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A POLYNOMIAL COLLOCATION METHOD FOR
CAUCHY SINGULAR INTEGRAL EQUATIONS

OVER THE INTERVAL∗

P. JUNGHANNS† AND A. RATHSFELD‡

Abstract. In this paper we consider a polynomial collocation method for the numerical solution of a singular
integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the
form aI + µ−1bSµI + K with S the Cauchy integral operator, with piecewise continuous coefficients a and b ,

with a regular integral operator K , and with a Jacobi weight µ. To the equation [aI + µ−1bSµI + K]u = f we
apply a collocation method, where the collocation points are the Chebyshev nodes of the second kind and where the
trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this
collocation in weighted L2 spaces, we derive necessary and sufficient conditions.
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1. Introduction. Discretization schemes including collocation based on polynomial ap-
proximation are the most popular numerical methods for the numerical solution of the Cauchy
singular integral equations (cf. e.g. [1, 2, 4, 6, 7, 8, 9, 13, 18] and [28, Chapter 9]). These
methods are based on well-known invariance properties for polynomial spaces with respect to
the integral operators if the latter are multiplied by a correctly chosen weight function. Thus
polynomial methods are spectral methods and exhibit optimal convergence properties.

On the other hand, the mentioned methods are restricted to integral operators the coeffi-
cients of which satisfy some smoothness properties. Moreover, the construction of the weight
functions, of the orthogonal polynomials, and of the collocation nodes is not so simple if the
coefficients of the integral operators are not constant. Therefore, it is natural to use Cheby-
shev nodes even if the intrinsic weight function of the operator is different from the Cheby-
shev weight. Moreover, if additional fixed singularities occur, the invariance property holds
only for the Cauchy singular part and not for the whole operator. Consequently, the usual
approximation arguments do not apply, and, there is no motivation to choose complicated
weights. Furthermore, iterative methods with integral equations, the coefficient functions of
which change in every step of iteration, suggest to choose fixed collocation nodes indepen-
dently of the coefficient functions (cf. [15]). In comparison to spline methods or trigono-
metric approaches, numerical experiments for various equations (cf. [24, 25]) promise better
approximation results for the polynomial collocation.

Polynomial methods have been considered for Mellin convolution operators e.g. in [21,
23, 25]. These methods at least together with slight modifications are expected to converge for
all invertible operators. Similarly, for properly chosen weight functions and the corresponding
nodes, the invertibility of the Cauchy singular integral operator is the only condition needed
to ensure the stability of the polynomial collocation. However, if the collocation nodes are
chosen independently of the intrinsic weights, then there arise additional stability conditions
expressed in form of the invertibility of related operators (cf. the special case treated in [17,
19]). Local principles and Banach algebra techniques are the main tools to prove such results.
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In this paper we analyze the polynomial collocation method for an integral equation of
the type

a(x)u(x) +
b(x)

µ(x)

1

πi

∫ 1

−1

µ(y)u(y)

y − x
dy +

∫ 1

−1

k(x, y)u(y) dy = f(x) ,(1.1)

−1 < x < 1 , where a, b : [−1, 1] −→ C stand for given piecewise continuous1 coefficient
functions, where the weight function µ is defined by µ(x) := (1 − x)γ(1 + x)δ with real
numbers −1 < γ, δ < 1, where the kernel k : (−1, 1) × (−1, 1) 7→ C is supposed to
be continuous, where the right-hand side function f is given in the weighted L2 space L2

σ ,
and where u stands for the unknown solution. The Hilbert space L2

σ is defined as the space
of all functions u : (−1, 1) −→ C which are square integrable with respect to the weight
σ(x) := vα,β(x) := (1 − x)α(1 + x)β , −1 < α, β < 1. The inner product of this space is
defined by

〈u, v〉σ :=

∫ 1

−1

u(x)v(x)σ(x) dx

and the norm by ‖u‖σ :=
√
〈u, u〉σ . Note that the condition −1 < α, β < 1 for the

exponents of the classical Jacobi weight guarantees that the singular integral operator S :
L2
σ −→ L2

σ is continuous, i.e. S ∈ L(L2
σ) (see [11, Theorem I.4.1]). In short operator

notation (1.1) takes the form

Au := (aI + bµ−1SµI +K)u = f .(1.2)

Here aI : L2
σ −→ L2

σ denotes the multiplication operator defined by (au)(x) := a(x)u(x),
the operator S : L2

σ −→ L2
σ is the Cauchy singular integral operator given by

(Su)(x) :=
1

πi

∫ 1

−1

u(y)

y − x
dy ,

and K : L2
σ → L2

σ stands for the integral operator with kernel k(x, y).
For the numerical solution of the singular integral equation (1.2), we consider the poly-

nomial collocation method

a(xϕjn)un(x
ϕ
jn) +

b(xϕjn)

µ(xϕjn)

1

πi

∫ 1

−1

µ(y)un(y)

y − xϕjn
dy +

∫ 1

−1

k(xϕjn, y)un(y) dy = f(xϕjn),

j = 1, . . . , n ,(1.3)

where the collocation points xϕjn := cos
jπ

n+ 1
, j = 1, . . . , n , are the Chebyshev nodes of

the second kind corresponding to the weight function ϕ(x) :=
√

1 − x2 and where the trial
function un is sought in the space of all functions un = ϑpn with pn a polynomial of degree
less than n and with the Jacobi weight ϑ := v

1
4−α

2 ,
1
4−

β
2 . To formulate our main result on the

convergence of the method (1.3), we have to write it in the operator form

Anun = Mnf, un ∈ imLn.(1.4)

Here Ln denotes the orthogonal projection of L2
σ onto the n dimensional trial space imLn

of polynomials multiplied by ϑ. By Mn we denote the interpolation projection defined by

1For definiteness, we assume that the function values coincide with the limits from the left and that the functions
are continuous at the point −1 . The set of piecewise continuous functions on [−1, 1] is denoted by PC .
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Mnf ∈ imLn and (Mnf)(xϕjn) = f(xϕjn), j = 1, . . . , n. Finally, the discretized integral
operator An : imLn → imLn is given by An := MnA|imLn . In accordance with e.g.
[28, Chapter 1], we call the collocation method stable if the operators An are invertible at
least for sufficiently large n and if the norms of the inverse operators A−1

n are bounded uni-
formly with respect to n. Of course, the norm is the operator norm in the space imLn if the
last is equipped with the restriction of the L2

σ norm. We call the collocation method (1.4)
convergent if, for any right-hand side f ∈ L2

σ and for any approximating sequence fn with
‖f − fn‖σ → 0, the approximate solutions un obtained by solving Anun = fn converge
to the exact solution u of (1.2) in the norm of L2

σ . Note that the stability implies bounded
condition numbers for the matrix representation of An in a convenient basis, and, together
with the consistency relation AnLn → A, it implies the convergence.

To formulate our main result, we need some notation and a few assumptions. For the
exponents in the weight functions µ and σ, we suppose

− 1 < α− 2γ < 1, −1 < β − 2δ < 1,(1.5)

α0 := γ +
1

4
− α

2
6= 0, β0 := δ +

1

4
− β

2
6= 0 .(1.6)

Note that condition (1.5) ensures the boundedness of the integral operator A ∈ L(L2
σ)

whereas (1.6) is needed to derive strong limits for the discrete operators in Lemma 3.10.
Furthermore, we introduce the numbers

κ± :=
1

2π
arg

a(±1) ∓ b(±1)

a(±1) ± b(±1)
∈
(
−1

2
− ε±,

1

2
− ε±

)
,(1.7)

where

ε+ :=
α

2
− γ , ε− :=

β

2
− δ .

For the definition of κ± , instead of (−1/2− ε±, 1/2− ε±) any interval of length one can be
used. Our choice, however, is natural since the invertibility of the operator A : L2

σ −→ L2
σ

implies κ− 6= ±1/2− ε− and κ+ 6= ±1/2− ε+ .
In the subsequent analysis, we will show that there exist limit operators of the matri-

ces corresponding to the linear systems (1.3). These operators Wω{An}, ω = 3, 4 will
be introduced in the Lemmata 3.8 and 3.10, and the invertibility of Wω{An}, ω = 3, 4
will turn out to be necessary for the stability of the collocation method. The condition for
Wω{An}, ω = 3, 4 to be Fredholm and to have a vanishing index can be expressed by the
condition

∣∣∣∣κ± +
1

4

∣∣∣∣ <
1

2
.(1.8)

Using the just introduced notation, the main result is
THEOREM 1.1. Suppose that the conditions (1.5) and (1.6) are satisfied, that the coef-

ficient functions a and b are piecewise continuous over [0, 1] , and that the kernel function
k(x, y) divided by (1 − x)α/2+1/4(1 + x)β/2+1/4 is continuous on [−1, 1]× [−1, 1] (or sat-
isfies the weaker assumption met in Corollary 2.6). The polynomial collocation method (1.3)
for the approximate solution of (1.1) is stable and convergent if and only if

i) the operator A ∈ L(L2
σ) is invertible,

ii) the condition (1.8) holds,
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iii) the null spaces kerW3{An} and kerW4{An} are trivial.
Unfortunately, the verification of the condition iii) seems to be hopeless. Therefore, it

is good to know that condition iii) is not “essential” in the following sense: The case that
condition ii) is fulfilled but condition iii) not is very rare and exceptional. Indeed, we get

REMARK 1.2. Fix b(±1), µ, and σ. Consider the set Σ± of all complex numbers z =
a(±1) such that condition ii) holds. The set of points in Σ± such that condition iii) is violated
is countable and the accumulation points belong to C\Σ±. This fact is a simple consequence
of the general theory of analytic families of Fredholm operators.

REMARK 1.3. If the exceptional case should occur, then the numerical method should
be modified slightly. One way to do this is the so called i∗ modification introduced in [12]
and used also e.g. in [20, 28]. For a stability proof of such a modified method, we refer to
[28], Sections 11.30 and 12.46.

REMARK 1.4. In the particular case of singular integral operators A = aI + bµ−1SµI
with µ(x) :=

√
σ(x)ϕ(x) the condition iii) is satisfied whenever condition ii) holds. Indeed,

in this case the operators A
µ
± are zero (cf. the subsequent Lemma 3.10) and [28], Theorem

11.19 applies. Different proofs of this fact can be found in [17, 19, 31] (cf. also [14, Cor.
3.3]).

REMARK 1.5. It is not hard to see that the investigation of the collocation method can
be restricted to the case where σ(x) is the Chebyshev weight of the first kind. Indeed, if
L0
n : L2

ϕ−1 −→ L2
ϕ−1 , u 7→ ∑n−1

k=0

〈
u, ũ0

k

〉
ϕ−1 ũ

0
k , ũ

0
k = ϕUk , and M0

n = ϕLϕnϕ
−1I

(for the definition of Uk and Lϕn , cf. Section 2), then the stability of MnALn : imLn −→
imLn is equivalent to the stability of M 0

nρAρ
−1L0

n : imL0
n −→ imL0

n , where ρ(x) is

equal to (1 − x)
1
4 +α

2 (1 + x)
1
4+ β

2 (cf. [14], Cor. 3.3). Nevertheless, we retain the notation
introduced above. This does not cause additional technical difficulties and is important for
further generalizations. Moreover, a wider class of kernels for the operatorK can be treated.

REMARK 1.6. Another goal of the present paper is to prepare a subsequent paper de-
voted to polynomial collocation for Cauchy singular integral equations with perturbation
kernels having fixed singularities ([16]). These further results enable the application of trans-
formation techniques to improve the convergence rate. In comparison to the corresponding
spline methods, we expect smaller constants in the error estimates for the polynomial collo-
cation and, consequently, faster convergence.

The remainder of the present paper is devoted to the proof of Theorem 1.1. To show
stability and convergence of (1.4), we shall apply a general technique due to Roch and Sil-
bermann (cf. e.g. [30] and [28, Sections 10.31-10.41]). We shall introduce a special Banach
algebra F of sequences of discretized operators such that the stability of a sequence is equiva-
lent to the invertibility of four limit operators and to the invertibility of a corresponding coset
in a suitable quotient algebra F/J (cf. Section 2). In particular, the collocation sequence
{An} will be shown to be an element of the algebra F (cf. Section 3). To show the invert-
ibility of the corresponding element in the quotient algebra, we shall introduce a subalgebra
A/J of this quotient algebra (cf. Section 4) and a subalgebra in the center of A/J (cf. Sec-
tion 5), and, using the local principle of Allan and Douglas (cf. Theorem 5.2), we shall reduce
the invertibility to localized problems. These local invertibility problems will be solved in the
Sections 6 and 7. Concerning the invertibility of the limit operators, we shall show in Section
8 that the invertibility of the four limit operators is just the stability criterion in Theorem 1.1.

Finally, we note that the setting for the proof enables the treatment of equations (1.1)
including kernel functions k with fixed singularities of Mellin convolution type. We will
analyze these classes of equations in a subsequent paper. Having solved the stability and
convergence problems for singular integral equations with and without fixed singularities,
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the next essential task is to design algorithms for the assembling of the matrix of the corre-
sponding collocation equations and for the efficient solution of the arising linear systems of
equations. These issues will be stressed in future work.

2. Stability Reformulated as the Invertibility in a Banach Algebra. In this section
we introduce the Banach algebra of approximate operators together with some auxiliary nota-
tion. We formulate the theorem of Roch and Silbermann on the stability of operator sequences
in this algebra. This theorem is based on several assumptions which will be verified for our
special application while introducing the setting.

For the definition of the algebra, we need some new spaces and operator sequences de-
fined with the help of special basis functions. By Tn and Un, n = 0, 1, 2, . . ., we denote the
normalized Chebyshev polynomials

T0 :=

√
1

π
, Tn(cos s) :=

√
2

π
cosns , n = 1, 2, . . . ,

and

Un(cos s) :=

√
2

π

sin(n+ 1)s

sin s
, n = 0, 1, 2, . . . ,

of first and second kind, respectively. In particular, the Un are orthogonal polynomials with
respect to the Chebyshev weight of second kind ϕ(x), and the points xϕjn are the zeros of Un.
We set

ũn(x) := ϑ(x)Un(x) , n = 0, 1, 2, . . . ,

with ϑ :=
√
σ−1ϕ = v

1
4−α

2 ,
1
4−

β
2 . Then the solution of (1.4) can be represented by

un(x) =

n−1∑

k=0

ξknũk(x),

and, with respect to the orthonormal system {ũn}∞n=0 in L2
σ , the orthogonal projection Ln

takes the form

Lnu =

n−1∑

k=0

〈u, ũk〉σ ũk.

The projection Mn is the weighted interpolation operator Mn := ϑLϕnϑ
−1I , where Lϕn de-

notes the polynomial interpolation operator with respect to the nodes xϕjn, j = 1, . . . , n . By
`2 we denote the Hilbert space of all square summable sequences ξ := {ξk}∞k=0 of complex
numbers equipped with the inner product 〈ξ, η〉`2 :=

∑∞
k=0 ξkηk. Finally, we introduce the

Christoffel numbers with respect to the weight ϕ(x) by

λϕkn :=
π[ϕ(xϕkn)]2

n+ 1
, k = 1, . . . , n ,

and the discrete weights

ωkn :=

√
π

n+ 1
ϕ(xϕkn)σ(xϕkn) =

√
π

n+ 1
v

1
4+α

2 ,
1
4+ β

2 (xϕkn) .
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Now we are in the position to define the four limit operators. We introduce the index set
T := {1, 2, 3, 4}, and, for ω ∈ T , we define projections L(ω)

n on the Hilbert spaces Xω

and operators E(ω)
n : imLn −→ imL

(ω)
n . The limit operators (belonging to L(Xω)) of

the sequence {An} are the strong limits Wω{An} := limn→∞E
(ω)
n An(E

(ω)
n )−1L

(ω)
n . In

particular, we define the spaces Xω, the projections L(ω)
n , and the operators E(ω)

n by X1 :=

X2 := L2
σ , X3 := X4 := `2, L(1)

n := L
(2)
n := Ln, L(3)

n := L
(4)
n := Pn, E(1)

n := Ln,

E
(2)
n := Wn, E(3)

n := Vn, E(4)
n := Ṽn , where

Wnu :=

n−1∑

k=0

〈u, ũn−1−k〉σ ũk ,

Pn{ξ0, ξ1, ξ2, . . .} := {ξ0, . . . , ξn−1, 0, 0, . . .} ,(2.1)

Vnu := {ω1nu(x
ϕ
1n), . . . , ωnnu(x

ϕ
nn), 0, 0, . . .} ,

Ṽnu := {ωnnu(xϕnn), . . . , ω1nu(x
ϕ
1n), 0, 0, . . .} .

The operators involved in the last definitions have the following important properties. Imme-
diately from the definitions, we conclude that (E

(1)
n )−1 = Ln, (E

(2)
n )−1 = Wn and

(E(3)
n )−1ξ =

n∑

k=1

ξk−1

ωkn
˜̀ϕ
kn , (E(4)

n )−1ξ =
n∑

k=1

ξn−k
ωkn

˜̀ϕ
kn ,

where

˜̀ϕ
kn(x) :=

ϑ(x)

ϑ(xϕkn)
`ϕkn(x) =

ϑ(x)Un(x)

ϑ(xϕkn)(x − xϕkn)U ′
n(x

ϕ
kn)

.

The matrix of the operatorWn with respect to the interpolation basis {˜̀ϕkn} nk=1 takes the form

E(3)
n Wn(E

(3)
n )−1 =

(
(−1)j+1δk,j

) n
k,j=1

.(2.2)

Furthermore, the operatorsE(ω)
n are isometries, i.e.

(E(ω)
n )∗ = (E(ω)

n )−1 , ω ∈ T .(2.3)

For ω = 1, 2, this is obvious. In case ω = 3 we have, for u = ϑv ∈ imLn and ξ ∈ imPn,

〈Vnu, ξ〉`2 =

n∑

k=1

ωknu(x
ϕ
kn)ξk−1 =

n∑

k=1

√
π

n+ 1
ϕ(xϕkn)v(xϕkn)ξk−1

=

n∑

k=1

λϕkn
v(xϕkn)√
π
n+1ϕ(xϕkn)

ξk−1 =

〈
v,

n∑

k=1

ξk−1√
π
n+1ϕ(xϕkn)

`ϕkn

〉

ϕ

=

〈
u,

n∑

k=1

ξk−1ϑ(xϕkn)√
π
n+1ϕ(xϕkn)

˜̀ϕ
kn

〉

σ

=
〈
u, V −1

n ξ
〉
σ
.

