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ON CONVERGENCE AND DIVERGENCE OF FOURIER–BESSEL SERIES ∗

KRZYSZTOF STEMPAK†

Abstract. We furnish another proof, based on an idea of Prestini [13], of a maximal inequality for the partial
sum operators of Fourier–Bessel expansions proved by Guadalupe, Pérez, Ruiz and Varona [8]. Divergence results
and mean convergence are also discussed.
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1. Introduction and main results. Given ν > −1 let {λn}∞n=1 denote the sequence of
successive positive zeroes of Jν(x), the Bessel function of the first kind of order ν. Then

∫ 1

0

Jν(λnx)Jν(λmx)x dx =
1

2

(
Jν+1(λn)

)2

δnm, n,m = 1, 2, . . . .

It follows that the functions

ϕν
n(x) = cn,ν

√
xJν(λnx), n = 1, 2, . . . ,

where cn,ν =
√

2/Jν+1(λn), form an orthonormal system in L2((0, 1), dx) = L2(dx) (all
Lebesgue spaces we consider live on (0, 1) and dx denotes the Lebesgue measure there). The
system is complete. In particular,

ϕ−1/2
n (x) =

√
2 cos(π(n − 1/2)x) , ϕ1/2

n (x) =
√

2 sin(πnx)

for n = 1, 2, . . . . On the other hand the functions

ψν
n(x) = cn,νJν(λnx)/x

ν , n = 1, 2, . . . ,

form a complete orthonormal system in L2(x2ν+1dx) while the functions

φν
n(x) = cn,νJν(λnx), n = 1, 2, . . . ,

form a complete orthonormal system in L2(xdx). Various aspects of harmonic analysis of
expansions with respect to the three systems were considered in the literature, cf., for instance,
papers by Wing [17], Benedek and Panzone [1], [2], [3], Guadalupe, Pérez, Ruiz and Varona
[7], [8] (and, of course, chapter XVII of Watson’s monograph [16]).

It is easily seen that for the Lp-inequalities, an estimate for one of the three systems gives
a weighted (with a power weight) estimate for the two other. It seems that the most effective
is the choice of {ϕν

n} as a leading system, see [8], and, actually, this is also the system we
decided to choose.

We use the notation Lp,α(dx), 1 ≤ p ≤ ∞, −∞ < α < ∞, for the weighted Lebesgue
spaces of all measurable functions on (0, 1) for which the quantity

||f ||p,α =

( ∫ 1

0

|f(x)|pxαdx

)1/p
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is finite (to be precise, ||f ||∞,α = ess supx∈(0,1)|f(x)|). With any reasonable function f on
(0, 1) we will associate its Fourier–Bessel coefficients

aν
n = aν

n(f) =

∫ 1

0

f(x)ϕν
n(x) dx

provided the coefficients exist. Assuming f is in Lp,α(dx), 1 ≤ p < ∞, it is easy to
check (note that Jν(x) ∼ xν as x → 0) that the coefficients do exist provided α < (ν +
3
2 )p − 1. In particular, in the case when ν ≥ −1/2, this happens for α′s from the Ap-
power weight exponent range −1 < α < p − 1. Given f and its Fourier–Bessel series
f(x) ∼

∑∞
n=1 a

ν
nϕ

ν
n(x) we consider partial sum operators

SNf(x) =

N∑

1

aν
nϕ

ν
n(x)

and the maximal function

S∗f(x) = sup
N≥1

|SNf(x)|.

We then have the following result
THEOREM 1.1. Let ν ≥ −1/2, 1 < p <∞ and −1 < α < p− 1. Then

||S∗f ||p,α ≤ C||f ||p,α

with a constant C > 0 independent of f ∈ Lp,α(dx).
As an immediate consequence we obtain
COROLLARY 1.2. Let ν, p and α be as in Theorem 1.1. Then

SNf(x) → f(x), N → ∞,

a.e. for every function f in Lp,α(dx).
As already mentioned, this theorem was proved in [8] (actually in a more general set-

ting of Ap weights). It follows from a weighted version of a general Gilbert’s maximal
transference theorem, [8], Theorem 1, by transfering Lp–weighted Carleson–Hunt–Young
inequalities for the trigonometric system to fairly general systems (Theorem 1 of [6] settles
the unweighted case, i.e., the case α = 0 in Theorem 1.1). An equiconvergence result, from
which Corollary 1.2 follows, was proved in [3], Theorem 4.

