, , in The
Proceedings of The 14th Kiel GAMM Seminar on Concepts of Numerical Software, January, 1997. To
appear.

[21] J. C. A. VILLEGAS, Anisotropic Adaptive Refinement Algorithms for Finite Element Methods. PhD thesis,
Graduate School of Arts and Science, Department of Mathematics, New York University, September
2000.