Analogously, we get (2.3) for the case ω = 4 . Finally, we observe the property

LEMMA 2.1. The sequences
{
E

(ω1)
n (E

(ω2)
n )−1L

(ω2)
n

}
converge weakly to zero for all

indices ω1, ω2 ∈ T with ω1 6= ω2.
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Proof. We prove the weak convergence to zero for all operator sequences outside the
main diagonal of the following table.

ω2

ω1
1 2 3 4

1 Ln WnLn V −1
n Pn Ṽ −1

n Pn

2 WnLn Ln WnV
−1
n Pn WnṼ

−1
n Pn

3 VnLn VnWnLn Pn VnṼ
−1
n Pn

4 ṼnLn ṼnWnLn ṼnV
−1
n Pn Pn

Table of E
(ω1)
n (E

(ω2)
n )−1L

(ω2)
n

First we remark that all sequences in this table are uniformly bounded. Thus, the weak
convergence of WnLn follows from

〈f,WnLnũm〉σ = 〈f, ũn−1−m〉σ −→ 0, n −→ ∞ ,

which holds for all f ∈ L2
σ and m ∈ N. Setting em := {δkm}∞k=0, we get, for n >

max{m, j} ,

〈ej−1, VnLnũm〉`2 = ωjnũm(xϕjn) =

√
π

n+ 1
ϕ(xϕjn)Um(xϕjn)

=

√
2

n+ 1
sin

(m+ 1)jπ

n+ 1
,

and the weak convergence of VnLn follows. Analogously we proceed with ṼnLn, VnWnLn,
and ṼnWn. The weak convergence of V −1

n Pn follows from

〈
ũm, V

−1
n Pnej−1

〉
σ

=
1

ωjn

〈
ũm, ˜̀ϕjn

〉
σ

=
1

ωjnϑ(xϕjn)

〈
Um, `

ϕ
jn

〉
ϕ

=
λϕjn

ωjnϑ(xϕjn)
Um(xϕjn) =

√
2

n+ 1
sin

(m+ 1)jπ

n+ 1

which is valid for n > max{m, j}. Analogously we get

〈
ũm,WnV

−1
n Pnej−1

〉
σ

=
〈
ũn−1−m, V

−1
n Pnej−1

〉
σ

=

√
2

n+ 1
sin

(n−m)jπ

n+ 1
.

The relation

〈
em−1, ṼnV

−1
n Pnej−1

〉
`2

=

〈
em−1, en+1−j

〉

`2
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shows the weak convergence to zero of the sequence
{
ṼnV

−1
n Pn

}
. For the sequences

{
Ṽ −1
n Pn

}
,
{
WnṼ

−1
n Pn

}
, and

{
VnṼ

−1
n Pn

}
, we can proceed in an analogous way.

Next we define the algebra of operator sequences - the basic algebra for our further
considerations. By F we denote the set of all sequences {An} = {An}∞n=1 of linear operators
An : imLn −→ imLn, for which there exist operators Wω{An} ∈ L(Xω) such that, for all
ω ∈ T ,

E(ω)
n An(E(ω)

n )−1L(ω)
n −→Wω{An},

(
E(ω)
n An(E(ω)

n )−1L(ω)
n

)∗
−→Wω{An}∗

holds in the sense of strong convergence for n→ ∞ . If we define

λ1{An} + λ2{Bn} := {λ1An + λ2Bn} , {An}{Bn} := {AnBn} , {An}∗ := {A∗
n} ,

and

‖{An}‖F := sup
{
‖AnLn‖L(L2

σ) : n = 1, 2, . . .
}
,

then it is not hard to see that F becomes a C∗-algebra with unit element {Ln} . From Lemma
2.1 and (2.3) we conclude (cf. [28, Lemma 10.34])

COROLLARY 2.2. For all ω ∈ T and all compact operators Tω ∈ K(Xω), the sequences{
A

(ω)
n

}
=
{
(E

(ω)
n )−1L

(ω)
n TωE

(ω)
n

}
belong to F , and, for ω1 6= ω2, we get the strong limits

E(ω1)
n A(ω2)

n (E(ω1)
n )−1L(ω1)

n −→ 0 ,
(
E(ω1)
n A(ω2)

n (E(ω1)
n )−1L(ω1)

n

)∗
−→ 0 .

Using Corollary 2.2, we define the subset J ⊂ F of all sequences of the form

4∑

ω=1

{
(E(ω)

n )−1L(ω)
n TωE

(ω)
n

}
+ {Cn} ,

where Tω ∈ K(Xω) and where {Cn} is in the ideal N ⊂ F of all sequences {Cn} tending
to zero in norm, i.e. of all sequences with ‖CnLn‖L(L2

σ) −→ 0. Now, the following theorem
is crucial for our stability and convergence analysis.

THEOREM 2.3 ([28], Theorem 10.33). The set J forms a two-sided closed ideal of F .
A sequence {An} ∈ F is stable if and only if the operators Wω {An} : Xω −→ Xω, ω ∈ T ,
are invertible and if the coset {An} + J is invertible in F/J .

In addition to the operator sequences corresponding to the collocation method applied
to compact operators, the sequences of quadrature discretizations of integral operators with
continuous kernels are contained in J , too. Indeed, we can formulate the following lemma.

LEMMA 2.4. Suppose the function k(x, y)/ρ(y) , where ρ =
√
σϕ = ϑ−1ϕ , is con-

tinuous on [−1, 1] × [−1, 1] and that K is the integral operator with kernel k(x, y). Then
{MnKLn} ∈ J . Moreover, if the approximations Kn ∈ L(imLn) are defined by

Kn = (E(3)
n )−1

(
π

n+ 1
ρ(xϕ(i+1)n)k(xϕ(i+1)n, x

ϕ
(j+1)n)ϑ(xϕ(j+1)n)

) n−1

i,j=0

E(3)
n ,

then the norms of the operators Kn − LnK|imLn tend to zero, and {Kn} is in J .
Proof. The operatorsKn can be written as MnK̃n , where

(
K̃nun

)
(x) =

∫ 1

−1

ϕ(y)Lϕn
[
k(x, .)ϕ−1un

]
(y) dy .
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Obviously, due to the Arzelà-Ascoli theorem the operator K : L2
σ −→ C[−1, 1] is compact.

Hence, limn→∞ ‖MnKLn − LnKLn‖L(L2
σ) = 0 (see Lemma 2.5 below) and it is sufficient

to show that limn→∞
∥∥∥K̃nLn −KLn

∥∥∥
L(L2

σ,C[−1,1])
= 0 . To this end, we consider an ar-

bitrary u ∈ L2
σ and get Lnu = ϑpn , where pn is a certain polynomial of degree less than

n . By kn(x, y) we refer to the best uniform approximation to k(x, y)/ρ(y) in the space of
polynomials with degree less than n in both variables. Due to the exactness of the Gauß rule
we have

(
K̃nLnu

)
(x) =

∫ 1

−1

ϕ(y)Lϕn [k(x, .)ρ−1](y)pn(y) dy,

and so
∣∣∣
(
K̃nLnu−KLnu

)
(x)
∣∣∣ =

∣∣∣∣
∫ 1

−1

ϕ(y)
(
Lϕn[k(x, .)ρ−1](y) − k(x, y)/ρ(y)

)
pn(y) dy

∣∣∣∣

≤

∣∣∣∣∣∣

n∑

j=1

λϕjn
[
k(x, xϕjn)/ρ(xϕjn) − kn(x, xϕjn)

]
pn(x

ϕ
jn)

∣∣∣∣∣∣

+

∣∣∣∣
∫ 1

−1

ϕ(y) [kn(x, y) − k(x, y)/ρ(y)] pn(y) dy

∣∣∣∣

≤ Cn



√√√√

n∑

j=1

λϕjn
∣∣pn(xϕjn)

∣∣2 + ‖pn‖ϕ


 = 2Cn ‖pn‖ϕ

= 2Cn ‖Lnu‖σ
with Cn := ‖k(x, y)/ρ(y) − kn(x, y)‖∞ ‖1‖ϕ and limn→∞ Cn = 0 .

LEMMA 2.5 ([19], Lemma 3.1). If the function f : (−1, 1) −→ C is locally Riemann
integrable and if, for some χ > 0,

|f(x)| ≤ C vχ−
1+α

2 ,χ− 1+β
2 (x) , −1 < x < 1,

then limn→∞ ‖Mnf − f‖σ = 0 and

‖Mnf‖σ ≤ C sup{|f(x)v−χ+ 1+α
2 ,−χ+ 1+β

2 (x)| : −1 < x < 1} .

COROLLARY 2.6. Due to Lemma 2.5 the condition on k(x, y) in Lemma 2.4 can be
relaxed. In fact, it is sufficient to assume that v

1+α
2 −χ, 1+β2 −χ(x)k(x, y)/ρ(y) is continuous

on [−1, 1]× [−1, 1] for some χ > 0, and the assertion of Lemma 2.4 remains true.

3. The Operator Sequence of the Collocation Method as an Element of the Banach
Algebra F . We have to show that the sequence of discretized operators An := MnA|imLn

is an element of F . At first we summarize some well-known results (cf. the Lemmata 3.1–3.6
and Remark 3.7) which will be needed in the following. We start with recalling the well-
known relations between the Chebyshev polynomials of first and second kind

SϕUn = iTn+1 , n = 0, 1, 2, . . . ,(3.1)

and

Tn+1 =
1

2
(Un+1 − Un−1) , n = 0, 1, 2, . . . , U−1 ≡ 0 .(3.2)
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LEMMA 3.1 ([26], Theorem 9.25). Suppose µ and ν are classical Jacobi weights with
µν ∈ L1(−1, 1), and fix j ∈ N. Then, for each polynomial q(x) with deg q ≤ jn,

n∑

k=1

λµkn |q(x
µ
kn)| ν(xµkn) ≤ C

∫ 1

−1

|q(x)|µ(x)ν(x) dx ,

where the constant C does not depend on n and q .
Now we consider an η with 0 < η ≤ 1 . By C0,η := C0,η[−1, 1] we denote the Banach

space of all Hölder continuous functions f : [−1, 1] −→ C with respect to the exponent η.
The norm in this space is defined by

‖f‖
C0,η := ‖f‖∞ + sup

{ |f(x) − f(y)|
|x− y|η : x, y ∈ [−1, 1], x 6= y

}
,

where ‖f‖∞ := sup {|f(x)| : −1 ≤ x ≤ 1}.
LEMMA 3.2 ([31], Lemma 4.13). If w ∈ C0,η with η > 1

2 [1 + max{α, β, 0}], then the
commutator wS − SwI belongs to K(L2

σ ,C
0,λ) for some λ > 0.

LEMMA 3.3 ([28], Proposition 9.7, Theorem 9.9). Assume that a, b ∈ C0,η are real
valued functions, where η ∈ (0, 1) and [a(x)]2 + [b(x)]2 > 0 for x ∈ [−1, 1]. Furthermore,
assume that the integers λ± satisfy the relations

α0 := λ+ + g(1) ∈ (−1, 1) and β0 := λ− − g(−1) ∈ (−1, 1) ,

where g : [−1, 1] −→ R is a continuous function such that

a(x) − ib(x) =
√

[a(x)]2 + [b(x)]2 eiπg(x) .

Then there exists a positive function w ∈ C0,η such that, for each polynomial p of degree n,
the function avα0,β0wp+ iSbvα0,β0wp is a polynomial of degree n−κ, where κ = −λ+−λ−
and where, by definition, a polynomial of negative degree is identically zero.

Suppose γ, δ ≥ 0. By Cγ,δ we denote the Banach space of all continuous functions
f : (−1, 1) −→ C, for which vγ,δf is continuous over [−1, 1]. Moreover, by L̃

p
vα,β

we refer
to the Banach space of all functions f such that vα,βf belongs to Lp(−1, 1). The norms in
Cγ,δ and L̃

p
vα,β

are defined by

‖f‖γ,δ,∞ :=
∥∥vγ,δf

∥∥
∞ , ‖f‖

L̃
p

vα,β
:=
∥∥vα,βf

∥∥
Lp(−1,1)

.

We introduce the operator Tγ,δ by

(Tγ,δu)(x) :=

∫ 1

−1

[
1− vγ,δ(y)

vγ,δ(x)

]
u(y)

y − x
dy , −1 < x < 1.

LEMMA 3.4 ([14], Corollary 4.4). If

p > 2 , γ, δ ∈
(
−1

4
,−1

p

)
∪
(

1

p
, 1 − 1

2p

)
, 0 < χ < min

{
1

4
− 1

2p
,
1

4
+ γ,

1

4
+ δ

}
,

then the operator Tγ,δ : L̃p

v
γ− 1

2p
,δ− 1

2p
−→ Cγ+ 1

4−χ,δ+ 1
4−χ is compact.

LEMMA 3.5 ([14], (2.9)). The sequence {Wn} converges weakly to 0 in the space L̃
p
ψ

with ψ = v
1
4+α

2 − 1
2p ,

1
4+ β

2 − 1
2p .
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LEMMA 3.6 ([22], relation after Theorem 3.1). Suppose ω ∈ L2 is a Jacobi weight and
f : (−1, 1) → C is a function satisfying ωϕ−1, ω−1ϕ ∈ L2 and fω, f ′ϕω ∈ L2 . Then
the polynomial interpolation projection Lϕn based on the Chebyshev nodes of the second kind
satisfies the error estimate

‖ω(Lϕnf − f)‖
L2 ≤ C n−1 ‖f ′ϕω‖

L2 .

Finally, we will use the following special case of Lebesgue’s dominated convergence
theorem.

REMARK 3.7. If ξ, η ∈ `2, ξn = {ξnk }, |ξnk | ≤ |ηk | for all k = 0, 1, 2, . . . and for all
n ≥ n0, and if limn→∞ ξnk = ξk for all k = 0, 1, 2, . . . , then limn→∞ ‖ξn − ξ‖`2 = 0.

Now, for the singular integral operatorA ∈ L(L2
σ) (cf. (1.2)), we show that the sequence

{MnALn} belongs to the algebra F , and we compute Wω {An}. We prove this fact sep-
arately for multiplication operators, for the singular integral operator µ−1Sµ with a special
weight µ, and for µ−1Sµ with a general µ.

LEMMA 3.8. Let a ∈ PC, A = aI , and An = MnaLn. Then {An} ∈ F , where

WnAnWn = MnaLn and A∗
n = MnaLn ,(3.3)

which implies (WnAnWn)
∗ = MnaLn and W1 {An} = W2 {An} = A. Moreover,

W3 {An} = a(1)I and W4 {An} = a(−1)I .(3.4)

Proof. Since the operators E(3)
n : imLn −→ imL

(3)
n are unitary, the system { 1

ωkn
˜̀ϕ
kn :

k = 1, . . . n} forms an orthonormal basis in imLn. However, with respect to this Lagrange
interpolation basis the matrix of the discretized multiplication operator and its adjoint take
the form

E(3)
n MnaLn(E

(3)
n )−1 =

(
a(xϕ(k+1)n)δj,k

)n−1

j,k=0

,(3.5)

E(3)
n (MnaLn)

∗(E(3)
n )−1 =

(
a(xϕ(k+1)n)δj,k

)n−1

j,k=0

.(3.6)

From this representation as diagonal operators and the diagonal representation (2.2) of Wn,
we get WnMnaLnWn = MnaLn and the uniform boundedness of the sequence {MnaLn}

‖MnaLn‖L(L2
σ) ≤ C ‖a‖∞ .(3.7)

This uniform boundedness together with the convergence properties of Mn (cf. Lemma 2.5)
implies the convergences MnaLn −→ aI , (MnaLn)

∗ = MnaLn −→ aI as well as
WnMnaLnWnLn = MnaLn −→ aI , (WnMnaLnWn)∗Ln = MnaLn −→ aI . The
limits in (3.4) follow easily from (3.5). Similarly, the adjoints to the operators in (3.4) are the
limits of the sequences of adjoint operators due to (3.6).

LEMMA 3.9. Suppose A = ρ−1SρI , where ρ = ϑ−1ϕ =
√
σϕ and An = MnALn.

Then {An} ∈ F and

W1 {An} = A , W2 {An} = −A , W3 {An} = A+ , W4 {An} = A−

with

A± :=

(
± 2(k + 1)

πi[(j + 1)2 − (k + 1)2]
δ̃jk

)∞

j,k=0

, δ̃jk :=

{
2 if k ≡ j + 1 mod 2 ,
0 if k ≡ j mod 2 .
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Proof. At first we prove the uniform boundedness of the sequence {An}. From (3.1) it
follows that Sρun is a polynomial with a degree of at most n for un ∈ imLn. Hence we
can apply Lemma 3.1 together with the boundedness of the operator S : L2

ϕ−1 −→ L2
ϕ−1 and

obtain, for un ∈ imLn,

∥∥Mnρ
−1Sρun

∥∥2

σ
=
∥∥Lϕnϕ−1Sρun

∥∥2

ϕ
=

n∑

k=1

λϕknϕ
−2(xϕkn) |(Sρun)(xϕkn)|2

≤ C

∫ 1

−1

|(Sρun)(x)|2 ϕ−1(x) dx ≤ C ‖ρun‖2
ϕ−1 = C ‖un‖2

σ .

Again with the help of (3.1) as well as with the help of Lemma 2.5 we see that, for fixed m
and for n > m tending to ∞,

Mnρ
−1Sρũm = iMnρ

−1Tm+1 −→ iρ−1Tm+1 = ρ−1Sρũm

in L2
σ . If we additionally take into account (3.2) and (3.3), then we also get

WnMnρ
−1SρWnũm =

i

2
WnMnρ

−1ϑ−1WnWn(ũn−m − ũn−m−2) = −iMnρ
−1Tm+1

= −Mnρ
−1Sρũm −→ −ρ−1Sρũm

in L2
σ . The well-known Poincaré-Bertrand commutation formula implies that, for u ∈ L2

σ

and v ∈ L2
σ−1 ,

〈Su, v〉 = 〈u, Sv〉 ,(3.8)

where 〈., .〉 denotes the L2(−1, 1) inner product without weight. Consequently, the adjoint
operator of S : L2

σ −→ L2
σ is equal to σ−1SσI : L2

σ −→ L2
σ . Again, taking into account that

SρLnu is a polynomial with a degree of at most n (cf. (3.1)), we conclude, for u, v ∈ L2
σ ,

〈
Mnρ

−1SρLnu, v
〉
σ

=
〈
Lϕnϕ

−1SρLnu, ϑ
−1Lnv

〉
ϕ

=

n∑

k=1

λϕkn(ϕϑ)−1(xϕkn)(SρLnu)(x
ϕ
kn)(Lnv)(x

ϕ
kn)

=
〈
SρLnu, L

ϕ
n(ϕϑ)−1Lnv

〉
ϕ

=
〈
SρLnu, ϑMnϕ

−1Lnv
〉
σ

=
〈
u, LnϑSρMnϕ

−1Lnv
〉
σ
.