Here, in our proof of Theorem 1.1, we use an idea of Prestini [13]. She proved a.e.
convergence of partial sums for the modified Hankel transform. A closer examination of
her proof reveals that, in some way, the weighted non-modified Hankel transform setting is
better suited for arguments which she used. The system {ϕν

n} seems to be a compact interval
version of the non-modified Hankel transform and this supports another argument for our
choice of {ϕν

n} as a leading system.
Theorem 1.1 is also applicable for proving results on a.e. convergence of partial sums

for the other two aforementioned orthogonal systems. We start with the system {ψν
n}∞n=1. As

before for any reasonable function g on (0, 1) we associate to g its Fourier-Bessel coefficients

bνn = bνn(g) =

∫ 1

0

g(x)ψν
n(x)x2ν+1dx .

It is possible to evaluate the coefficients {bνn}, ν > −1, for any function g in Lp(x2ν+1dx),
1 ≤ p ≤ ∞, since ψν

n is a bounded function on (0, 1), hence in Lq(x2ν+1dx), 1 ≤ q ≤ ∞.
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Note, that here and later on the measure x2ν+1dx should be thought of as a solid measure,
not as a weighted Lebesgue measure with a power weight.

We consider the corresponding partial sum operators

SNg(x) =

N∑

1

bνnψ
ν
n(x)

and the maximal function

S∗g(x) = sup
N≥1

|SNg(x)|.

Since 〈g, ψν
n〉L2(x2ν+1dx) = 〈g · xν+1/2, ϕν

n〉L2(dx) we have

S∗g(x) = x−(ν+1/2)S∗(g · xν+1/2)(x).

Hence the inequality

||S∗g||Lp(x2ν+1dx) ≤ C||g||Lp(x2ν+1dx)

is equivalent with

∫ 1

0

|S∗f(x)|px(2ν+1)(1−p/2)dx ≤ C

∫ 1

0

|f(x)|px(2ν+1)(1−p/2)dx.

Since−1 < (2ν+1)(1−p/2) < p−1 if and only if 4(ν+1)/(2ν+3) < p < 4(ν+1)/(2ν+1)
we then have

COROLLARY 1.3. Let ν ≥ −1/2 and 4(ν + 1)/(2ν + 3) < p ≤ ∞. Then

SNg(x) → g(x), N → ∞,

a.e. for every function g in Lp(x2ν+1dx).
It will be shown in Section 4 that this result (as well as Corollary 1.4 below) is sharp. An

equiconvergence result for expansions with respect to the system {ψν
n} can be found in [5],

Theorem 2.10.
We now pass to the system {φν

n}∞n=1. Given h, a function on (0, 1), we associate to it its
Fourier-Bessel coefficients

dν
n = dν

n(h) =

∫ 1

0

h(x)φν
n(x)x dx .

In the case ν ≥ 0, it is possible to evaluate the coefficients {dν
n} for every function h in

Lp(xdx), 1 ≤ p ≤ ∞, since φν
n is a bounded function on (0, 1), hence in Lq(x dx), 1 ≤ q ≤

∞. If −1 < ν < 0 we have to restrict our attention to 2/(2+ν) < p ≤ ∞ since only then φν
n

is in Lp′

(x dx) (as before, here and later on we should look at x dx as at the solid measure).
As earlier we consider the partial sum operators

S̃Nh(x) =

N∑

1

dν
nφ

ν
n(x)

and the maximal function

S̃∗h(x) = sup
N≥1

|S̃Nh(x)|.
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Since 〈h, φν
n〉L2(x dx) = 〈h · x1/2, ϕν

n〉L2(dx) we have

S̃∗h(x) = x−1/2S∗(h · x1/2)(x).