Hence, since LnϑSρLn = MnϑSρLn,

(Mnρ
−1SρLn)

∗ = MnϑSρMnϕ
−1Ln = MnϕLnMnρ

−1SρLnMnϕ
−1Ln .(3.9)

In view of Lemma 2.5 we obtain the L2
σ convergenceMnϕ

−1ũm −→ ϕ−1ũm for each fixed
m = 0, 1, 2, . . ., and the strong convergence of (Mnρ

−1SρLn)
∗ follows from the strong

convergence of MnϕLn and Mnρ
−1SρLn. From (3.9) we also get the L2

σ convergence

(WnMnρ
−1SρWn)

∗ = −MnϕLnMnρ
−1SρLnMnϕ

−1Ln −→ ϑSϑ−1I = −(ρ−1SρI)∗ .

The limit relations for Wω{An}, ω = 1, 2 are proved.
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To get W3{An}, we compute the matrix of An with respect to the basis {˜̀ϕk,n}. With

the help of (3.1) and U ′
n(x

ϕ
kn) =

√
2/π (−1)k+1(n + 1)/[ϕ(xϕkn)]2 we compute, for x ∈

(−1, 1) \ {xϕkn},

(
A˜̀ϕkn

)
(x) =

1

ρ(x)ϑ(xϕkn)

1

πi

∫ 1

−1

Un(y)ϕ(y) dy

(y − x)(y − xϕkn)U ′
n(x

ϕ
kn)

=
1

ρ(x)ϑ(xϕkn)U ′
n(xϕkn)

1

xϕkn − x

1

πi

∫ 1

−1

(
1

y − xϕkn
− 1

y − x

)
Un(y)ϕ(y) dy

=

√
π

2

(−1)k+1

n+ 1

ρ(xϕkn)ϕ(xϕkn)

ρ(x)

i

xϕkn − x
[Tn+1(x

ϕ
kn) − Tn+1(x)] .

In particular, we obtain

(
A˜̀ϕkn

)
(xϕjn) =

ρ(xϕkn)ϕ(xϕkn)

i(n+ 1)ρ(xϕjn)

δ̃jk
xϕkn − xϕjn

.

Hence, for n > m,

E(3)
n An(E(3)

n )−1L(3)
n em−1 =

{
ωjn
ωmn

(
A˜̀ϕmn

)
(xϕjn)

}n

j=1

(3.10)

=

{
ϕ(xϕmn)

i(n+ 1)

δ̃jm
xϕmn − xϕjn

}n

j=1

,

where we have taken into account that ωjn =
√

π
n+1ρ(x

ϕ
jn) and T ′

n+1(x) = (n + 1)Un(x)

(cf. the computation of the diagonal entries). Now we observe that, for fixed k and j with
k 6= j and for n→ ∞,

ϕ(xϕkn)

n+ 1

1

xϕkn − xϕjn
=

sin kπ
n+1

2(n+ 1) sin k+j
2(n+1)π sin j−k

2(n+1)π
−→ 2k

π(j2 − k2)
(3.11)

and, for fixed k and j = 1, . . . , n, j 6= k, and n > 2k,

ϕ(xϕkn)

n+ 1

1

|xϕkn − xϕjn|
≤

kπ
n+1

2(n+ 1) 2
√

2
3π

k+j
2(n+1)π

2
π

|j−k|
2(n+1)π

=
3πk

2
√

2|j2 − k2|
,(3.12)

and the same for fixed j and k = 1, . . . , n, k 6= j, and n > 2j. Using (3.11) and (3.12)
together with Remark 3.7, we see that

∥∥∥E(3)
n An(E(3)

n )−1L(3)
n em−1 − PnA+em−1

∥∥∥
`2

=
n∑

j=1

∣∣∣∣∣
ϕ(xϕmn)

n+ 1

1

xϕmn − xϕjn
− 2m

π(j2 −m2)

∣∣∣∣∣

2

δ̃jm −→ 0, n −→ ∞

and
∥∥∥
(
E(3)
n An(E(3)

n )−1L(3)
n

)∗
em−1 − PnA

∗
+em−1

∥∥∥
`2
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=

n∑

j=1

∣∣∣∣∣
ϕ(xϕjn)

n+ 1

1

xϕmn − xϕjn
− 2j

π(j2 −m2)

∣∣∣∣∣

2

δ̃jm −→ 0, n −→ ∞ .

The case ω = 4 can be treated analogously.
Now we deal with the general operatorµ−1SµI and the corresponding operator sequence{

Mnµ
−1SµLn

}
of the collocation method, where µ = vγ,δ and where we assume (1.5) –

(1.6).
LEMMA 3.10. Suppose A = µ−1SµI and An = MnALn, where µ = vγ,δ satisfies

(1.5) and (1.6). Then {An} ∈ F and

W1 {An} = A , W2 {An} = −ρ−1SρI ,

(3.13)

W3 {An} = A+ + A
µ
+ , W4 {An} = A− + A

µ
− .

Here ρ := ϑ−1ϕ and A± are the same as in Lemma 3.9, and

A
µ
± := ±B± ±D±AD−1

± ∓A∓D±AWV±D−1
± ±V±AW(3.14)

with

A :=

(
2(k + 1)(1 − δj,k)

πi[(j + 1)2 − (k + 1)2]

)∞

j,k=0

,(3.15)

D± :=
(
(k + 1)2χ±δk,j

)∞
k,j=0

,(3.16)

χ+ :=
1

4
+
α

2
− γ , χ− :=

1

4
+
β

2
− δ ,

B± :=
(
b±(k+1)δk,j

)∞
k,j=0

,

V± :=
(
d±(k+1)δk,j

)∞
k,j=0

, W :=
((−1)(k+1)

√
2π

δk,j

)∞
k,j=0

.(3.17)

Moreover, choosing ζ± := −χ±, the b±k and d±k are defined by

b±k :=
4(−1)k+1k

i

√
2

π

∫ ∞

0

(
s
kπ

)2ζ± − 1

[(kπ)2 − s2]2
s sin s ds ,(3.18)

d±k := 2

√
2

π

∫ π
2

0

(
s
kπ

)2ζ± − 1

(kπ)2 − s2
s sin s ds

(3.19)

+4

√
2

π

∫ ∞

π
2

cos s




s2
[(

s
kπ

)2ζ± − 1
]

[(kπ)2 − s2]
2 +

ζ±
(
s
kπ

)2ζ±
+ 1

2

[(
s
kπ

)2ζ± − 1
]

(kπ)2 − s2



 ds .

Proof. i) First we check the strong convergence of An towards W1{An}. We choose
integers λ± such that α0 − λ+ and λ− − β0 are in (−1, 0) (cf. (1.6)). Moreover, by g(x)
we denote a polynomial with degree of at most 1 such that g(1) = α0 − λ+ and g(−1) =
λ− − β0. Then, â(x) := − cot[πg(x)] is a continuous function on [−1, 1] and â(x) − i =√

[â(x)]2 + 1 eiπg(x). By Lemma 3.3, there exists a positive function w ∈ ⋂
η∈(0,1) C

0,η
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such that (âI + iS)µwun is a polynomial of degree less than n − κ for each un ∈ imLn,
where κ = −λ+ − λ−. Now we use the decomposition

µ−1SµI = iâI − i(µw)−1(âI + iS)µwI + (µw)−1(wS − SwI)µI(3.20)

to prove the uniform boundedness of the sequence
{
Mnµ

−1SµLn
}

. The uniform bounded-
ness of {MnâLn} follows from Lemma 3.8. Taking into account Lemma 3.1 and the bound-
edness ofS : L2

vα−2γ,β−2δ −→ L2
vα−2γ,β−2δ we get, for un ∈ imLn and qn = (âI+iS)µwun,

∥∥Mn(µw)−1qn
∥∥2

σ
=
∥∥Lϕn(ϑµw)−1qn

∥∥2

ϕ
=

n∑

k=1

λϕkn[(ϑµw)(xϕkn)]−2|qn(xϕkn)|2

≤ C

∫ 1

−1

ϕ(x)

[ϑ(x)µ(x)]2
|qn(x)|2 dx

≤ C

∫ 1

−1

ϕ(x)

[ϑ(x)µ(x)]2
|µ(x)un(x)|2 dx = C ‖un‖2

σ ,

which proves the uniform boundedness of the second term in (3.20) corresponding to the
collocation method. To handle the third term we set Hw := wS − SwI . Due to (1.5), we
obtain the inequality 1

2 [1 + max{α− 2γ, β − 2δ, 0}] < 1 . Thus, in view of Lemma 3.2, we
have Hw ∈ K(L2

σµ−2 ) which implies µ−1HwµI ∈ K(L2
σ) . Moreover, choosing a χ > 0

such that

χ < min

{
1 + α

2
− γ,

1 + α

2
,
1 + β

2
− δ,

1 + β

2

}

and applying the Lemmata 2.5 and 3.2, we get
{
(Mn − Ln)w

−1µ−1HwµLn
}

∈ N and,
consequently,

{
Mnw

−1µ−1HwµLn
}
∈ J .(3.21)

Using the decomposition (3.20) together with (1.5) and Lemma 2.5, we infer that, for each
fixed m = 0, 1, 2, . . .,

Mnµ
−1SµLnũm −→ µ−1Sµũm

holds in L2
σ . The strong convergence of {An} to W1 {An} is shown. Now we prove the

strong convergence of the sequence {A∗
n} , which obviously is uniformly bounded. To show

that A∗
nũm converges for each m = 0, 1, 2, . . .we again use the decomposition (3.20), where

the first and the third term are already covered by Lemma 3.8 and by (3.21), respectively. For
u, v ∈ L2

σ and qn = (âI + iS)µwLnu we compute
〈
Mnµ

−1(âI + iS)µwLnu, Lnv
〉
σ

=
〈
Lϕn(ϑµ)−1qn, ϑ

−1Lnv
〉
ϕ

=

n∑

j=1

λϕjn

(
(ϑµ)−1qn

)
(xϕjn)(ϑ−1Lnv)(x

ϕ
jn)

=
〈
qn, L

ϕ
n(ϑµ)−1ϑ−1Lnv

〉
ϕ

=
〈
ϑµ(âI + iµ−1Sµ)wLnu,Mn(ϑµ)−1Lnv

〉
σ

=
〈
u, Lnw(âI + iµ−1SµI)∗ϑµMn(ϑµ

−1Lnv
〉
σ
.
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Hence, (Mn(µw)−1(âI+ iS)µwLn)
∗ = Lnw(âI+ iµ−1SµI)∗ϑµMn(ϑµ)−1LnMnw

−1Ln
and it remains to show that ϑµMn(ϑµ)−1ũm −→ ũm in L2

σ . For this we write

∥∥ϑµMn(ϑµ)−1ũm − ũm
∥∥
σ

=
∥∥ϑ2µ

[
Lϕn(ϑ2µ)−1ũm − (ϑ2µ)−1ũm

]∥∥
σ

=
∥∥∥µϕσ− 1

2

[
Lϕn(ϑ2µ)−1ũm − (ϑ2µ)−1ũm

]∥∥∥
L2

and remark that for ω = µϕσ− 1
2 and f = (ϑ2µ)−1ũm the conditions of Lemma 3.6 are

fulfilled.
ii) Since {An} is uniformly bounded, we need to show the existence of the strong limits

Wω{An} with ω ∈ {2, 3, 4} for a complete system of functions, only. At first we prove the
limit W2 {An} = −ρ−1SρI . We write

µ−1SµI = ρ−1SρI + µ−1KµI(3.22)

with K := S − ρ−1µSρµ−1I . Moreover, for p ≥ 2, we set

ψ := v
1
4+α

2 − 1
2p ,

1
4 +β

2 − 1
2p , ψ̃ := µ−1ψ = v

1
4 +α

2 −γ− 1
2p ,

1
4+ β

2 −δ− 1
2p .

By assumption (1.5) we have − 1
4 <

1
4 + α

2 − γ < 3
4 , − 1

4 <
1
4 + β

2 − δ < 3
4 , and together

with (1.6) we can apply Lemma 3.4 for sufficiently large p and sufficiently small χ > 0 to
conclude the compactness of

Kµ := µ−1KµI : L̃pψ
µI−→ L̃

p

ψ̃

K−→ C 1+α
2 −γ−χ, 1+β2 −δ−χ

µ−1I−→ C 1+α
2 −χ, 1+β2 −χ .(3.23)

Using the decomposition (3.22) together with Lemma 3.9, it remains to prove that the func-
tions WnMnKµWnũm converges to zero in L2

σ for each fixed m = 0, 1, 2, . . . . As a conse-
quence of Lemma 2.5 and the compactness of the operator (3.23) we get

lim
n→∞

‖(Mn − I)Kµ‖L̃pψ→L2
σ

= 0

for some p > 2. Together with the uniform boundedness of Wn : L̃
p
ψ −→ L̃

p
ψ (see Lemma

3.5) this leads to

lim
n→∞

‖Wn(Mn − I)KµWn‖L̃
p
ψ→L2

σ
= 0 .

Again Lemma 3.5 and the compactness of the operator (3.23) imply, for some p > 2,

lim
n→∞

‖WnKµWnu‖σ = 0, u ∈ L̃
p
ψ .

It remains to remark that ũm ∈ L̃
p
ψ for all p ≥ 1.

To handle the strong convergence of
{
(WnMnµ

−1SµWn)∗
}
, we first consider se-

quences of the form
{
Mnb0bµ

−1SµLn
}
, where b0 ∈ PC and b is a differentiable function

with b′ ∈ C0,1[−1, 1] and b(±1) = b′(±1) = 0 . We use the decomposition

bµ−1SµI = bρ−1SρI + µ−1(bS − SbI)µI + µ−1(Sbµρ−1I − bµρ−1S)ρI

=: bρ−1SρI +K1 +K2 .
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In the same way as for (3.21) one can show that {MnKjLn} ∈ J , j = 1, 2 . With the help
of the Lemmata 3.8 and 3.9 the inclusion

{
Mnb0bµ

−1SµLn
}
∈ F follows. Using this fact

and the estimate (cf. (3.7))
∥∥∥Mn(b− b̃)µ−1SµLn

∥∥∥
L(L2

σ)
=
∥∥∥Mn(b− b̃)LnMnµ

−1SµLn

∥∥∥
L(L2

σ)
≤ C ‖b− b̃‖∞

we get
{
Mnbµ

−1SµLn
}
∈ F for all b ∈ PC with b(±1) = 0 .

Now, choose δ with 0 < δ < min{[−1 − α]/2, [−1 − β]/2}. Then the function f =
v−δ,−δũm fulfills the conditions of Lemma 2.5 such that Mnv

−δ,−δũm −→ v−δ,−δũm. By
WnMnv

−δ,−δWn = Mnv
−δ,−δLn (cf. (3.3)), we get

WnMnµ
−1SµWn = Mnv

−δ,−δLnWnv
δ,δµ−1SµWn .

Hence, from the previous result and from Lemma 2.5 we conclude

lim
n→∞

(WnMnµ
−1SµWn)

∗ũm = lim
n→∞

(Wnv
δ,δµ−1SµWn)∗Mnv

−δ,−δũm

= (vδ,δµ−1SµI)∗v−δ,−δũm

in L2
σ . The strong convergence of

{
(WnMnµ

−1SµWn)∗
}

is proved.
iii) Since the limit W4{An} can be derived analogously to W3{An}, we restrict our

further consideration to W3{An}. To get this limit W3{An}, we consider the structure of the
corresponding matrix more closely. Setting B := µ−1KµI = µ−1SµI − ρ−1Sρ−1I and
Bn := MnBLn, we compute, for x 6= xϕkn,

(
B ˜̀ϕkn

)
(x) =

1

πi

∫ 1

−1

[
µ(y)

µ(x)
− ρ(y)

ρ(x)

]
ϑ(y)Un(y) dy

ϑ(xϕkn)(y − x)(y − xϕkn)U ′
n(x

ϕ
kn)

(3.24)

=
1

πi

1

xϕkn − x

1

ϑ(xϕkn)U ′
n(xϕkn)

{∫ 1

−1

[
µ(y)

µ(x)
− ρ(y)

ρ(x)

]
ϑ(y)Un(y)

y − xϕkn
dy

−
∫ 1

−1

[
µ(y)

µ(x)
− ρ(y)

ρ(x)

]
ϑ(y)Un(y)

y − x
dy

}

=
1

xϕkn − x

1

ϑ(xϕkn)U ′
n(xϕkn)

[
µ(xϕkn)

µ(x)
− ρ(xϕkn)

ρ(x)

]
1

ρ(xϕkn)
(SϕUn) (xϕkn)

+
1

πi

1

xϕkn − x

1

ϑ(xϕkn)U ′
n(x

ϕ
kn)

∗

∗
{∫ 1

−1

([
µ(y)

µ(x)
− ρ(y)

ρ(x)

]
1

ρ(y)
−
[
µ(xϕkn)

µ(x)
− ρ(xϕkn)

ρ(x)

]
1

ρ(xϕkn)

)
ϕ(y)Un(y)

y − xϕkn
dy

− 1

µ(x)

∫ 1

−1

[
µ(y)

ρ(y)
− µ(x)

ρ(x)

]
ϕ(y)Un(y)

y − x
dy

}

=

[
µ(xϕkn)

µ(x)
− ρ(xϕkn)

ρ(x)

]
ϕ(xϕkn)

i(n+ 1)

1

xϕkn − x

+
1

πi

1

xϕkn − x

√
π

2

ρ(xϕkn)

µ(x)

ϕ(xϕkn)(−1)k+1

n+ 1
∗
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∗
{∫ 1

−1

[
µ(y)

ρ(y)
− µ(xϕkn)

ρ(xϕkn)

]
ϕ(y)Un(y)

y − xϕkn
dy −

∫ 1

−1

[
µ(y)

ρ(y)
− µ(x)

ρ(x)

]
ϕ(y)Un(y)

y − x
dy

}

=

[
µ(xϕkn)

µ(x)
− ρ(xϕkn)

ρ(x)
− 1√

2π

µ(xϕkn)

µ(x)
(−1)kdnk +

1√
2π

ρ(xϕkn)

ρ(x)
(−1)kdn(x)

]
∗

∗ ϕ(xϕkn)

i(n+ 1)

1

xϕkn − x
,

where

dn(x) :=

∫ 1

−1

[
µ(y)ρ(x)

ρ(y)µ(x)
− 1

]
ϕ(y)Un(y)

y − x
dy, dnk := dn(xϕkn) .

Consequently, we get

E(3)
n Bn(E

(3)
n )−1 =

(
ω(j+1)n

ω(k+1)n

(
B ˜̀ϕ(k+1)n

)
(xϕ(j+1)n)

)n−1

j,k=0

(3.25)

= Bn + DnAnD
−1
n −An −DnAnWnVnD

−1
n + VnAnWn

with

Bn :=
((
B ˜̀ϕ(j+1)n

)
(xϕ(j+1)n)δk,j

)n−1

j,k=0
,

An :=

(
ϕ(xϕ(k+1)n)

i(n+ 1)

1 − δj,k
xϕ(k+1)n − xϕ(j+1)n

)n−1

j,k=0

,

Wn :=

(
(−1)j+1

√
2π

δk,j

)n−1

j,k=0

, Vn :=
(
dnj+1δk,j

)n−1

j,k=0
,

Dn :=

(
ρ(xϕ(j+1)n)

µ(xϕ(j+1)n)
δk,j

)n−1

j,k=0

,

where the diagonal elements in An are equal to zero by definition. We have to show that, for
any fixed m = 1, 2, . . . , the sequences

{
E(3)
n Bn(E

(3)
n )−1L(3)

n em−1

}
and

{
(E(3)

n Bn(E
(3)
n )−1L(3)

n )∗em−1

}

converge in `2 to Aµ+em−1 and (Aµ+)∗em−1, respectively.
iv) Now we turn to the limits of An and DnAnD

−1
n . The convergence of An to A

follows completely analogously to that of E(3)
n An(E

(3)
n )−1 to A+ in the proof of Lemma

3.9 (cf. (3.10)). Hence, we consider DnAnD
−1
n . We introduce χ(x) := ρ(x)[µ(x)]−1 =

(1 − x)χ+(1 + x)χ− with

χ+ :=
1

4
+
α

2
− γ, χ− :=

1

4
+
β

2
− δ(3.26)

and define

a
(n)
jk =

χ(xϕjn)

χ(xϕkn)

ϕ(xϕkn)

i(n+ 1)

1 − δj,k
xϕkn − xϕjn
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=

(
sin jπ

2(n+1)

sin kπ
2(n+1)

)2χ+ (
cos jπ

2(n+1)

cos kπ
2(n+1)

)2χ−

sin kπ
n+1

i(n+ 1)

1 − δj,k

2 sin k+j
2(n+1)π sin j−k

2(n+1)π
.

Then, the condition (1.5) is equivalent to

− 1

4
< χ± <

3

4
.(3.27)

For fixed k and j = 1, . . . , n, j 6= k, and n > 2k, we have the estimate (comp. (3.12))

|a(n)
jk | ≤ C

(
j

k

)2χ+
(

1 − j
n+1

1 − k
n+1

)2χ−

k

|j2 − k2| ,

and the same for fixed j and k = 1, . . . , n, k 6= j, and n > 2j. Thus, for k fixed and n > 3k,
we get

|a(n)
jk | ≤





C j2(χ+−1) if j ≤ (n+ 1)/2,

C
ϕ(xϕkn)

n

χ(xϕjn)

χ(xϕkn)
if j ≥ (n+ 1)/2,

(3.28)

and, for j fixed and n > 3j,

|a(n)
jk | ≤





C k−2χ+−1 if k ≤ (n+ 1)/2,

C
ϕ(xϕkn)

n

χ(xϕjn)

χ(xϕkn)
if k ≥ (n+ 1)/2.

(3.29)

Moreover, for fixed j and k, j 6= k, we obtain

lim
n→∞

a
(n)
jk =

(
j

k

)2χ+ 2k

π(j2 − k2)
=: ajk

(comp. (3.11)). Together with Remark 3.7 and (3.27) we conclude

lim
n→∞




[(n+1)/3]−1∑

j=1,j 6=k
|a(n)
jk − ajk |2 +

n∑

j=[(n+1)/3],j 6=k
|a(n)
jk |2 +

∞∑

j=[(n+1)/3]

|ajk |2

 = 0

and

lim
n→∞




[(n+1)/3]−1∑

k=1,k 6=j
|a(n)
jk − ajk |2 +

n+1∑

k=[(n+1)/3],k 6=j
|a(n)
jk |2 +

∞∑

k=[(n+1)/3]

|ajk|2

 = 0 ,

which imply the `2 convergences

DnAnD
−1
n ek−1 −→ D+AD−1

+ ek−1 ,

(3.30)

(DnAnD
−1
n )∗ej−1 −→ (D+AD−1

+ )∗ej−1 ,

where A and D+ are defined in (3.15) and (3.16), respectively.
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v) Next we compute the limits d+
k := limn→∞ dnk and b+k := limn→∞ bnk , where

we have set bnk :=
(
B ˜̀ϕkn

)
(xϕkn). Note that, analogously, there exist the limits d−k :=

limn→∞ dnn+1−k and b−k := limn→∞ bnn+1−k which are needed for the limit W4{An}. In
particular, we shall show that, for some ε ∈ (0, 1),

b+k = lim
n→∞

bnk , |bnk | ≤
C

min{k, n+ 1 − k}ε , k = 1, . . . , n , n = 1, 2, . . . ,(3.31)

as well as

d+
k = lim

n→∞
dnk , |dnk | ≤

C

min{k, n+ 1 − k}ε , k = 1, . . . , n , n = 1, 2, . . . .(3.32)

We define ζ(x) = [ρ(x)]−1µ(x) = [χ(x)]−1 = (1−x)ζ+(1+x)ζ− and x±n = ± cos π
2(n+1) .

Using T ′
n+1(x) = (n+ 1)Un(x) , Tn+1(x

±
n ) = 0 , and partial integration, we get

dnk =
1

ζ(xϕkn)

∫ 1

−1

ζ(y) − ζ(xϕkn)

y − xϕkn
ϕ(y)Un(y) dy

=
1

ζ(xϕkn)

(∫ x−
n

−1

+

∫ 1

x+
n

)
ζ(y) − ζ(xϕkn)

y − xϕkn
ϕ(y)Un(y) dy +

∫ x+
n

x−
n

F (y, xϕkn) dy

=: dn,1k,− + dn,1k,+ + dn,2k ,

where

F (y, x) :=
Tn+1(y)

(n+ 1)ζ(x)

[
ϕ(y)

ζ(y) − ζ(x) − ζ ′(y)(y − x)

(y − x)2
− ϕ′(y)

ζ(y) − ζ(x)

y − x

]
.

Consider n ≥ 2k − 1 . The term dn,1k,− can be estimated by

|dn,1k,−| ≤ C

∫ x−
n

−1

[
(1 + y)ζ−

(1 − xϕkn)ζ+
+ 1

]
dy ≤ C

[
(1 + x−n )ζ−+1

(1 − xϕkn)ζ+
+ x−n + 1

]

≤ C

[(
1
n2

)ζ−+1

(
k
n

)2ζ+ +
1

n2

]
= C

(
1

k2ζ+n2(1+ζ−−ζ+)
+

1

n2

)
,

such that limn→∞ dn,1k,− = 0 and

|dn,1k,−| ≤
C

k2min{1,1+ζ−} .(3.33)

To consider dn,1k,+ we use the substitution y = cos s
n+1 and get

dn,1k,+ =

√
2

π

∫ π
2

0

H(s, xϕkn) ds(3.34)

with

H(s, x) =
1

ζ(x)(n + 1)

ζ
(
cos s

n+1

)
− ζ(x)

cos s
n+1 − x

sin
s

n+ 1
sin s .
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For 0 ≤ s ≤ π
2 , we can estimate

|H(s, xϕkn)| ≤ C
(
k
n

)2ζ+

(
s
n

)2ζ+
+
(
k
n

)2ζ+
(kπ)2−s2

n2

s2

n2
≤ C

(
s
k

)2ζ+
+ 1

k2
s2 .

Consequently,

|dn,1k,+| ≤
C

k2min{1,1+ζ+} ,(3.35)

and the functions H(s, xϕkn) possess an integrable majorant. Thus, we can change the order
between the limit and the integration and obtain

lim
n→∞

dn,1k,+ =

√
2

π

∫ π
2

0

lim
n→∞

H(s, xϕkn) ds = 2

√
2

π

∫ π
2

0

(
s
kπ

)2ζ+ − 1

(kπ)2 − s2
s sin s ds .

Furthermore, we write

dn,2k =

(∫ − 1
2

x−
n

+

∫ x̃ϕ2k,n

− 1
2

+

∫ 1
2 (1+xϕkn)

x̃ϕ2k,n

+

∫ x+
n

1
2 (1+xϕkn)

)
F (y, xϕkn) dy

=: In1,k + In2,k + In3,k + In4,k ,

where x̃ϕ2k,n = max
{
− 1

2 , x
ϕ
2k,n

}
. Similarly, from

U ′
n(x

ϕ
kn) =

√
2/π(n+ 1)(−1)k+1[ϕ(xϕkn)]−2

and from (3.24) with x = xϕkn we obtain

bnk =

(∫ − 1
2

−1

+

∫ x̃ϕ2k,n

− 1
2

+

∫ 1
2 (1+xϕkn)

x̃ϕ2k,n

+

∫ 1

1
2 (1+xϕkn)

)
F̃ (y, xϕkn) dy

=: Jn1,k + Jn2,k + Jn3,k + Jn4,k ,

where

F̃ (y, x) :=
(−1)k+1ϕ(x)

(n+ 1)ζ(x)πi

ζ(y) − ζ(x)

(y − x)2
sin s, y = cos

s

n+ 1
.

We observe xϕkn ≥ 0 for n ≥ 2k − 1. For x−n < y < − 1
2 , we have 2 > |y − xϕkn| > 1

2 and
2 > 1 − y > 3

2 . Thus,

|In1,k| ≤
C

n(1 − xϕkn)ζ+

∫ − 1
2

x−
n

{
(1 + y)

1
2

[
(1 + y)ζ−−1 + (1 − xϕkn)ζ+

]

+(1 + y)−
1
2

[
(1 + y)ζ− + (1 − xϕkn)ζ+

]}
dy

≤ C

n(1 − xϕkn)ζ+

[
(1 − xϕkn)ζ+ +

∫ − 1
2

x−
n

(1 + y)ζ−− 1
2 dy

]
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≤ C

n





1 +

(
k

n

)−2ζ+

if ζ− > − 1
2 ,

1 +

(
k

n

)−2ζ+

n1+2ζ− if ζ− < − 1
2 ,

1 +

(
k

n

)−2ζ+

logn if ζ− = − 1
2 .

Consequently, for some ε ∈ (0, 1) , we arrive at

|In1,k| ≤ C





1

nε
if ζ+ ≤ 0 ,

1

k2ζ+nε
if ζ+ > 0 , ζ− ≥ − 1

2 ,

1

n
+

1

k2ζ+n−2(ζ++ζ−)
if ζ+ > 0 , ζ− < − 1

2 ,

and, since in the last case ζ+ + ζ− < 0 (recall (3.27) and ζ± = −χ±),

|In1,k| ≤
C

kε
.(3.36)

Moreover, taking into account that ζ+ < 1
4 (recall (3.27) and ζ+ = −χ+), we conclude

limn→∞ In1,k = 0 and

d+,2
k := lim

n→∞
dn,2k = lim

n→∞

(
In2,k + In3,k + In4,k

)
= lim

n→∞

∫ ∞

π
2

G(s, xϕkn) ds ,(3.37)

where

G(s, x) :=





1

n+ 1
F

(
cos

s

n+ 1
, x

)
sin

s

n+ 1
if

π

2
< s <

2π

3
(n+ 1)

0 if
2π

3
(n+ 1) < s .

Analogously, we get

|Jn1,k| ≤
C

n(1 − xϕkn)ζ+− 1
2

∫ 1

−1

[
(1 + y)ζ− + (1 − xϕkn)ζ+

]
dy ≤ C

n
≤ C

k
.(3.38)

Thus, limn→∞ Jn1,k = 0 and

b+k = lim
n→∞

(
Jn2,k + Jn3,k + Jn4,k

)
= lim

n→∞

∫ ∞

0

G̃(s, xϕkn) ds ,(3.39)

where

G̃(s, x) :=





1

n+ 1
F̃

(
cos

s

n+ 1
, x

)
sin

s

n+ 1
if 0 < s <

2π

3
(n+ 1) ,

0 if
2π

3
(n+ 1) < s .

According to the splittings In2,k + In3,k + In4,k and Jn2,k + Jn3,k + Jn4,k, we distinguish three
cases.
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In the first case, we consider 1
2 (1+xϕkn) < y = cos s

n+1 < x+
n for In4,k and 1

2 (1+xϕkn) <

y = cos s
n+1 < 1 for Jn4,k. This is equivalent to the restriction π

2 < s < ckn
kπ√

2
and

0 < s < ckn
kπ√

2
, respectively, where limn→∞ ckn = 1 and 2

√
2

π ≤ ckn ≤ π
2
√

2
. Then

y − xϕkn >
1
2 (1 − xϕkn) and

|G(s, xϕkn)| ≤ C

n2

1

(1 − xϕkn)ζ+

[
(1 − y)

1
2

(
(1 − y)ζ+ + (1 − xϕkn)ζ+

(1 − xϕkn)2
+

(1 − y)ζ+−1

1 − xϕkn

)

+(1 − y)−
1
2
(1 − y)ζ+ + (1 − xϕkn)ζ+

1 − xϕkn

]
s

n

≤ C

n3

[(
s
n

)1+2ζ+

(
k
n

)4+2ζ+
+

s
n(
k
n

)4 +

(
s
n

)2ζ+−1

(
k
n

)2+2ζ+
+

(
s
n

)−1

(
k
n

)2

]
s

≤ C

k2

[
1 +

( s
k

)2ζ+
]
,

π

2
< s < ckn

kπ√
2
.(3.40)

Consequently,

|In4,k| ≤
C

k2

∫ kπ

π
2

[
1 +

( s
k

)2ζ+
]

ds ≤ C

k
.(3.41)

On the other hand, we get

|G̃(s, xϕkn)| ≤ C

n2
(1 − xϕkn)−

3
2−ζ+(1 − y)ζ+

s

n

≤ C

n2

(
k

n

)−3−2ζ+ ( s
n

)2ζ++1

≤ C

k2ζ++3
s2ζ++1 , 0 < s < ckn

kπ√
2
.(3.42)

Consequently,

|Jn4,k| ≤
C

k2ζ++3

∫ kπ

0

s2ζ++1 ds ≤ C

k
.(3.43)

In the second case ckn kπ√2
< s < min

{
2kπ, 2π

3 (n+ 1)
}

, i.e. in the case x̃ϕ2k,n < y =

cos s
n+1 <

1
2 (1 + xϕkn), we have the estimates

|F (y, xϕkn)| ≤ C

n ζ(xϕkn)
[ϕ(y)|ζ ′′(ξ1)| + |ϕ′(y)| |ζ ′(ξ2)|]

and

|F̃ (y, xϕkn)| ≤ C
ϕ(xϕkn)|ζ ′(ξ3)|
nζ(xϕkn)

∣∣∣∣∣
sin s− sin kπ

cos s
n+1 − cos kπ

n+1

∣∣∣∣∣

= C
ϕ(xϕkn)|ζ ′(ξ3)|
nζ(xϕkn)

∣∣∣∣
∫ 1

0
cos

(
kπ + λ(s− kπ)

)
dλ

∣∣∣∣

1
n+1

∫ 1

0 sin

(
1

n+1 [kπ + λ(s− kπ)]

)
dλ
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≤ C
ϕ(xϕkn)|ζ ′(ξ3)|
nζ(xϕkn)

min

{
1,
∣∣∣ 1
s−kπ

∫ s
kπ

cosudu
∣∣∣
}

1
n+1

∫ 1
2

0 sin

(
1

n+1 [kπ + λ(s− kπ)]

)
dλ

≤ C
ϕ(xϕkn)|ζ ′(ξ3)|
nζ(xϕkn)

min{1, |s− kπ|−1}
k
n2

for some ξ1, ξ2, ξ3 ∈ (xϕ2k,n, [1 + xϕkn]/2) and 1− y ∼ 1− xϕkn ∼ 1− ξ1/2/3. This results in

|G(s, xϕkn)| ≤ C

n2
(1 − xϕkn)−

3
2
s

n
≤ C

k2
, ckn

kπ√
2
< s < min

{
2kπ,

2π

3
(n+ 1)

}
,(3.44)

|In3,k| ≤
C

k2

∫ 2kπ

0

ds =
C

k
,(3.45)

and

|G̃(s, xϕkn)| ≤ C

n2 k
n

min{1, |s− kπ|−1}
k
n2

s

n
= C

s

k2
min{1, |s− kπ|−1} ,(3.46)

|Jn3,k| ≤
C

k2

∫ 2kπ

0

min

{
s,

s

|s− kπ|

}
ds =

C (1 + log k)

k
.(3.47)

In the third case 2kπ < s < 2π
3 (n + 1), i.e. n+ 1 > 3k and if y satisfies the restriction

− 1
2 < y < xϕ2k,n, then we obtain the relations

1−y > 1−xϕ2k,n = 2 sin2 2kπ

2(n+ 1)
= 2

(
1 − cos

kπ

n+ 1

)(
1 + cos

kπ

n+ 1

)
≥ 2(1−xϕkn)

and

1 − y > xϕkn − y = 1 − y − (1 − xϕkn) >
1

2
(1 − y) ≥ 1 − xϕkn .