Hence the inequality

||S̃∗h||Lp(x dx) ≤ C||h||Lp(x dx)

is equivalent with

∫ 1

0

|S∗f(x)|px1−p/2dx ≤ C

∫ 1

0

|f(x)|px1−p/2dx.

Since −1 < 1 − p/2 < p− 1 if and only if 4/3 < p < 4 we then have
COROLLARY 1.4. Let ν ≥ −1/2 and 4/3 < p ≤ ∞. Then

S̃Nf(x) → f(x), N → ∞,

a.e. for every function f in Lp(x dx).
Throughout the paper, unless otherwise stated, ν is an arbitrary fixed real number greater

than −1 and, for a given p, 1 ≤ p ≤ ∞, p′ will denote its conjugate, p′ = p/(p − 1). As
usual on such occasions, a positive constant C may vary from line to line.

2. Auxiliary results. We start with collecting some facts used later on. An asymptotic
form of λn’s is given by

λn = π(n+Bν +O(n−1)), Bν = ν/2 − 1/4,

cf. [16], p. 618. We will also use the asymptotic form of Jν(t):

Jν(t) =
√

2/πt (cos(t+Dν) +O(t−1)), t ≥ 1,(2.1)

where Dν = −(νπ/2 + π/4). Since

√
λnJν+1(λn) =

√
2/π (cos(λn +Dν+1) +O(n−1))

and λn +Dν+1 = (n− 1)π +O(n−1), we have

|
√
λnJν+1(λn)| =

√
2/π (1 +O(n−1)).

This and the fact that for ν ≥ −1/2,
√
tJν(t) is a bounded function on (0,∞) also shows

that in the case ν ≥ −1/2, ϕν
n(x) are uniformly bounded on (0, 1):

|ϕν
n(x)| ≤ C, n = 1, 2, . . . , 0 < x < 1.

In what follows an ∼ bn for an > 0, bn > 0 means that C−1 ≤ an/bn ≤ C for a
constant C > 0.

LEMMA 2.1. Let ν > −1, 1 ≤ p <∞ and β > −1− νp. Then

∫ n

0

|Jν(y)|pyβdy ∼






1, −1 − νp < β < p/2− 1,
logn, β = p/2− 1,

nβ−p/2+1, p/2− 1 < β <∞.
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Proof. In the first case, −1 − νp < β < p/2− 1, we use Jν(t) = O(t−1/2), t → ∞, to
get

∫ 1

0

|Jν(y)|pyβdy = C1 <

∫ n

0

|Jν(y)|pyβdy < C1 + C

∫ ∞

1

y−p/2+βdy = C2.

If β = p/2 − 1 we use (2.1) to show that
∫ πn

π
|Jν(y)|pyβdy ∼ logn. The integral coming

from the remainder gives the bound
∫ πn

π

y−p−1dy = O(1).

For the integral coming from the main part we write
∫ πn

π

| cos(y +Dν)|py−1dy =

∫ π

0

| cos(y +Dν)|p
( n−1∑

k=1

1

y + πk

)
dy.

The required asymptotics comes from the fact that

n−1∑

k=1

1

y + πk
∼ logn

uniformly in y ∈ (0, π). In the last case, p/2 − 1 < β < ∞, we use the same argument
except the fact that now

n−1∑

k=1

1

(y + πk)−β+p/2
∼

∫ nπ

π

tβ−p/2dt = Cnβ−p/2+1.

uniformly in y ∈ (0, π).
The next two propositions give precise asymptotics of Lp-norms of functions for the

three orthogonal systems we consider.
PROPOSITION 2.2. Let ν > −1 and 1 ≤ p <∞ or ν ≥ −1/2 and 1 ≤ p ≤ ∞. Then

||ϕν
n||Lp(dx) ∼ 1.

Proof. If 1 ≤ p <∞ it is sufficient to change variables and take β = p/2 in Lemma 2.1.
If p = ∞ we use the fact that

√
tJν(t) is bounded on (0,∞).