Consequently, we get

|F (y, xϕkn)| ≤ C

n(1 − xϕkn)ζ+

[
(1 − y)ζ+− 3

2 +
(1 − xϕkn)ζ+

(1 − y)
3
2

]

and

|G(s, xϕkn)| ≤ C

[( s
k

)2ζ+
+ 1

]
1

s2
, 2kπ < s <

2π

3
(n+ 1).(3.48)

Since 2(1 − ζ+) > 1 (recall (3.27) and ζ+ = −χ+), we obtain the estimate

|In2,k| ≤ C

∫ ∞

2kπ

[( s
k

)2ζ+
+ 1

]
ds

s2
≤ C

k
.(3.49)

On the other hand, we arrive at

|G̃(s, xϕkn)| ≤ C

n2(1 − xϕkn)ζ+− 1
2

(1 − y)ζ+ + (1 − xϕkn)ζ+

(1 − y)2
s

n

≤ C

n2

(
k

n

)1−2ζ+
(
s
n

)2ζ+
+
(
k
n

)2ζ+
(
s
n

)3 ,
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such that

|G̃(s, xϕkn)| ≤ C k

s3

[( s
k

)2ζ+
+ 1

]
.(3.50)

Consequently,

|Jn2,k| ≤ C k

∫ ∞

2kπ

[( s
k

)2ζ+
+ 1

]
ds

s3
≤ C

k
.(3.51)

From the upper estimates in the inequalities (3.40), (3.44), and (3.48) we conclude that the
function

f(s) := C

{
max

{
s2ζ+ , 1

}
if π

2 < s < 2kπ

(s2ζ+ + 1)s−2 if 2kπ < s <∞

with the constant C depending on ζ± and k, only, is an integrable majorant for the functions
G(s, xϕkn), n > 3k − 1, in (3.37). Thus, we can change the order between the limit and the
integration, and we obtain

d+,2
k

=

∫ ∞

π
2

lim
n→∞

G(s, xϕkn) ds

=

√
2

π

∫ ∞

π
2

lim
n→∞

cos s sin s
n+1

(n+ 1)2
(
2 sin2 kπ

2(n+1)

)ζ+ (
2 cos2 kπ

2(n+1)

)ζ−





[(
2 sin2 s

2(n+1)

)ζ+ (
2 cos2 s

2(n+1)

)ζ−
−
(
2 sin2 kπ

2(n+1)

)ζ+ (
2 cos2 kπ

2(n+1)

ζ−
)]

sin s
n+1

4 sin2 s+kπ
2(n+1) sin2 kπ−s

2(n+1)

−

(
2 sin2 s

2(n+1)

)ζ+ (
2 cos2 s

2(n+1)

)ζ− ( ζ−
2 cos2 s

2(n+1)
− ζ+

2 sin2 s
2(n+1)

)
sin s

n+1

2 sin s+kπ
2(n+1) sin kπ−s

2(n+1)

+
cos s

n+1

sin s
n+1

∗

∗

(
2 sin2 s

2(n+1)

)ζ+ (
2 cos2 s

2(n+1)

)ζ−
−
(
2 sin2 kπ

2(n+1)

)ζ+ (
2 cos2 kπ

2(n+1)

)ζ−

2 sin s+kπ
2(n+1) sin kπ−s

2(n+1)





ds

= 4

√
2

π

∫ ∞

π
2

cos s




s2
[(

s
kπ

)2ζ+ − 1
]

[(kπ)2 − s2]
2 +

ζ+
(
s
kπ

)2ζ+
+ 1

2

[(
s
kπ

)2ζ+ − 1
]

(kπ)2 − s2



 ds .

Analogously, using (3.42), (3.46), and (3.50), we get that

f̃(s) := C

{
max

{
s2ζ++1, s

}
if 0 < s < 2kπ

(s2ζ+ + 1)s−3 if 2kπ < s <∞
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is an integrable majorant for the functions G̃(s, xϕkn), n > 3k − 1, in (3.39). Hence

b+k =

∫ ∞

0

lim
n→∞

G̃(s, xϕkn) ds

=
(−1)k+1

πi

√
2

π

∫ ∞

0

lim
n→∞

{(
2 sin2 kπ

2(n+1)

) 1
2−ζ+ (

2 cos2 kπ
2(n+1)

) 1
2−ζ−

(n+ 1)2
∗

∗

(
2 sin2 s

2(n+1)

)ζ+ (
2 cos2 s

2(n+1)

)ζ−
−
(
2 sin2 kπ

2(n+1)

)ζ+ (
2 cos2 kπ

2(n+1)

)ζ−

4 sin2 s+kπ
2(n+1) sin2 kπ−s

2(n+1)

∗

∗ sin s sin
s

n+ 1

}
ds

=
4(−1)k+1k

i

√
2

π

∫ ∞

0

(
s
kπ

)2ζ+ − 1

[(kπ)2 − s2]2
s sin s ds .

The formulas (3.19) and (3.18) are shown.
Due to the estimates (3.33), (3.35), (3.36), (3.41), (3.45), and (3.49) we have |dnk | ≤

C k−ε for some ε ∈ (0, 1) and for 1 ≤ k ≤ n+1
2 . Now, we consider n+1

2 ≤ k ≤ n and
j = n + 1 − k. Then 1 ≤ j ≤ n+1

2 and, in view of xϕn+1−j,n = −xϕjn and Un(−y) =
(−1)nUn(y),

dnk =
(−1)n+1

ζ̃(xϕjn)

∫ 1

−1

ζ̃(y) − ζ̃(xϕjn)

y − xϕjn
ϕ(y)Un(y) dy ,

where ζ̃(y) := ζ(−y). Hence, we get |dnk | ≤ C j−ε = C (n + 1 − k)−ε for n+1
2 ≤ k ≤ n

and

|dnk | ≤
C

min{k, n+ 1 − k}ε , k = 1, . . . , n , n = 1, 2, . . . .(3.52)

Analogously, from (3.38), (3.43), (3.47), and (3.51) we get

|bnk | ≤
C

min{k, n+ 1 − k}ε , k = 1, . . . , n , n = 1, 2, . . . ,(3.53)

for some ε ∈ (0, 1) .
Using the estimates (3.28) and (3.29) together with (3.52) and Remark 3.7, we get, for

each fixed m = 1, 2, . . . , the `2 limit relations

VnAnWnem−1 −→ V+AWem−1(3.54)

DnAnWnVnD
−1
n em−1 −→ D+AWV+D−1

+ em−1(3.55)

and the corresponding limit relations for the adjoint operators, where the operators V+ and
W are defined by (3.17).

4. The Subalgebra A of the Algebra F . In this section we prove that further sequences
of approximate operators2 belong to the algebra F . Using these and the operator sequences of

2We conjecture that these sequences can be generated by the sequences of Section 3.
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the collocation method, we shall form a C∗-algebra which is the basic algebra for the stability
analysis of the collocation method.

We consider the C∗ algebra L(`2) of continuous operators in `2. By alg T (PC) we
denote the closed subalgebra generated by the Toeplitz matrices (ĝk−j)∞k,j=0 with piecewise
continuous symbols g(t) :=

∑
l∈Z

ĝlt
l defined on

T := {t ∈ C : |t| = 1}

and continuous on T \ {±1}. Note that, for any ε > 0, the operator R ∈ alg T (PC) admits
the representation

R =
(
ĝk−j

)∞
k,j=0

+M +M ′ +Rc +Rε,(4.1)

M :=

(
m

(
k + 1

j + 1

)
1

j + 1

)∞

k,j=0

, M ′ :=

(
(−1)k−jm′

(
k + 1

j + 1

)
1

j + 1

)∞

k,j=0

,

where the `2 operator norm of Rε is less than ε, where Rc ∈ L(`2) is a compact operator,
where the generating function g of the Toeplitz matrix is piecewise continuous and continuous
on T \ {±1}, and where m,m′ are suitably chosen functions from C∞(0,∞) (for more
details cf. part iv) of Lemma 7.1). The existence of the representation (4.1) is a simple
consequence of the Gohberg-Krupnik symbol calculus (cf. the subsequent Lemma 7.1 or
[20] and [29, 16, 28]). For R ∈ alg T (PC), we use the projections Pn from (2.1) and define
the finite sections Rn := PnR|imPn ∈ L(imPn). Furthermore, using the notation from the
beginning of Section 2, we form the operators

Rωn := (E(ω)
n )−1RnE

(ω)
n , ω ∈ {3, 4} ,

mapping imLn into imLn. We get
LEMMA 4.1. i) Suppose χs and χb are smooth functions over [−1, 1] such that their

values are in [0, 1] , such that χs has a small support with supp [χs ◦ cos] ⊆ [t− εs, t+ εs] ,
where cos is considered as a function defined on [0, π] , and such that χb has a support with
supp [χb ◦ cos] ∩ [t − εb, t + εb] = ∅ and εb > εs . Then, for any R ∈ alg T (PC) and for
any ε > 0 , there is a constant C such that εb/εs > C implies the locality property

∥∥∥∥
(
χb(xϕ(j+1)n)δj,k

)n−1

j,k=0
Rn

(
χs(xϕ(j+1)n)δj,k

)n−1

j,k=0

∥∥∥∥
L(`2)

≤ ε ,

∥∥∥∥
(
χs(xϕ(j+1)n)δj,k

)n−1

j,k=0
Rn

(
χb(xϕ(j+1)n)δj,k

)n−1

j,k=0

∥∥∥∥
L(`2)

≤ ε .

Moreover, if the support of χs satisfies supp [χs ◦ cos] ⊆ [t− εs, t+ εs] ⊆ [0, π − εb] , then
we get

∥∥∥∥(I − Pn)RPn

(
χs(xϕ(j+1)n)δj,k

)n−1

j,k=0

∥∥∥∥
L(`2)

≤ ε,

∥∥∥∥
(
χs(xϕ(j+1)n)δj,k

)n−1

j,k=0
PnR(I − Pn)

∥∥∥∥
L(`2)

≤ ε.

ii) For any R ∈ alg T (PC), the sequences {Rωn}∞n=0 , ω ∈ {3, 4} , belong to F . If R is the
Toeplitz operator (ĝk−j)∞k,j=0 , then

W3

{
R3
n

}
= R, W4

{
R3
n

}
= R̃, W3

{
R4
n

}
= R̃, W4

{
R4
n

}
= R, R̃ := (ĝj−k)

∞
k,j=0 .
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Proof. i) The first assertion is a simple consequence of the more general estimates
∥∥∥
(
d1
kδk,j

)∞
k,j=0

R
(
d2
jδk,j

)∞
k,j=0

∥∥∥
L(`2)

≤ ε ,(4.2)
∥∥∥
(
d2
kδk,j

)∞
k,j=0

R
(
d1
jδk,j

)∞
k,j=0

∥∥∥
L(`2)

≤ ε(4.3)

which hold for any two sequences d1
k and d2

j with |dik| ≤ 1, with d1
k = 0 for each k in

{k : |t − k/n| ≥ εs}, and with d2
k = 0 for each k in {k : |t − k/n| ≤ εb}. Here t is

a fixed non-negative real and, like in the lemma, we suppose εb/εs > C for a sufficiently
large constant C depending on R and ε, only. Of course, it suffices to prove (4.3) since (4.2)
follows by passing to the adjoint matrices.

It is not hard to see that, if the assertion of (4.3) is true for two operatorsR andR′, then it
is true for the linear combination and for the product of R and R′. Moreover, if it is true for a
sequence of operators, then it holds for the (operator norm) limit operator as well. Hence, it is
sufficient to verify assertion (4.3) for the generating Toeplitz matrices R = (ĝk−j)∞k,j=0 with
ĝk the Fourier coefficients of a piecewise smooth function g. Now, without loss of generality,
we assume t = 0. From Young’s inequality for discrete convolution operators we conclude

∥∥∥
(
d2
jδj,k

)n−1

j,k=0
R
(
d1
kδj,k

)n−1

j,k=0
(ξk)

n−1
k=0

∥∥∥
`2

≤ C

(
∑

k: k<εsn

|ξk |
)√ ∑

l: l=k−j, j<εsn, k>εbn
|ĝl|2

≤ C

√ ∑

k: k<εsn

1

√∑

k

|ξk|2
√ ∑

l: l>(εb−εs)n
|ĝl|2 ≤ C

√
εs

εb − εs
‖(ξk)∞k=0‖`2 .

In the last steps we have used the fact that the Fourier coefficients ĝk of a piecewise smooth
function g satisfy the estimate |ĝk| < C/k for k 6= 0. Obviously, the last right-hand side is
less than ε‖(ξk)k‖ if εb > Cεs for sufficiently large C.

ii-a) Now we turn to the proof of ii). Without loss of generality, we restrict ourselves
to the sequence R3

n. First, we restrict our proof to the case of generating Toeplitz matrices
R = (ĝk−j)∞k,j=0. The general case follows in part ii-b). From the definitions of R3

n we
conclude

E(3)
n R3

n(E
(3)
n )−1L(3)

n = RnPn = PnRPn −→ R,

E(4)
n R3

n(E
(4)
n )−1L(4)

n = ṼnV
−1
n RnVnṼ

−1
n Pn =

(
ĝ[n−1−k]−[n−1−j]

)n−1

k,j=0
Pn −→ R̃ .

Similarly, the convergence of the adjoint operators can be derived. For the proof of the exis-
tence of Wω{R3

n} with ω = 1, 2, we remark that

E(2)
n R3

n(E
(2)
n )−1 = E(1)

n R̃3
n(E

(1)
n )−1

with the finite sections R̃n of the Toeplitz matrix R̃ := ((−1)k−j ĝk−j)∞k,j=0 corresponding
to the piecewise smooth symbol ǧ(t) = g(−t) . Hence, we only have to analyze the limit
W1{R3

n} . Similarly, we get the identity (cf. (2.3))

(
E(1)
n R3

n(E(1)
n )−1

)∗
= E(1)

n [R∗]3n(E
(1)
n )−1
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with the finite sections [R∗]n of the Toeplitz matrix R∗ = (ĝj−k)∞k,j=0 corresponding to the

piecewise smooth symbol g(t) . Hence, it remains to analyze the limit W1{R3
n} for the se-

quence
{
E

(1)
n R3

n(E
(1)
n )−1Ln

}
, and the limit W1{R3

n}∗ for (E
(1)
n R3

n(E
(1)
n )−1)∗Ln follows

analogously. Due to the uniform boundedness of these sequences, it remains to show the
convergence of E(1)

n R3
n(E

(1)
n )−1Lnf for smooth functions f with support supp f contained

in the open interval (−1, 1). Moreover, due to the L2
σ convergence Mnf − Lnf −→ 0

(cf. Lemma 2.5), we only need to prove the convergence of E(1)
n R3

n(E
(1)
n )−1Mnf , and, in

view of part i) of the present lemma, we need to show this convergence only for the interval
[−1 + εs, 1 − εs] with a small εs. However, since the Jacobi weight functions ρ and ρ−1 are

bounded in [−1 + εs, 1− εs] and since the
√

n+1
π (ωknδk,j)

n
k,j=1 and

√
π
n+1 (ω−1

kn δk,j)
n
k,j=1

are strongly convergent discretizations of the operators of multiplication by these weights (cf.
Lemma 3.8), we can suppose ρ ≡ 1 and ωkn = 1 without loss of generality. We are going
to prove the convergence to W1{R3

n} for Toeplitz matrices with smooth generating functions
gC (functions in the Wiener class) and for a special generating function gPC with jumps
at ±1. The case of general piecewise continuous generating functions will follow from the
combination of the particular convergence results and a density argument.

If the generating function g(t) is equal to tl for a fixed l, then the application of Rn to

a vector is nothing else than a shift in the indices. Consequently, E(1)
n R3

n(E
(1)
n )−1Mnf =

Mnf̃ with a shifted smooth function f̃ defined by [f̃ ◦ cos](s) = [f ◦ cos](s− l/[n+ 1]). In
view of the convergence of the interpolation Mn (cf. Lemma 2.5), which is uniform on the
compact set of shifted functions, we conclude E(1)

n R3
n(E

(1)
n )−1Mnf −→ f . This result for

a fixed l, however, implies

E(1)
n R3

n(E
(1)
n )−1Mnf −→ g(1)f

for all R = (ĝk−j)∞k,j=0 with generators g(t) =
∑
l ĝlt

l from the Wiener class, i.e. with
generators such that

∑
l |ĝl| <∞.

Now we consider the discretized operator of ρ−1SρI . The corresponding matrix takes
the form (cf. Equation (3.10))


i

cos′
(

(k+1)π
n+1

)
δ̃jk
n+1

cos
(

(k+1)π
n+1

)
− cos

(
(j+1)π
n+1

)




n−1

k,j=0

=

(
i
δ̃jk
k − j

) n−1

k,j=0

+
(
r(k+1)(j+1)

) n−1

k,j=0
,(4.4)

where

rkj :=
δ̃jk
n+ 1

k†
(

kπ

n+ 1
,
jπ

n+ 1

)
, k†(t, s) := i

[
cos′ (t)

cos (t) − cos (s)
− 1

t− s

]
.

Clearly, the kernel k†(t, s) is smooth. For a cut off function χ with suppχ ⊂ (−1, 1), the
integral operator K† corresponding to the kernel χ(cos(t))k†(t, s)χ(cos(s)) can be approxi-
mated by a quadrature methodK†

n ∈ L(imLn) such that the matrix with respect to {˜̀ϕkn} nk=1

is

E(3)
n K†

n(E
(3)
n )−1

=
(
χ(xϕ(k+1)n)δk,j

) n−1

k,j=0

(
π

n+ 1
k†
( (k + 1)π

n+ 1
,
(j + 1)π

n+ 1

)) n−1

k,j=0

(
χ(xϕ(k+1)n)δk,j

) n−1

k,j=0

and that the sequence K†
n belongs to J (cf. the proof of Lemma 2.4). In view of (2.2) the

matrix (r(k+1)(j+1))
n−1
k,j=0 coincides with the matrix E(3)

n [K†
n −WnK

†
nWn](E

(3)
n )−1, which
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implies that {MnχLn(E
(3)
n )−1(r(k+1)(j+1))

n−1
k,j=0E

(3)
n MnχLn} is included in J , and we get

the strong convergence for the operator whose matrix representation with respect to the basis
{˜̀ϕkn} nk=1 is

(
χ(xϕ(k+1)n)δk,j

) n−1

k,j=0

(
r(k+1)(j+1)

) n−1

k,j=0

(
χ(xϕ(k+1)n)δk,j

) n−1

k,j=0
.

Due to the strong convergence toward W1{An} in Lemma 3.9 and due to (4.4), we get the
strong convergence for the operator whose matrix representation with respect to the basis
{˜̀ϕkn} nk=1 is the finite section (iδ̃jk/[j − k])n−1

k,j=0 of the Toeplitz matrix

RPC := (iδ̃jk/[j − k])∞k,j=0 .

We denote the generating function of the last Toeplitz matrix by gPC . Note that gPC(t) =
−π sgn=m t is a piecewise constant function with jumps at ±1 ∈ T.

Suppose now that the generating function g of the Toeplitz matrix R takes the form
g(t) = λg+(t)gPC(t) + µg−(t)gPC(t) + gC(t) with fixed numbers λ and µ, with g±(t) =
t−1 ∓ 1, and with gC from the Wiener class. Then we get the representation

R = λR+RPC(t) + µR−RPC(t) +RC(4.5)

with Toeplitz matrices R+ and R− generated by the functions g+ and g−, respectively.
Though PnR±RPC |imPn is different from [PnR±|imPn ][PnRPC |imPn ], we get

(
χ†(xϕ(j+1)n)δj,k

) n−1

j,k=0
PnR±RPC |imPn

(4.6)

=
(
χ†(xϕ(j+1)n)δj,k

) n−1

j,k=0
[PnR±|imPn ]

(
χ(xϕ(j+1)n)δj,k

) n−1

j,k=0
[PnRPC |imPn ],

where χ and χ† stand for functions such that suppχ ⊂ (−1, 1), suppχ† ⊂ (−1, 1), and
suppχ† ⊂ {t ∈ [−1, 1] : χ(t) = 1}, and such that there is an xϕjn with χ(xϕjn) = 1 and
suppχ†∩ [−1, xϕjn] = ∅ . Indeed, the matricesR± consist of two non-zero diagonals, namely
the main diagonal and the one above the main diagonal. Therefore, the difference between
PnR± andPnR±Pn is a matrix with exactly one non-zero entry. However, if the finite section
from the left is replaced by Pn−1, then Pn−1R± = Pn−1R±Pn. The assumptions on χ and
χ† ensure that the finite section matrices (χ†(xϕ(j+1)n)δj,k)

n−1
j,k=0 and (χ(xϕ(j+1)n)δj,k)

n−1
j,k=0

act similarly to Pn−1 and Pn when applied to R±. Thus (4.6) holds true, and, together with
the just proved strong convergences of E(1)

n [RPC ]3n(E
(1)
n )−1Ln and E(1)

n [R±]3n(E
(1)
n )−1Ln,

we arrive at the L2
σ convergence of E(1)

n [R±RPC ]3n(E
(1)
n )−1Lnf over the interior of the

interval [−1, 1]. Consequently, we obtain the strong convergence of E (1)
n R3

n(E
(1)
n )−1Ln for

R3 from the representation (4.5).
Finally, a general generating function g which is piecewise continuous over T and con-

tinuous over T \ {±1} can be approximated in the supremum norm by a function of the form
from the previous paragraph. Hence, the strong convergence property extends to Toeplitz ma-
trices with generating function g piecewise continuous over T and continuous over T\{±1}.

ii-b) Now we consider the case of arbitrary R ∈ alg T (PC). Because of the relations

E
(3)
n R3

n(E
(3)
n )−1L

(3)
n = PnRPn and E(4)

n R3
n(E

(4)
n )−1L

(4)
n = W̃nRW̃n with

W̃n {ξ0, ξ1, . . .} = {ξn−1, . . . , ξ0, 0, . . .} ,
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the existence of Wω

{
R3
n

}
for ω = 3, 4 is well known (see, for example, [3, Cor. 7.14]). It

remains to derive the convergence to the limits Wω

{
R3
n

}
for ω = 1, 2.

In view of (4.1), we have to consider the two cases R = M and R = M ′. For similarity
sake (use (2.2) forM ′), we may restrict our proof to the case R = M . Since R3

n is uniformly
bounded, we have to show the limits for a dense subset only. Hence, it suffices to consider the
limits forR3

nMnχLn with χ a smooth function vanishing in neighbourhoods of the end points
±1. Moreover, in accordance with part i) of Lemma 4.1, we need to show the strong limits for
Mnχ

′LnR3
nMnχLn only, where χ′ is another smooth function vanishing in neighbourhoods

of ±1. Setting

k(x, y) :=
χ′(x)χ(y)

%(x)ϑ(y)
m

(
arccos(x)

arccos(y)

)
1

arccos(y)
,(4.7)

the operator Mnχ
′LnR3

nMnχLn takes the form Kn of Lemma 2.4. Now Lemma 2.4 and
Corollary 2.2, imply the strong convergences.

By A we denote the smallest C∗-subalgebra of F generated by all sequences of the ideal
J , by all sequences {Rωn} with ω ∈ {3, 4} and R ∈ alg T (PC), and by all sequences of the
form

{Mn(aI + bµ−1SµI)Ln} , a, b ∈ PC ,

where µ := vγ,δ satisfies (1.5) and (1.6). We shall prove the missing invertibility of the col-
location sequence in the quotient algebra F/J (cf. Theorem 2.3) by showing the invertibility
in the quotient algebra A/J . For {An} ∈ F , we write {An}o for the coset {An} + J of
F/J .

5. A Subalgebra in the Center of the Quotient Algebra A/J and the Local Prin-
ciple of Allan and Douglas. In this section we show that a set of discretized multiplication
operators forms a subalgebra contained in the center of the quotient algebra A/J . However,
to a general Banach algebra and to a general central subalgebra we can apply the local prin-
ciple of Allan and Douglas in order to analyze the invertibility of an element. We formulate
the corresponding assertions for our specific setting.

LEMMA 5.1. The cosets {MnfLn}o, where f ∈ C[−1, 1], belong to the center of
A/J .

Proof. We have to show that the commutator of {MnfLn} with the generating elements
of A are contained in J . First we observe MnfLnMnaLn = MnafLn (cf. (3.5)), which
implies {MnfLn}o{MnaLn}o = {MnaLn}o{MnfLn}o.

Next we turn to the commutators of the discretized multiplication operators with the
discretized Cauchy singular integral operator. We first suppose f = p is a polynomial of
degree not greater than m. Then we get MnpLn−m = pLn−m for n > m. Consequently,

MnpLnMnµ
−1SµLn −Mnµ

−1SµLnMnpLn

= Mnpµ
−1SµLn −Mnµ

−1SµMnpLn

= Mnµ
−1(pS − Sp)µLn +Mnµ

−1Sµ(I −Mn)p(Ln − Ln−m) .

Obviously, the sequence {Mnµ
−1(pS − Sp)µLn} belongs to J . Moreover, we observe the

identity Ln − Ln−m = WnLmWn, and

Mnµ
−1Sµ(I −Mn)p(Ln − Ln−m)
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= Mnµ
−1Sµ(I −Mn)pLnWnLmWn

=
[
Mnµ

−1(Sp− pS)µLn +Mnpµ
−1SµLn −Mnµ

−1SµLnMnpLn
]
WnLmWn ,

which shows that the sequence
{
Mnµ

−1Sµ(I −Mn)p(Ln − Ln−m)
}

belongs to J , too.
Taking into account the closedness of J and (3.7), we arrive at the relation {MnfLn}o{
Mµ−1SµLn

}o
=
{
Mnµ

−1SµLn
}o {MnfLn}o valid for all f ∈ C[−1, 1].

Next, we have to consider the commutators of the discretized multiplication operators
{MnfLn} with the sequences {R3

n} and {R4
n} for matrices R ∈ alg T (PC). For similarity

reasons, we only treat {R3
n}. In view of (4.1), we have to consider the casesR = (ĝk−j)∞k,j=0

and R = M,M ′. We start with R = (ĝk−j)∞k,j=0. If the function f is Lipschitz and if the
generating function g of R is a trigonometric polynomial, then we get

(
f(xϕ(j+1)n)δj,k

) n−1

j,k=0
Rn −Rn

(
f(xϕ(j+1)n)δj,k

) n−1

j,k=0

=
(
[f(xϕ(j+1)n) − f(xϕ(k+1)n)]ĝk−j

)n−1

j,k=0

and
∣∣∣[f(xϕ(j+1)n) − f(xϕ(k+1)n)]ĝk−j

∣∣∣ ≤ C

n
|j − k||ĝk−j | ,

where ĝk = 0 for all sufficiently large |k|. Hence, the norm of the commutator

{MnfLn} {R3
n} − {R3

n} {MnfLn}

tends to zero. Consequently, due to (3.7) and the closedness of J , for continuous f and g,
we get {MnfLn} {R3

n} − {R3
n} {MnfLn} ∈ J .

For piecewise twice continuously differentiable functions g and Lipschitz continuous f ,
we only get the estimate

∣∣∣[f(xϕ(j+1)n) − f(xϕ(k+1)n)]ĝk−j
∣∣∣ ≤ C

n

|j − k|
1 + |j − k| ≤ C

n
.(5.1)

This, however, allows us to replace Rn by (χ(xϕ(j+1)n)δj,k)
n−1
j,k=0Rn(χ(xϕ(j+1)n)δj,k)

n−1
j,k=0

with a smooth and bounded function χ which is identically equal to one except in two small
neighborhoods of the two interval end-points. Indeed, J is closed and the difference of
Rn and the modified matrix (χ(xϕ(j+1)n)δj,k)

n−1
j,k=0Rn(χ(xϕ(j+1)n)δj,k)

n−1
j,k=0 is small by (5.1)

and a simple Frobenius (Hilbert-Schmidt) norm estimate. Now we suppose that χ vanishes
identically in a small neighborhood of the interval end-points. If we consider the function
gPC from the proof to part ii) of Lemma 4.1, then we have the representation (cf. (4.4))

(
χ(xϕ(j+1)n)δj,k

) n−1

j,k=0
Rn

(
χ(xϕ(j+1)n)δj,k

) n−1

j,k=0
=

(
χ(xϕ(j+1)n)δj,k

) n−1

j,k=0
E(3)
n Mnρ

−1Sρ(E(3)
n )−1

(
χ(xϕ(j+1)n)δj,k

) n−1

j,k=0
−E(3)

n K†
n(E

(3)
n )−1

with the quadrature discretization K†
n to the compact integral operator K†. However, since

K†
n is inJ (cf.Lemma 2.4), since the discretized operators (χ(xϕ(j+1)n)δj,k)

n−1
j,k=0 and (f(xϕ(j+1)n)δj,k)

n−1
j,k=0
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commute, and since the commutator of the discretized singular operator commutes with the
discretized multiplication operators by the previous parts of the present proof, we conclude
that the commutator of E(3)

n (χ(xϕ(j+1)n)δj,k)
n−1
j,k=0

Rn(χ(xϕ(j+1)n)δj,k)
n−1
j,k=0(E

(3)
n )−1 and MnfLn is in J for R generated by gPC . In other

words, we get {MnfLnR
3
n −R3

nMnfLn} ∈ J .
Now a general generator function, piecewise continuous on T and continuous on T \

{±1}, can be represented in the form g(t) = λg+(t)gPC(t) + µg−(t)gPC(t) + gC(t) with
gC continuous (cf. the proof to part ii) of Lemma 4.1). Hence, the just proved relation
{MnfLnR

3
n − R3

nMnfLn} ∈ J for g = gC , g±, and g = gPC show that {MnfLnR
3
n −

R3
nMnfLn} ∈ J holds for general generators g, too.

Finally, we consider the commutator for the case R = M,M ′. For similarity reason,
we restrict our proof to R = M . Since the commutator is linear with respect to f , we
may suppose that f is identically zero in the neighbourhood of one end point of the interval.
Clearly,

MnfLnR
3
n −R3

nMnfLn = MnfLnR
3
nMn(1 − f)Ln +Mn(f − 1)LnR

3
nMnfLn .

Due to this, we only have to show {Mnχ
′LnR3

nMnχLn} ∈ J for smooth functions χ′

and χ such that one of the two vanishes in a small neighbourhood of 1 and the other in a
small neighbourhood of −1. In view of part i) of Lemma 4.1, we even may suppose that
both functions χ and χ′ vanish in small neighbourhoods of ±1. In part ii-b) of the proof
of Lemma 4.1 we have seen that Kn = Mnχ

′LnR3
nMnχ|imLn is a small perturbation of

LnK|imLn with K the compact integral operator corresponding to the kernel function (4.7).
Thus {Mnχ

′LnR3
nMnχLn} ∈ J , and the proof is completed.

Now we formulate the local principle of Allan and Douglas applied to the algebra A/J
and to a central subalgebra C. Due to Lemma 5.1 the set

C :=
{
{MnfLn}o : f ∈ C[−1, 1]

}

forms a C∗-subalgebra of the center of A/J . This is ∗-isomorphic to C[−1, 1] via the iso-
morphism {MnfLn}o 7→ f , and, consequently, the maximal ideal space of C is equal to

{Iτ : τ ∈ [−1, 1]} with Iτ :=
{
{MnfLn}o : f ∈ C[−1, 1], f(τ) = 0

}
. By Jτ we denote

the smallest closed ideal of A/J which contains Iτ , i.e.

Jτ :=

(5.2)

closA/J





m∑

j=1

{
AjnMnfjLn

}o
:
{
Ajn
}
∈ A, fj ∈ C[−1, 1], fj(τ) = 0, m = 1, 2, . . .



 .

The local principle of Allan and Douglas claims
THEOREM 5.2 ([5] and [28], Theorem 1.21). The ideal Jτ is a proper ideal in A/J for

all τ ∈ [−1, 1]. Suppose {An}o is an arbitrary element of A/J . Then {An}o is invertible if
and only if {An}o + Jτ is invertible in (A/J )/Jτ for all τ ∈ [−1, 1].

6. The Local Invertibility at Points τ with −1 < τ < 1. In this section we analyze
the invertibility of {An}o + Jτ in (A/J )/Jτ for τ in the interior of the interval [−1, 1] (cf.
Theorem 5.2). We fix a τ with −1 < τ < 1 and set

hτ (t) :=

{
0 if − 1 ≤ t ≤ τ ,
1 if τ < t ≤ 1 .
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Then, for a, b ∈ PC, we get

{MnaLn}o + Jτ = a(τ + 0) {MnhτLn}o + a(τ) {Mn(1 − hτ )Ln}o + Jτ

and
{
Mnµ

−1SµLn
}o

+ Jτ =
{
Mnρ

−1SρLn
}o

+ Jτ . Consequently, the subalgebra of
(A/J )/Jτ containing all sequences

{
Mn[aI + bµ−1Sµ]Ln

}o
+Jτ is generated by {Ln}o+

Jτ ,

p : =
1

2

(
{Ln}o +

{
Mnρ

−1SρLn
}o)

+ Jτ ,(6.1)

q : = {MnhτLn}o + Jτ .(6.2)

To analyze the invertibility in this C∗ subalgebra, we utilize the following two-projections
lemma.

LEMMA 6.1 (cf. e.g. [27] or [28], Section 1.16). Suppose that B is a unital C∗-algebra,
and that p, q ∈ B are projections (i.e. self-adjoint idempotent elements) such that the spec-
trum σB(pqp) coincides with the interval [0, 1]. Then the smallest closed subalgebra of B,
which contains p, q, and the unit element e, is ∗-isomorphic to the C∗-algebra of all continu-
ous 2 × 2 matrix functions on [0, 1], which are diagonal at 0 and 1. The isomorphism can be
chosen in such a way that it maps e, p, q into the functions

µ 7→
(

1 0
0 1

)
, µ 7→

(
1 0
0 0

)
, µ 7→

(
µ

√
µ(1 − µ)√

µ(1 − µ) 1 − µ

)
,(6.3)

respectively.
Next we verify that our projections p and q from (6.1) and (6.2) satisfy the assump-

tions of the lemma, i.e. that p and q are projections and that σ(A/J )/Jτ (pqp) = [0, 1]. If
this is done, then we can apply Lemma 6.1 and we see that the local algebra (A/J )/Jτ is
∗-isomorphic to a C∗-algebra of continuous 2 × 2 matrix functions on [0, 1] which are diag-
onal at 0 and 1. The isomorphism can be chosen in such a way that it maps {Ln}o + Jτ ,
1
2 ({Ln}o+ {Mnρ

−1SρLn}o)+Jτ , and {MnhτPn}o+Jτ into the functions given in (6.3),
respectively. In particular, {Mn[aI + bµ−1SµI +K]Ln}o is invertible in (A/J )/Jτ (recall
that {MnKLn} ∈ J due to Lemma 2.4) if the corresponding matrix symbol function

µ 7→
(

(1 − µ)c(τ − 0) + µc(τ + 0)
√
µ(1 − µ)[d(τ + 0) − d(τ − 0)]√

µ(1 − µ)[c(τ + 0) − c(τ − 0)] µd(τ − 0) + (1 − µ)d(τ + 0)

)
,

c(τ ± 0) := a(τ ± 0) + b(τ ± 0), d(τ ± 0) := a(τ ± 0) − b(τ ± 0)

is invertible. This, however, is satisfied if the operatorA = aI + bµ−1SµI +K is invertible
in L2

σ by the invertibility criteria of singular operators (cf. [11]). In other words, the invert-
ibility condition of the coset {MnALn}o+Jτ in (A/J )/Jτ does not impose a new stability
condition on the operator equation.

Now we turn to the operators p and q and show that these are selfadjoint projections.
Obviously, q is a selfadjoint projection. We prove that the same is true for p. In view of (3.1),
(3.2), and

Tn+2 − Tn = −2ϕ2Un , n = 1, 2, . . . , T2 −
√

2T0 = −2ϕ2U0 ,

we get

ρ−1Sρϕρ−1Sρũn = ρ−1SϕSϕUn = iρ−1SϕTn+1
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=

{
1
2 ρ

−1(Tn − Tn+2) if n = 1, 2, . . . ,
− 1

2 ρ
−1T2 if n = 0 ,

=

{
ϕũn if n = 1, 2, . . . ,
ϕũ0 − 1√

2
ρ−1T0 if n = 0 .

Thus, by the continuity of ρ−1Sρ : L2
σ −→ L2

σ we have

ρ−1Sρϕρ−1SρI = ϕI +K0 , K0u = − 1√
2
〈u, ũ0〉σ ρ−1T0 .(6.4)

We recall the relation

SρLnu = i

n−1∑

k=0

〈u, ũ〉σ Tk+1 =
i

2

n−1∑

k=0

〈u, ũk〉σ (Uk+1 − Uk−1) ,

which implies

Mnϕρ
−1SρLnu = MnϑSρLnu = ϑSρLnu− i

2
〈u, ũn−1〉σ ũn

= ϑSρLnu−
i

2
V WnL1Wnu ,

where V : L2
σ −→ L2

σ denotes the shift operator V u =
∑∞

k=0 〈u, ũk〉σ ũk+1. Consequently,
due to (6.4), we have the identity

Mnρ
−1SρLnMnϕρ

−1SρLn = Mn(ϕI +K0)Ln − i

2
Mnρ

−1SρV LnWnL1Wn

and

{
Mnρ

−1SρLn
}o {

Mnρ
−1SρLn

}o
+ Jτ

=
1

ϕ(τ)

{
Mnρ

−1SρLn
}o {

Mnϕρ
−1SρLn

}o
+ Jτ

=
1

ϕ(τ)
{MnϕLn}o + Jτ

= {Ln}o + Jτ , −1 < τ < 1 .