PROPOSITION 2.3. Let ν > −1/2 and 1 ≤ p ≤ ∞. Then

||ψν
n||Lp(x2ν+1dx) ∼





1, 1 ≤ p < 4(ν+1)
2ν+1 ,

(logn)
2ν+1

4(ν+1) , p = 4(ν+1)
2ν+1 ,

n
2ν+1

2 −
2(ν+1)

p , 4(ν+1)
2ν+1 < p ≤ ∞.

If −1 < ν ≤ −1/2 then ||ϕν
n||Lp(dx) ∼ 1 for 1 ≤ p <∞ and ||ϕν

n||L∞(dx) ∼ nν+1/2.
Proof. If 1 ≤ p <∞ we change variables and use Lemma 2.1 with β = 2ν + 1− νp. If

p = ∞ we use the fact that Jν(t)/tν is bounded on (0,∞).
PROPOSITION 2.4. Let ν > −1 and 1 ≤ p <∞ or ν ≥ 0 and p = ∞. Then

||φν
n||Lp(xdx) ∼






1, 1 ≤ p < 4,

(logn)1/4, p = 4,

n1/2−2/p, 4 < p ≤ ∞.

Proof. If 1 ≤ p < ∞ we change variables and use Lemma 2.1 with β = 1. If p = ∞
and ν ≥ 0 we use the fact that Jν(t) is bounded on (0,∞).
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3. Almost everywhere convergence: proof of Theorem 1.1. In this section we restrict
our attention to the case ν ≥ −1/2. We will use the representation of the Dirichlet kernel

KN(x, y) =

N∑

0

ϕν
n(x)ϕν

n(y)

given by MacRoberts (see [16], Lemma 4.1):

KN (x, y) = GN (x, y) +RN (x, y),

where

GN (x, y) =
AN

2

√
xy
Jν(ANx)Jν+1(ANy) − Jν(ANy)Jν+1(ANx)

x− y
,

AN = (N + ν
2 + 1

4 )π, and

|RN (x, y)| ≤ C

(
1

x+ y
+

1

2− x− y

)
.

We then have

SNf(x) =

∫ 1

0

GN (x, y)f(y)dy +

∫ 1

0

RN (x, y)f(y)dy = GNf(x) +RNf(x)

and

S∗f(x) ≤ G∗f(x) +R∗f(x),

where G∗f(x) = supN |GNf(x)| and R∗f(x) = supN |RNf(x)|. To get the estimate

||R∗f ||p,α ≤ C||f ||p,α,(3.1)

we write

R∗f(x) ≤ C

∫ 1

0

(
1

x+ y
+

1

2 − x− y

)
|f(y)|dy.

It is now sufficient to know that the integral operators

Tif(x) =

∫ 1

0

Ki(x, y)f(y)dy, i = 1, 2,

with the kernels

K1(x, y) =

(
x

y

)β

· 1

x+ y
, K2(x, y) =

(
x

y

)β

· 1

2 − x− y

are bounded on Lp(dx) whenever 1 < p < ∞ and − 1
p < β < 1

p′
. This is the content of a

homogeneous kernel lemma, see [14], p.228, and Lemma 3 in [2].
We now start proving the second estimate

||G∗f ||p,α ≤ C||f ||p,α.(3.2)
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We will show that

G∗f(x) ≤ C(Mf(x) +Mf(2x) +H∗f(x) + C∗f(x))

where M is the maximal Hardy-Littlewood operator

Mf(x) = sup
a<x<b

1

b− a

∫ b

a

|f(t)|dt,

H∗ is the maximal Hilbert transform operator

H∗f(x) = sup
0<E<∞

∣∣∣∣
∫

0<|x−y|<E

f(y)

x− y
dy

∣∣∣∣,

and C∗ is the maximal Carleson operator

C∗f(x) = sup
n∈N

sup
0<E<∞

∣∣∣∣
∫

0<|x−y|<E

e−inyf(y)

x− y
dy

∣∣∣∣.