Hence, we conclude p2 = p. From (3.1), (3.2), and the three-term-recurrence relation

Uk+1(x) = 2xUk(x) − Uk−1(x) , k = 1, 2, . . . ,

we find

V = ψI − iϑSρI , V ∗ = ψI + iϑSρI , ψ(x) = x .

This implies

{
Mnρ

−1SρLn
}o

+ Jτ = − i

ϕ(τ)
{MniϑSρLn}o + Jτ

= − i

ϕ(τ)
({V ∗Ln}o − {MnψLn}o) + Jτ
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and, consequently,

({
Mnρ

−1SρLn
}o

+ Jτ
)∗

=
i

ϕ(τ)
({LnV Ln}o − {MnψLn}o) + Jτ

=
i

ϕ(τ)
{Mn(−iϑ)SρLn}o + Jτ

=
{
Mnρ

−1SρLn
}o

+ Jτ .

Thus, we get p∗ = p.
Now we turn to the spectrum. It remains to prove σ(A/J )/Jτ (pqp) = [0, 1]. To this

end, we introduce G as the smallest C∗-subalgebra of L(L2
σ) which contains all operators

aI + bµ−1SµI with a, b ∈ PC[−1, 1] and the ideal K = K(L2
σ) of all compact operators

in L2
σ . By J G

τ , τ ∈ [−1, 1], we denote the smallest closed ideal of G/K, which contains all
cosets fI + K with f ∈ C[−1, 1] and f(τ) = 0. We need the following

LEMMA 6.2. If {An}o + Jτ is invertible in (A/J )/Jτ , then (W1{An} + K) + J G
τ is

invertible in (G/K)/J G
τ .

Proof. Take {An} ∈ A, and assume that there exists a sequence {Bn} ∈ A such that
{Bn}o{An}o + Jτ = {Ln}o + Jτ . Then

BnAn = Ln + Jn +

4∑

ω=1

(E(ω)
n )−1L(ω)

n TωE
(ω)
n + Cn

with some Tω ∈ K(Xω) and some {Jn}o ∈ Jτ , {Cn} ∈ N . For each ϑ > 0 there exist

sequences {A(j)
n } ∈ A and functions fj ∈ C[−1, 1] with fj(τ) = 0 such that

‖{Jn}o − {Dn}o‖A/J < ϑ

for Dn :=
∑mϑ

j=1 A
(j)
n MnfjLn. Hence, there are Tω,ϑ ∈ K(Xω) and {Cϑn} ∈ N such that

∥∥∥∥∥∥
JnLn −

mϑ∑

j=1

A(j)
n MnfjLn −

4∑

ω=1

(E(ω)
n )−1L(ω)

n Tω,ϑE
(ω)
n − CϑnLn

∥∥∥∥∥∥
L(L2

σ)

< ϑ ,

n = 1, 2, . . . . We conclude ‖W1{Jn} −∑mϑ
j=1 W1{A(j)

n }fjI − T1,ϑ‖L(L2
σ) ≤ ϑ, which

implies W1{Jn} + K ∈ J G
τ . Thus, because of W1{Bn}W1{An} = I +W1{Jn} + T1, the

coset (W1{An} + K) + J G
τ is invertible from the left in (G/K)/J G

τ . The invertibility from
the right can be shown analogously.

The product pqp is a selfadjoint non-negative element of (A/J )/Jτ , which implies
that the spectrum σ(A/J )/Jτ (pqp) is a subset of [0, 1]. We prove that the spectrum of pqp
coincides with the whole interval. For this, assume that there exists a λ ∈ (0, 1) such that
pqp− λe is invertible in (A/J )/Jτ . This is equivalent to the invertibility of

(q − λ)p− λ(e− p) =
1

2
{Mn(hτ − λ)Ln}o

(
{Ln}o + {Mnρ

−1SρLn}o
)

−λ
2

(
{Ln}o − {Mnρ

−1SρLn}o
)

+ Jτ .

From Lemma 6.2 we conclude that

(A+ K) + J G
τ := [(hτ − λ)(I + ρ−1SρI) − λ(I − ρ−1SρI) + K] + JG

τ
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is invertible in (G/K)/J G
τ . If −1 ≤ x < τ , then we have

(A+ K) + J G
x = (−2λI + K) + J G

x ,

and −2λI + K is invertible in G/K. If τ < x ≤ 1, then

(A+ K) + J G
x = [(1 − 2λ)I + ρ−1SρI + K] + J G

x ,

which is also invertible in (G/K)/J G
x . From the local principle of Allan and Douglas we

conclude the Fredholmness of (hτ − λ)(I + ρ−1SρI) − λ(I − S) in L2
σ . But this is a

contradiction since 0 ∈
[
1 − 1

λ , 1
]

= [λ−hτ (τ+0)
λ , λ−hτ (τ−0)

λ ].

7. The Local Invertibility for τ = ±1. In this section we analyze the invertibility
of {An}o + J±1 in (A/J )/J±1 (cf. Theorem 5.2) and show that the invertibility of the
operators W3{An} and W4{An} imply the invertibility of {An}o + J+1 and {An}o + J−1

in (A/J )/J±1, respectively.
First we recall a lemma on the Gohberg-Krupnik symbol for operators from alg T (PC)

and on special elements of the algebra alg T (PC) which is useful for the proof that the limit
operators belong to alg T (PC).

LEMMA 7.1 ([20] and [29, 16] or Lemma 11.4 of [28]). i) There is a continuous
mapping Symb from alg T (PC) to a set of functions defined over T × [0, 1]. For each
R ∈ alg T (PC), the corresponding function SymbR(t, µ) will be called the symbol of R.
This symbol satisfies:

1) For any t 6= ±1, the value SymbR(t, µ) is independent of µ, and the function t 7→
SymbR(t, 0) is continuous on {t ∈ T : =m t ≥ 0} and on {t ∈ T : =m t ≤ 0}
with the limits

SymbR(1 + 0, 0) := lim
t−→+1, =m t>0

SymbR(t, 0) = SymbR(1, 1) ,

SymbR(1 − 0, 0) := lim
t−→+1, =m t<0

SymbR(t, 0) = SymbR(1, 0),

SymbR(−1 + 0, 0) := lim
t−→−1, =m t<0

SymbR(t, 0) = SymbR(−1, 1),

SymbR(−1 − 0, 0) := lim
t−→−1, =m t>0

SymbR(t, 0) = SymbR(−1, 0).

Moreover, the function µ 7→ SymbR(±1, µ) is continuous on [0, 1].
2) For any R ∈ alg T (PC), the operator R is Fredholm if and only if the symbol

SymbR does not vanish over T × [0, 1].
3) For any Fredholm operator R ∈ alg T (PC), the index of R is the negative winding

number of the closed curve

Γ :=
{
SymbR(eis, 0) : 0 < s < π

}
∪
{
SymbR(−1, s) : 0 ≤ s ≤ 1

}

∪
{
SymbR(−eis, 0) : 0 < s < π

}
∪
{
SymbR(1, s) : 0 ≤ s ≤ 1

}

with respect to the point 0, where the direction of the curve Γ is determined by the
parametrizations of its definition.

4) An operator R ∈ alg T (PC) is compact if and only if SymbR(t, µ) vanishes over
T × [0, 1].

ii) Suppose the generating function g(t) =
∑
l ĝlt

l of the Toeplitz matrix (ĝk−j)∞k,j=0 is
piecewise continuous on T and continuous on T \ {±1}, and take a complex z with |<e z| <
1/2. Then the matrix operator

R := ([k + 1]−zδk,j)
∞
k,j=0(ĝk−j)

∞
k,j=0([k + 1]zδk,j)

∞
k,j=0
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belongs to alg T (PC), and its symbol is given by

SymbR(t, µ) =





g(t) if t ∈ T \ {±1}
µg(±1 + 0) + (1 − µ)g(±1 − 0)e−i2πz

µ+ (1 − µ)e−i2πz if t = ±1.

iii) For any fixed Toeplitz matrix R = (ĝk−j)∞k,j=0 ∈ alg T (PC) with a generating function
which is piecewise twice continuously differentiable, the operator function {z ∈ C : |<e z| <
1/2} 3 z 7→ ([k + 1]−zδk,j)∞k,j=0 R ([k + 1]zδk,j)

∞
k,j=0 ∈ alg T (PC) is continuous in the

operator norm.
iv) Suppose the Mellin transform m̂(z) :=

∫∞
0 m(σ)σz−1dσ of the univariate function m :

(0,∞) −→ C is analytic in the strip 1/2− ε < <e z < 1/2+ ε for a small ε > 0. Moreover,
suppose

sup
z: 1/2−ε<<e z<1/2+ε

∣∣∣∣
dk

dzk
m̂(z)(1 + |z|)k

∣∣∣∣ <∞, k = 0, 1, . . . .

Then m is infinitely differentiable on (0,∞). The operators M,M ′ ∈ L(`2) defined by

M :=

(
m

(
k + 1

j + 1

)
1

j + 1

)∞

k,j=0

, M ′ :=

(
(−1)k−jm

(
k + 1

j + 1

)
1

j + 1

)∞

k,j=0

belong to the algebra alg T (PC) and their symbols are given by

SymbM (t, µ) =

{
m̂
(

1
2 + i

2π log µ
1−µ

)
if t = 1

0 else ,

SymbM ′(t, µ) =

{
m̂
(

1
2 + i

2π log µ
1−µ

)
if t = −1

0 else .

Now we turn to the local invertibility. For symmetry reasons, we may restrict our con-
sideration to the invertibility of {An}o +J1 in (A/J )/J1. The following lemma shows that
this invertibility follows from the invertibility of W3{An}.

LEMMA 7.2. i) Suppose R ∈ alg T (PC) is invertible and consider the sequence R3
n,

then the coset {[R−1]3n}o + J1 is the inverse of {R3
n}o + J1 in (A/J )/J1.

ii) Suppose (1.5) and (1.6), and consider An = Mn[aI + bµ−1SµI + K]Ln and R :=
W3{An}. Then R is in alg T (PC).
iii) Under the assumptions of assertion ii), the cosets {R3

n}o+J1 and {An}o+J1 coincide.
In particular, {An}o + J1 is invertible if R is invertible.

Proof. i) To show the assertion i), we only have to prove that, for anyR,R† ∈ alg T (PC),

R3
n[R

†]3n − [RR†]3n = (E(3)
n )−1

[
RnR

†
n − [RR†]n

]
E(3)
n ∈ J1.(7.1)

We choose a smooth and bounded function χ on [−1, 1] such that χ is identically equal to
one in a neighborhood of 1 and such that suppχ ⊂ [1 − ε, 1] for a small prescribed ε > 0.
Then {MnχLn}o + J1 is the unit element {Ln}o + J1, and

MnχLn(E
(3)
n )−1

[
RnR

†
n − [RR†]n

]
E(3)
n

= (E(3)
n )−1

[(
χ(xϕ(j+1)n)δj,k

) n−1

j,k=0
R(Pn − I)R†

]
PnE

(3)
n
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However, for an arbitrarily prescribed small positive threshold and for sufficiently small ε in
the restriction of the support of χ, the norm of the matrix

(χ(xϕ(j+1)n)δj,k)
n−1
j,k=0R(Pn − I)

is less than this threshold by the proof to part i) of Lemma 4.1. Consequently, (7.1) is true.
ii) Now we prove R = W3{An} ∈ alg T (PC). For the limits of the discretized multi-

plication operators (cf. Lemma 3.8), this is obvious. It remains to consider the limit operators
A+ and A

µ
+ (cf. the Lemmata 3.9 and 3.10). Moreover, since the diagonal entries in the

diagonal matrices B+ and V+ tend to zero (cf. (3.31) and (3.32)) and since the compact
operators belong to alg T (PC), we only have to show that A+, A, and D+AD−1

+ belong to
alg T (PC) (cf. (3.13) and (3.14)). These three operators can be treated in the same manner.
Hence, we consider only one of them. For definiteness, we take D+AD−1

+ .
We start with a well-known formula for the Mellin transform (cf. e.g. [10, 11])

1

πi

1

1 − x
=

1

2πi

∫

{z: <e z=1/2}
x−z{−i cot(πz)}dz , x > 0 ,

and, by straightforward transformations and by the residue theorem (cf. (3.27) for the analyt-
icity of the integrand), we conclude

1

πi

2x2χ+

1 − x2
=

1

2πi

∫

{z: <e z=1/2}
x−(2z−2χ+){−i cot(πz)}2dz

=
1

2πi

∫

{ζ: <e ζ=1−2χ+}
x−ζ

{
− i cot

(
π
(ζ

2
+ χ+

))}
dζ

=
1

2πi

∫

{ζ: <e ζ=1/2}
x−ζ

{
− i cot

(
π
(ζ

2
+ χ+

))}
dζ.

Subtracting the similar formula for 1
πi

x[χ+−1/4]

1−x , we obtain

1

πi

2x2χ+

1 − x2
− 1

πi

x[χ+−1/4]

1 − x
=

1

2πi

∫

{ζ: <e ζ=1/2}
x−ζB(ζ)dζ,(7.2)

B(ζ) := −i cot
(
π
(ζ

2
+ χ+

))
+ i cot

(
π
(
ζ +

[
χ+ − 1

4

]))
.

Note that (7.2) holds with the integral defined in the principal value sense. For x < 1 resp.
x > 1, formula (7.2) can be derived rigorously by simply applying the residue theorem over
{ζ : <e ζ < 1/2} resp. {ζ : <e ζ > 1/2} and by taking into account that B(ζ) =
O(e−|=m ζ|) for |=m ζ| −→ ∞. Choosing a ψ ∈ R with max{−1/2,−2χ+} < ψ <
1/4− χ+ and applying, again, a simple transformation and the residue theorem, we arrive at

κ(x) := (1 − x)

{
2x1/2

1 − x2
x2[χ+−1/4] − 1

1 − x
x[χ+−1/4]

}

=
1

2

∫

{ζ: <e ζ=ψ}
x−ζ

{
B(ζ) − B(ζ + 1)

}
dζ − x[χ+−1/4].

Consequently, we get



1

πi

(
j+1
k+1

)2χ+

2(k + 1)(1 − δk,j)

(k + 1)2 − (j + 1)2




∞

j,k=0

−




1

πi

(
j+1
k+1

)[χ+−1/4]

(1 − δk,j)

(k + 1) − (j + 1)




∞

j,k=0

=
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1

πi




(
j+1
k+1

)2[χ+−1/4]

2
(
j+1
k+1

)1/2

(1 − δk,j)

1 −
(
j+1
k+1

)2

1

k + 1
−

(
j+1
k+1

)[χ+−1/4]

(1 − δk,j)

1 − j+1
k+1

1

k + 1




∞

j,k=0

=

(
1

πi
κ

(
j + 1

k + 1

)
1 − δk,j

(k + 1) − (j + 1)

)∞

j,k=0

=
1

2

∫

{ζ: <e ζ=ψ}




1

πi

(
j+1
k+1

)−ζ
(1 − δk,j)

(k + 1) − (j + 1)




∞

j,k=0

{
B(ζ) − B(ζ + 1)

}
dζ

−




1

πi

(
j+1
k+1

)[χ+−1/4]

(1 − δk,j)

(k + 1) − (j + 1)




∞

j,k=0

,

D+AD−1
+

(7.3)

= −1

2

∫

{ζ: <e ζ=ψ}




1

πi

(
j+1
k+1

)−ζ
(1 − δk,j)

(k + 1) − (j + 1)




∞

j,k=0

{
B(ζ) − B(ζ + 1)

}
dζ .

Note that the last integral is to be understood in the sense of Bochner (cf. [32]). This is

possible since the operator function {ζ : <e ζ = ψ} 3 ζ 7→ ( 1
πi

[(j+1)/(k+1)]−ζ(1−δk,j )
(k+1)−(j+1) )j,k is

continuous and uniformly bounded and since {ζ : <e ζ = ψ} 3 ζ 7→ [B(ζ) − B(ζ + 1)] is

a continuous and absolutely integrable function. Obviously, the matrix ( 1
πi

(1−δk,j)
(k+1)−(j+1) )j,k

is a Toeplitz matrix and its generating function g(ei2πs) = −∑l6=0
1
πi

1
l e

i2πls = 2s− 1, 0 ≤
s < 1 is piecewise continuous and continuous on T \ {1}. Thus, in view of Lemma 7.1, the
integral representation (7.3) proves that the operator D+AD−1

+ is in alg T (PC).
iii) It remains to show the local equivalence of An and R3

n, i.e. that {R3
n − An}o ∈ J1.

We show this result separately for (cf. the Lemmata 3.8, 3.9, and 3.10)
{
[a(1)I ]3n −MnaLn

}o
∈ J1,(7.4)

{
[A+]3n −Mnρ

−1SρLn

}o
∈ J1,(7.5)

{
[Aµ

+]3n − (E(3)
n )−1A+

nE
(3)
n

}o
∈ J1,(7.6)

where A
µ
+ and A+

n are defined in (3.14) and (3.25), respectively. That is

[
A
µ
+

]3
n
− (E(3)

n )−1A+
nE

(3)
n

= (E(3)
n )−1

[
Pn(B+ + D+AD−1

+ −A −D+AWV+D−1
+ + V+AW)

−Bn −DnAnDn + An + DnAnWnVnD
−1
n −VnAnWn

]
E(3)
n .

Let C1 denote the class of continuous functions f : [−1, 1] −→ [0, 1] with f(1) = 1 . Then,
the first inclusion (7.4) is an immediate consequence of the limit a(τ) −→ a(1) for τ −→ 1
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and the resulting relation (cf. the definition of the local ideal J1 in (5.2))

inf
f∈C1

∥∥∥
{
MnfLn

}o{
[a(1)I ]3n −MnaLn

}o∥∥∥

≤ inf
f∈C1

sup
n=1,2,...

∥∥∥∥
(
f(xϕ(k+1)n)

[
a(1) − a(xϕ(k+1)n)

]
δk,j

) n−1

k,j=0

∥∥∥∥
L(`2)

= 0 .

Next we turn to (7.5). We introduce the function Φ(s) = cos
√
s , s ∈ [0, π2/4] . Then

h(s′, r′) :=
Φ′(s′)

Φ(s′) − Φ(r′)
− 1

s′ − r′

is bounded for s′, r′ ∈ [0, π2/4] and, for s, r ∈ [0, π/2] ,

sin s

cos r − cos s
− 2s

s2 − r2
=

2sΦ′(s2)

Φ(s2) − Φ(r2)
− 2s

s2 − r2
= 2s h(s2, r2) .