This, combined with the well known weighted inequalities for each of the operators M , H ∗

andC∗ (for the operatorC∗ see, for instance, [13]) gives (3.2) and together with (3.1) finishes
the proof of Theorem 1.1.
Fix x in (0, 1) and f in Lp,α(dx) and write

GNf(x) =

3∑

i=1

∫

R

GN (x, y)fi(y)dy,

where f1 = f · χ[0,x/2], f2 = f · χ[x/2,3x/2], f3 = f · χ[3x/2,∞) (we consider f , originally
defined on (0, 1), as a function on R by putting f = 0 outside (0, 1)). Hence

|GNf(x)| ≤
3∑

i=1

|GNfi(x)|.

We start with estimating |GNf1(x)| by considering, for instance, the term resulting from
taking Jν(ANy)Jν+1(ANx) in the numerator in GN (x, y). Then

|
√
ANxJν+1(ANx)|

∫

R

|
√
ANyJν(ANy)|

|f1(y)|
|x− y|dy

≤ C

∫ x/2

0

|f(y)|
x− y

dy ≤ C
1

x

∫ x/2

0

|f(y)|dy ≤ CMf(x).

Analogously we estimate |GNf3(x)| obtaining

|
√
ANxJν+1(ANx)|

∫

R

|
√
ANyJν(ANy)|

|f3(y)|
|x− y|dy

≤ C

∫ 1

3x/2

|f(y)|
y − x

dy ≤ C
1

x

∫ 1

3x/2

|f(y)|dy ≤ CMf(2x).

The estimate of |GNf2(x)| is much more delicate. We have
∣∣∣∣
∫

R

GN (x, y)f2(y)dy

∣∣∣∣ ≤
1

2

(
|
√
ANxJν(ANx)| ·

∣∣∣∣
∫ 3x/2

x/2

√
ANyJν+1(ANy)

x− y
f(y)dy

∣∣∣∣

+ |
√
ANxJν+1(ANx)| ·

∣∣∣∣
∫ 3x/2

x/2

√
ANyJν(ANy)

x− y
f(y)dy

∣∣∣∣
)

≤ C

(∣∣∣∣
∫ 3x/2

x/2

√
ANyJν+1(ANy)

x− y
f(y)dy

∣∣∣∣ +

∣∣∣∣
∫ 3x/2

x/2

√
ANyJν(ANy)

x− y
f(y)dy

∣∣∣∣
)
.
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Since both above integrals are treated in the same way it is sufficient to deal with the second
integral only. Let

INf(x) =

∫ 3x/2

x/2

√
ANyJν(ANy)

x− y
f(y)dy.

Consider first these N ’s for which ANx ≤ 1. We have

Jν(ANy) = (Jν(ANy) − Jν(ANx)) + Jν(ANx),(3.3)

hence the piece in INf(x) resulting from the summand Jν(ANx) is bounded by

|Jν(ANx)| ·
∣∣∣∣
∫ 3x/2

x/2

√
ANy

x− y
f(y)dy

∣∣∣∣

≤ |Jν(ANx)| ·
(∣∣∣∣

∫ 3x/2

x/2

√
ANy −

√
ANx

x− y
f(y)dy

∣∣∣∣ +
√
ANx

∣∣∣∣
∫ 3x/2

x/2

1

x− y
f(y)dy

∣∣∣∣
)
.

The term resulting from the last integral is estimated by

C

∣∣∣∣
∫ 3x/2

x/2

1

x− y
f(y)dy

∣∣∣∣ ≤ CH∗f(x).

The term resulting from the first integral is estimated by

√
AN |Jν(ANx)| · |

∫ 3x/2

x/2

1√
x+

√
y
f(y)dy| ≤ C|

√
ANxJν(ANx)| ·

1

x

∫ 3x/2

x/2

|f(y)|dy

≤ CMf(x).

We now come back to the piece resulting in INf(x) from taking Jν(ANy) − Jν(ANx) in
(3.3). Using the facts that J ′

ν(t) = ν
t Jν(t) − Jν+1(t),

√
tJν(t) and

√
tJν+1(t) are bounded

on (0,∞), and the assumption ANx ≤ 1 we obtain (here ξ is a number between x and y,
hence comparable with x)

∣∣∣∣
∫ 3x/2

x/2

Jν(ANx) − Jν(ANy)

x− y

√
ANyf(y)dy

∣∣∣∣ ≤ AN

∫ 3x/2

x/2

|
√
ANyJ

′
ν(ANξ)| · |f(y)|dy

≤ C
1

x

∫ 3x/2

x/2

|f(y)|dy ≤ C Mf(x).

It remains to consider those N ’s for which ANx ≥ 1. This time we write

Jν(ANy) = Q1(ANy) +Q2(ANy),

where Q1(t) = Jν(t) +
√

2/πt sin(t −Dν+1) and Q2(t) = −
√

2/πt sin(t −Dν+1). The
piece in INf(x) resulting from the summandQ2(ANy) is bounded by

√
2/π

∣∣∣∣
∫ 3x/2

x/2

sin(ANy −Dν+1)

x− y
f(y)dy

∣∣∣∣ ≤ C C∗f(x).

To estimate the piece in INf(x) resulting from the summandQ1(ANy) we further write

Q1(ANy) = (Q1(ANy) −Q1(ANx)) +Q1(ANx).
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Taking into account the second summand,Q1(ANx), we get the bound

∣∣∣∣
∫ 3x/2

x/2

√
ANyQ1(ANx)

x− y
f(y)dy

∣∣∣∣

=

∣∣∣∣
∫ 3x/2

x/2

(
√
ANy −

√
ANx) +

√
ANx)Q1(ANx)

x− y
f(y)dy

∣∣∣∣

≤
√
AN |Q1(ANx)| ·

∫ 3x/2

x/2

|f(y)|√
x+

√
y
dy + |

√
ANxQ1(ANx)| ·

∣∣∣∣
∫ 3x/2

x/2

f(y)

x− y
dy

∣∣∣∣

≤ |
√
ANxQ1(ANx)| ·

1

x

∫ 3x/2

x/2

|f(y)|dy + C

∣∣∣∣
∫ 3x/2

x/2

f(y)

x− y
dy

∣∣∣∣

≤ C(Mf(x) +H∗f(x)).

For the first summand,Q1(ANy) −Q1(ANx), we write

∣∣∣∣
∫ 3x/2

x/2

√
ANy(Q1(ANy) −Q1(ANx))

x− y
f(y)dy

∣∣∣∣

≤
∫ 3x/2

x/2

|Q′
1(AN ξ(y))

√
ANy|f(y)|dy,(3.4)

where ξ(y) is between x and y. It is easily seen that

Q′
1(t) =

ν

t
Jν(t) +

1√
2π
t−3/2 sin(t−Dν+1) +R(t),

where R(t) = O(t−3/2) as t → ∞. Hence, we also have |Q′
1(t)| ≤ Ct−3/2 for t ≥ 1.

Therefore using ANx ≥ 1 we further estimate (3.4) by

CAN

∫ 3x/2

x/2

|ANξ(y)|−3/2
√
ANy|f(y)|dy

≤ CAN

∫ 3x/2

x/2

|ANx|−1
√
ANy|f(y)|dy ≤ CMf(x).

This finishes the estimate of INf(x) under the assumption ANx ≥ 1, hence the proof of
Theorem 1.1.

4. Divergence results. As it was already mentioned the results from Corollaries 1.3 and
1.4 are sharp. In the proof of the following two propositions we apply an argument which
was used by Meaney [11] in the case of Jacobi expansions.