Hence, due to the definition of A+ and due to (3.10), the entries of

E(3)
n

(
[A+]3n −Mnρ

−1SρLn
)
(E(3)

n )−1

can be estimated by
∣∣∣∣∣
ϕ(xϕkn)

n+ 1

1

xϕkn − xϕjn
− 2k

π(j2 − k2)

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

sin kπ
n+1

(n+ 1)
(
cos kπ

n+1 − cos jπ
n+1

) −
2 kπ
n+1

(n+ 1)

[(
jπ
n+1

)2

−
(
kπ
n+1

)2
]

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
1

n+ 1

2kπ

n+ 1
h

((
kπ

n+ 1

)2

,

(
jπ

n+ 1

)2
)∣∣∣∣∣ ≤

C k

(n+ 1)2
, 1 ≤ k ≤ n+ 1

2
.(7.7)

Consequently, we get

inf
f∈C1

∥∥∥{MnfLn}o
{
[A+]3n −Mnρ

−1SρLn
}o∥∥∥

≤ inf
f∈C1

sup
n=1,2,...

∥∥∥∥
(
f(xϕ(k+1)n)δk,j

) n−1

j,k=0
E(3)
n

(
[A+]3n −Mnρ

−1SρLn
)
(E(3)

n )−1

∥∥∥∥
L(`2)

≤ inf
f∈C1

sup
n=1,2,...

∥∥∥∥∥

(
f(xϕ(k+1)n)

Ck

(n+ 1)2

) n−1

j,k=0

∥∥∥∥∥
L(`2)

.

Using a Frobenius norm estimate and choosing f with a support supp(f ◦ cos) ⊂ [0, ε] with
an arbitrarily prescribed small ε, we get a bound less than Cε3/2, and the inclusion (7.5)
follows.

For a fixed k0, the projection Pk0 ∈ L(`2) is compact. Hence,

{(E(3)
n )−1PnPk0E

(3)
n } ∈ J ,
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and, for f ∈ C1 with supp(f ◦ cos) ⊂ [0, ε], we arrive at (cf. (3.32))

∥∥∥
{
MnfLn

}o
(E(3)

n )−1VnE
(3)
n

}o∥∥∥
(7.8)

≤ sup
n=1,2,...

∥∥∥∥Pn (I − Pk0 )
(
f(xϕ(k+1)n)|dnk |δk,j

) n−1

k,j=0

∥∥∥∥
L(`2)

≤ sup
k0≤k≤ ε

π (n+1)

∣∣∣∣
C

kε0

∣∣∣∣ ≤
C

kε00

for some ε0 > 0 . Replacing Vn by [V+]3n, Bn, and [B+]3n, respectively, we obtain the
bounds

∥∥∥
{
MnfLn

}o{
[V+]3n

}o∥∥∥ ≤ C

kε00

,(7.9)

∥∥∥
{
MnfLn

}o{
(E(3)

n )−1BnE
(3)
n

}o∥∥∥ ≤ C

kε00

,(7.10)

∥∥∥
{
MnfLn

}o{
[B+]3n

}o∥∥∥ ≤ C

kε00

.(7.11)

which are analogous to that in (7.8).
The entries of PnD+AD−1

+ Pn −DnAnD
−1
n can be written in the form

(
j

k

)2χ+ 2k(1 − δj,k)

πi(j2 − k2)
−
χ(xϕjn)

χ(xϕkn)

ϕ(xϕkn)

i(n+ 1)

1 − δj,k
xϕkn − xϕjn

=
χ(xϕjn)

χ(xϕkn)

[
2k

πi(j2 − k2)
− ϕ(xϕkn)

i(n+ 1)

1

xϕkn − xϕjn

]
(1 − δj,k)

+


1 −

χ(xϕjn)
(
jπ
n+1

)2χ+

2χ−−χ+



(
j

k

)2χ+ 2k(1 − δj,k)

j2 − k2

(
kπ
n+1

)2χ+

2χ−−χ+

χ(xϕkn)

+


1 −

(
kπ
n+1

)2χ+

2χ−−χ+

χ(xϕkn)



(
j

k

)2χ+ 2k(1 − δj,k)

j2 − k2
.

Denoting the first addend on the right-hand side by rjk , using (7.7), and taking into account
(3.27), we get the Frobenius norm estimate

sup
n=1,2,...

∥∥∥∥
(
f(xϕ(j+1)n)r(j+1)(k+1)f(xϕ(k+1)n)

) n−1

j,k=0

∥∥∥∥
L(`2)

≤ sup
n=1,2,...

C

n2

√ ∑

1≤j≤ ε
π (n+1)

j4χ+

√ ∑

1≤k≤ ε
π (n+1)

k2−4χ+

≤ sup
n=1,2,...

C
√

(nε)4χ++1
√

(nε)3−4χ+

n2
= C ε2

for any f ∈ C1 with supp(f ◦ cos) ⊂ [0, ε]. This results in

∥∥∥{MnfLn}
{
(E(3)

n )−1(PnD+AD−1
+ −DnAnD

−1
n )E(3)

n

}
{MnfLn}

∥∥∥ ≤ Cε .(7.12)
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In particular, the choice χ+ = χ− = 0 gives the same bound Cε for the sequence{
PnD+AD−1

+ −DnAnD
−1
n

}
replaced by the sequence {PnA −An} . This and the esti-

mates (7.8)–(7.12) lead us to
∥∥∥{MnfLn}o

{
[Aµ

+]3n − (E(3)
n )−1A+

nE
(3)
n

}o
{MnfLn}o

∥∥∥ ≤ Cε+ C
1

kε00

,

and (7.6) follows.

8. The Conditions in the Main Theorem. Due to the Sections 6 and 7, the necessary
and sufficient condition for the convergence of the collocation method is the invertibility
of the four limit operators Wω {An} , ω ∈ T which are defined in the Lemmata 3.8 and
3.10. The first W1 {An} := A ∈ L(L2

σ) is the operator of the original equation and the
second is W2 {An} := aI − b[σϕ]−1/2S[σϕ]1/2I ∈ L(L2

σ). The third and fourth operators
W3 {An} andW4 {An} are operators in the discrete `2 space. In this section we show that the
invertibility of the operators W3 {An} and W4 {An} are equivalent to the conditions ii) and
iii) in Theorem 1.1. Moreover, we show that the conditions i) and ii) imply the invertibility
of W2 {An}. This completes the proof to Theorem 1.1.

First we turn to the invertibility of W3 {An} and W4 {An}. Due to part ii) of Lemma
7.2, they belong to the algebra generated by Toeplitz matrices with piecewise continuous
generating function. Therefore, their Fredholm property and their index can be expressed in
terms of the symbol due to Gohberg and Krupnik (cf. Lemma 7.1). We apply part i) of Lemma
7.1 to reformulate the condition on the invertibility of W3{An} and W4{An}. Again, for
symmetry reasons we concentrate on W3{An}. Clearly, the operator W3{An} is invertible
if and only if the null space kerW3{An} is {0} and if W3{An} is a Fredholm operator with
index zero. Since kerW3{An} = {0} is contained in the conditions of Theorem 1.1, we have
to analyze the Fredholm property and the index. Thus, in view of part i) of Lemma 7.1, we
need the symbol of W3{An}. The symbols of the compact operators B+, D+AD−1

+ WV+,
and V+AW are zero. For D+AD−1

+ , we infer from (7.3) that

Symb
D+AD

−1
+

(t, µ) = −1

2

∫

{ζ: <e ζ=ψ}
SymbTζ (t, µ)

{
B(ζ) − B(ζ + 1)

}
dζ,

Tζ :=




1

πi

(
j+1
k+1

)−ζ
(1 − δk,j)

(k + 1) − (j + 1)




∞

j,k=0

,

SymbTζ (t, µ) =





2s− 1 if t = ei2πs ∈ T \ {1}
−µ + (1 − µ) e−i2πζ

µ+ (1 − µ)e−i2πζ if t = 1

=





2s− 1 if t = ei2πs, 0 < s < 1

−(−i) cot

(
π
(

1
2 + ζ + 1

2πi
log
(

µ
1−µ

)))
if t = 1.

We observe that SymbTζ is 1-periodic with respect to variable ζ, and, applying the residue
theorem, we arrive at

Symb
D+AD

−1
+

(t, µ)

= −1

2

{∫

{ζ: <e ζ=ψ}
SymbTζ (t, µ)B(ζ)dζ −

∫

{ζ: <e ζ=ψ+1}
SymbTζ (t, µ)B(ζ)dζ

}
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= −SymbT[1/4−χ+]
(t, µ) −

{
0 if t ∈ T \ {1}
B
(

1
2 + i

2π log µ
1−µ

)
if t = 1.

Completely analogous derivations lead to the formulas

SymbA(t, µ) = −SymbT1/4
(t, µ) −

{
0 if t ∈ T \ {1}
B†
(

1
2 + i

2π log µ
1−µ

)
if t = 1,

SymbA+
(t, µ) = −SymbT †

1/4
(t, µ) −

{
0 if t ∈ T \ {±1}
±B†

(
1
2 + i

2π log µ
1−µ

)
if t = ±1,

B†(ζ) := −i cot
(
π
(ζ

2

))
+ i cot

(
π
(
ζ − 1

4

))
.

Here the operator T † is the Toeplitz matrix
(

1
πi

δ̃j,k
(k+1)−(j+1)

)∞
j,k=0

with the generating func-

tion defined by g†(ei2πs) = −∑l
1
πi

δ̃l,0
l e

i2πls = sign (s − 1/2), 0 ≤ s < 1, and T †
ζ ∈

alg T (PC) is the matrix operator given by

T †
ζ :=

(
(j + 1)−ζδj,k

)∞
j,k=0

T † ((k + 1)ζδj,k
)∞
j,k=0

and the symbol (cf. part ii) of Lemma 7.1)

SymbT †
ζ
(t, µ) =





g†(t) if t ∈ T \ {1}
µg†(1 ± 0) + (1 − µ)g†(1 ∓ 0)e−i2πζ

µ+ (1 − µ)e−i2πζ if t = ±1

=





−1 if t ∈ T, =m t > 0
+1 if t ∈ T, =m t < 0

∓(−i) cot

(
π
(

1
2 + ζ + 1

2πi
log
(

µ
1−µ

)))
if t = ±1.

Putting the symbols for all ingredients together (cf. the Lemmata 3.8, 3.9, and 3.10), we
finally obtain

SymbW3{An}(t, µ)

= a(1) − b(1)





−1 if t ∈ T, =m t > 0
+1 if t ∈ T, =m t < 0

(−i) cot

(
π
(

1
4 + χ+ + i

4π log
(

µ
1−µ

)))
if t = 1

i cot

(
π
(

1
4 + i

4π log
(

µ
1−µ

)))
if t = −1.

Hence (cf. Lemma 7.1), the limit operator W3 {An} is a Fredholm operator with index zero
if the curve

Γ3 :=

{
a(1) − b(1)(−i) cot

(
π
(1

2
+
α

2
− γ + λi

))
: −∞ ≤ λ ≤ ∞

}
(8.1)

∪
{
a(1) + b(1)(−i) cot

(
π
(1

2
− 1

4
+ λi

))
: −∞ ≤ λ ≤ ∞

}
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determined by the symbol function SymbW3{An} does not run through the zero point and if
the winding number wind Γ3 with respect to zero vanishes.

Similarly, for the limit operator W4 {An}, we get that W4 {An} is a Fredholm operator
with index zero if the curve

Γ4 :=

{
a(−1) + b(−1)(−i) cot

(
π
(1

2
+
β

2
− δ + λi

))
: −∞ ≤ λ ≤ ∞

}
(8.2)

∪
{
a(−1) − b(−1)(−i) cot

(
π
(1

2
− 1

4
+ λi

))
: −∞ ≤ λ ≤ ∞

}

does not run through the zero point and if the winding number wind Γ4 with respect to zero
vanishes.

Hence, it turns out that the operators W3 {An} and W4 {An} are invertible if and only
if their null spaces kerW3 {An} and kerW4 {An} are trivial and if the winding numbers
wind Γ3 and wind Γ4 of the curves Γ3 and Γ4 surrounding the essential spectra vanish. We
observe that each of the two curves Γ3 and Γ4 is the union of two circular arcs, which, of
course, may degenerate to a straight line segment. Indeed, setting e2πλ = µ/(1 − µ), µ ∈
[0, 1] and choosing κ with |κ| < 1/2, we get

(−i) cot
(
π(

1

2
+ κ+ iλ)

)
=

(1 − µ) − µe−i2πκ

(1 − µ) + µe−i2πκ
,

a(−1) + b(−1)(−i) cot
(
π( 1

2 + κ+ iλ)
)

a(−1) − b(−1)
=

{
fκ(µ)1 +

a(−1) + b(−1)

a(−1) − b(−1)
(1 − fκ(µ))

}
,

fκ(µ) :=
µ

µ+ (1 − µ)ei2πκ
.

Clearly, 1−fκ(µ) = f−κ(1−µ) and the linear rational function [0, 1] 3 µ 7→ fκ(µ) describes
the circular arc connecting the points zero and one such that the straight line segment [0, 1]
is seen from the points of the arc under an angle of π(1 − 2κ). The point zero is not in the
closed convex hull of the circular arc

{a(−1) + b(−1)(−i) cot(π(
1

2
+ κ+ iλ)) : λ ∈ R}

if and only if

ν1 + (1 − ν)

{
fκ(µ)1 +

a(−1) + b(−1)

a(−1) − b(−1)
(1 − fκ(µ))

}
6= 0, 0 ≤ ν, µ ≤ 1,

i.e., if and only if

ν1 + (1 − ν)
a(−1) + b(−1)

a(−1) − b(−1)
6= − fκ(µ)

1− fκ(µ)
, 0 ≤ ν, µ ≤ 1,

This holds if and only if (cf. (1.7))

ν1 + (1 − ν)
a(−1) + b(−1)

a(−1) − b(−1)
= ν1 + (1 − ν)

∣∣∣∣
a(−1) + b(−1)

a(−1) − b(−1)

∣∣∣∣ e
i2πκ− 6∈ e−i2πκ[−∞, 0],

0 ≤ ν ≤ 1,

which is, in case of −1/2 − κ < κ− ≤ 1/2 − κ , equivalent to −1/2 < κ− < 1/2 − κ
for κ > 0 and to −κ − 1/2 < κ− < 1/2 for κ < 0. Furthermore, zero is not at the
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curve Γ4 or in its interior if and only if either zero is not contained in the convex hulls of
{a(−1)+b(−1)(−i) cot(π( 1

2 + β
2 −δ+ iλ)) : λ ∈ R} and of {a(−1)−b(−1)(−i) cot(π( 1

2−
1
4 +iλ)) : λ ∈ R}, or zero is contained in the interior of both convex hulls, or, if β/2−δ > 0 ,
zero is on the straight line from a(−1) − b(−1) to a(−1) + b(−1). In other words, zero is
not at the curve Γ4 or in its interior if and only if (1.8) is satisfied for κ−. Similarly, zero is
not at the curve Γ3 or in its interior if and only if (1.8) is satisfied for κ+. The invertibility of
W3{An} and W4{An} is equivalent to the conditions ii) and iii) in Theorem 1.1.

Now we consider the invertibility ofW2{An} := {aI− b[σϕ]−1/2S[σϕ]1/2} ∈ L(L2
σ) .

From the general theory of one-dimensional singular integral equations (cf. [11], Theorem
9.4.1) we infer that W2{An} is invertible if and only if its symbol

SymbW2{An}(t, µ)

:=





a(t) + b(t)
a(t) − b(t)

if a, b are continuous at
t ∈ (−1, 1)

(1 − µ)
a(t− 0) + b(t− 0)
a(t− 0) − b(t− 0)

+ µ
a(t+ 0) + b(t+ 0)
a(t+ 0) − b(t+ 0)

if a or b not continuous at
t ∈ (−1, 1)

(1 − f−1/4(µ))1 + f−1/4(µ)
a(−1) + b(−1)
a(−1) − b(−1)

if t = −1

(1 − f−1/4(µ))
a(1) + b(1)
a(1) − b(1)

+ f−1/4(µ)1 if t = 1

does not vanish for (t, µ) ∈ [−1, 1] × [0, 1] and if the winding number is zero. Note that, if
−1 < t1 < t2 < . . . < tk < 1 is the grid of discontinuity points, then the winding number of
the symbol is the winding number of the closed curve

{SymbW2{An}(−1, µ) : 0 ≤ µ ≤ 1} ∪ {SymbW2{An}(t, 0) : −1 < t < t1}
∪{SymbW2{An}(t1, µ) : 0 ≤ µ ≤ 1} ∪ {SymbW2{An}(t, 0) : t1 < t < t2}
∪{SymbW2{An}(t2, µ) : 0 ≤ µ ≤ 1} ∪ {SymbW2{An}(t, 0) : t2 < t < t3} ∪

. . .

∪{SymbW2{An}(t, 0) : tk < t < 1} ∪ {SymbW2{An}(1, µ) : 0 ≤ µ ≤ 1}
with respect to zero. Now suppose condition ii) of Theorem 1.1 is satisfied. Hence, zero is not
contained in the domains enclosed by the curves Γ3 and Γ4 (cf. (8.1) and (8.2)), and the non
singularity and the vanishing winding number for the symbol SymbW2{An} is equivalent to
the non singularity and the vanishing winding number for the symbol function

SymbA(t, µ)

:=





a(t) + b(t)
a(t) − b(t)

if a, b are continuous at
t ∈ (−1, 1)

(1 − µ)
a(t− 0) + b(t− 0)
a(t− 0) − b(t− 0)

+ µ
a(t+ 0) + b(t+ 0)
a(t+ 0) − b(t+ 0)

if a or b not continuous at
t ∈ (−1, 1)

(1 − f[δ−β/2](µ))1 + f[δ−β/2](µ)
a(−1) + b(−1)
a(−1) − b(−1)

if t = −1

(1 − f[γ−α/2](µ))
a(1) + b(1)
a(1) − b(1)

+ f[γ−α/2](µ)1 if t = 1

corresponding to the singular integral operatorA. SinceA is invertible by condition i) of The-
orem 1.1, the symbol does not vanish and the winding number is zero. Hence, the conditions
i) and ii) imply the invertibility of W2{An}.
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[28] S. PRÖSSDORF AND B. SILBERMANN, Numerical analysis for integral and related operator equations,
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