PROPOSITION 4.1. Let ν > −1/2 and po = 4(ν + 1)/(2ν + 3). There exists a func-
tion go in Lpo(x2ν+1dx) whose Fourier-Bessel series

∑∞
1 bn(go)ψ

ν
n(x) is divergent almost

everywhere on (0, 1).
Proof. To simplify the notation we use || · ||p to denote the Lp-norm with respect to

the measure x2ν+1dx on (0, 1) and 〈·, ·〉 to denote the scalar product in L2(x2ν+1dx). Let
g ∈ Lpo(x2ν+1dx). Then, by Proposition 2.3,

|bn(g)| =

∣∣∣∣
∫ 1

0

g(x)ψν
n(x)x2ν+1dx

∣∣∣∣ ≤ ||g||po
||ψν

n||p′

o
≤ C(log n)1/p′

o .(4.1)
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Consider the sequence of functionals

Tng = 〈g, ψν
n〉||ψν

n||
−1/2
p′

o

on Lpo(x2ν+1dx). The norms of these functionals equal ||ψν
n||

1/2
p′

o

. Suppose that for every g

in Lpo(x2ν+1dx),

sup
n

|〈g, ψν
n〉| · ||ψν

n||
−1/2
p′

o

<∞.

Then, by the Banach-Steinhaus theorem, we would have supn ||ψν
n||

1/2
p′

o

< ∞ which is not

possible since, again by Proposition 2.3, ||ψν
n||

1/2
p′

o

∼ (log n)1/2p′

o . Therefore, there is an go

in Lpo(x2ν+1dx) such that

sup
n

|〈go, ψ
ν
n〉| · ||ψν

n||
−1/2
p′

o

= ∞,

hence, also

sup
n

|bn(go)| = ∞.(4.2)

Assume that
∑∞

1 bn(go)ψ
ν
n(x) converges on a subsetA of positive measure in (0, 1). Clearly,

we can think that A ⊂ (ε, 1) for a fixed ε > 0. Therefore

bn(go)ψ
ν
n(x) → 0, x ∈ A.

Given x in A, consider large n (such that λnε ≥ 1). By using (2.1), we obtain

ψν
n(x) = cn,νx

−ν

((
2

πλnx

)1/2

cos(λnx+Dν) +O((λnx)
−3/2)

)
.

Since the remainder gives the O(n−1) income and, by (4.1), bn(go) = O((log n)1/p′

o) the
remainder part in bn(go)ψ

ν
n(x) is o(n). Hence, for every x in A, a set of a positive measure,

we have

bn(go) cos(λnx+Dν) → 0.

By a variant of the Cantor-Lebesgue lemma, cf. [18], p.316 or [12], Lemma 4, this implies
bn(go) → 0 which contradicts (4.2).

PROPOSITION 4.2. Let ν > −1. There exists a functionho inL4/3(x dx) whose Fourier-
Bessel series

∑∞
1 dn(ho)φ

ν
n(x) is divergent almost everywhere on (0, 1).

Proof. This time, to simplify the notation, we use || · ||p to denote the Lp-norm with
respect to the measure x dx on (0, 1) and 〈·, ·〉 to denote the scalar product in L2(x dx). Let
h ∈ L4/3(x dx). Then, by Proposition 2.4,

|dn(h)| =

∣∣∣∣
∫ 1

0

h(x)φν
n(x)x dx

∣∣∣∣ ≤ ||h||4/3||φν
n||4 ≤ C(log n)1/4.(4.3)

Consider the sequence of functionals

Tnh = 〈h, φν
n〉||φν

n||
−1/2
4
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on L4/3(x dx). The norms of these functionals equal ||φν
n||

1/2
4 . Suppose that for every h in

L4/3(x dx),

sup
n

|〈h, φν
n〉| · ||φν

n||
−1/2
4 <∞.

Then, by the Banach-Steinhaus theorem, we would have supn ||φν
n||

1/2
4 < ∞ which is not

possible since, again by Proposition 2.4, ||φν
n||

1/2
4 ∼ (log n)1/8. Therefore, there is an ho in

L4/3(x dx) such that

sup
n

|〈ho, φ
ν
n〉| · ||φν

n||
−1/2
4 = ∞,

hence, also

sup
n

|dn(ho)| = ∞.(4.4)

Assume that
∑∞

1 dn(ho)ψ
ν
n(x) converges on a subsetA of positive measure in (ε, 1). There-

fore

dn(ho)φ
ν
n(x) → 0, x ∈ A.

Given x in A, consider large n (such that λnε ≥ 1). By using (2.1), we obtain

φν
n(x) = cn,ν

((
2

πλnx

)1/2

cos(λnx+Dν) +O((λnx)
−3/2)

)
.

Since the remainder is O(n−1) and, by (4.3), dn(ho) = O((log n)1/4) the remainder part in
dn(ho)φ

ν
n(x) is o(n). Hence, for every x in A, a set of a positive measure, we have

dn(ho) cos(λnx+Dν) → 0.

Again dn(ho) → 0 which contradicts (4.4).

5. Norm convergence: necessity. The problem of the norm convergence of partial sums
of expansions with respect to the three orthogonal systems discussed in the introduction has
been widely discussed in the literature, cf. papers of Benedek and Panzone [1], [2], Gilbert
[6] and Wing [17]. Applying a fairly standard argument, we take here the opportunity to show
the necessity parts in the following two results.

PROPOSITION 5.1. Let ν > −1 and 1 ≤ p ≤ ∞. Then

||SNf − f ||Lp(dx) → 0, N → ∞(5.1)

for every f in Lp(dx) if and only if ν ≥ −1/2 and 1 < p < ∞ or −1 < ν < −1/2 and
2/(2ν + 3) < p < −2/(2ν + 1).

Proof. The sufficiency is contained in [17] and [2]. For the neccesity assume first that
ν = −1/2. Then (5.1) gives uniform boundedness of the partial sum operators for cosine
expansions on Lp(dx) and it is well known that this does not hold for p = 1 (or, for its
conjugate, p = ∞). The general case ν ≥ −1/2 then follows by Gilbert’s transplantation
theorem [6]. If −1 < ν < −1/2, then there is nothing to prove since the condition p >
2/(2ν + 3) is just to guarantee the existence of the Fourier-Bessel coefficients aν

n(f) for a
general f in Lp(dx) and −2/(2ν + 1) is the conjugate to 2/(2ν + 3).
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PROPOSITION 5.2. Let ν > −1 and 1 ≤ p ≤ ∞. Then

||SNg − g||Lp(x2ν+1dx) → 0, N → ∞(5.2)

for every g in Lp(x2ν+1dx) if and only if

4(ν + 1)

2ν + 3
< p <

4(ν + 1)

2ν + 1
.(5.3)

Proof. The sufficiency is contained in [1]. Assume now that (5.2) holds true. Then, by
the Banach-Steinhaus theorem,

||SNg||Lp(x2ν+1dx) ≤M ||g||Lp(x2ν+1dx)

with a constant M > 0 independent of N = 1, 2, . . ., which implies

||bN (g)ψν
N ||Lp(x2ν+1dx) ≤ 2M ||g||Lp(x2ν+1dx).

This means that the operators

PNg = 〈g, ψν
N 〉ψν

N

are bounded on Lp(x2ν+1dx) uniformly in N = 1, 2, . . .. But the norms of these operators
equal ||ψν

N ||p||ψν
N ||p′ and, by Proposition 2.3,

sup
n

||ψν
n||p||ψν

n||p′ <∞

if and only if p satisfies (5.3).
PROPOSITION 5.3. Let ν > −1 and 1 ≤ p ≤ ∞. Then

||S̃Nh− h||Lp(x dx) → 0, N → ∞

for every g in Lp(x dx) if and only if ν ≥ −1/2 and 4/3 < p < 4 or −1 < ν < −1/2 and
2/(2 + ν) < p < −2/ν.

Proof. The sufficiency is shown in [1]. For the necessity, in the case ν ≥ −1/2, we apply
the same argument as in the previous proof using now Proposition 2.4. If −1 < ν < −1/2
then, again, there is nothing to prove since the condition p > 2/(2+ν) is just for guaranteeing
the existence of the Fourier-Bessel coefficients dν

n(h) for a general h in Lp(xdx) and −2/ν
is the conjugate to 2/(2 + ν).
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