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SUPERLINEAR CG CONVERGENCE FOR SPECIAL RIGHT-HAND SIDES∗

BERNHARD BECKERMANN† AND ARNO B. J. KUIJLAARS‡

Abstract. Recently, we gave a theoretical explanation for superlinear convergence behavior observed while
solving large symmetric systems of equations using the Conjugate Gradient method. Roughly speaking, one may
observe superlinear convergence while solving a sequence of (symmetric positive definite) linear systems if the
asymptotic eigenvalue distribution of the sequence of the corresponding matrices of coefficients is far from an equi-
librium distribution.

However, it is well known that the convergence of the Conjugate Gradient or other Krylov subspace methods
does not only depend on the spectrum but also on the right-hand side of the underlying system and the starting vector.
In this paper we present a family of examples based on the discretization via finite differences of the one dimensional
Poisson problem where the asymptotic distribution equals an equilibrium distribution but one may as well observe
superlinear convergence according to the particular choice of the right-hand sides.

Our findings are related to some recent results concerning asymptotics of discrete orthogonal polynomials.
An important tool in our investigations is a constrained energy problem in logarithmic potential theory, where an
additional external field is used being related to our particular right-hand sides.

Key words. Superlinear convergence, Conjugate gradients, Krylov subspace methods, Logarithmic potential
theory.
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1. Introduction. The Conjugate Gradient (CG) method is widely used for solving sys-
tems of linear equations Ax = b with a positive definite symmetric matrix A of order N .
The CG method is popular as an iterative method for large systems, stemming e.g. from the
discretization of boundary value problems for elliptic PDEs. The rate of convergence of CG
depends on the distribution of the eigenvalues of A. A well-known upper bound for the error
en in the A-norm after n steps is

(1.1)
‖en‖A

‖e0‖A
≤ 2

(√
κ− 1√
κ+ 1

)n

where e0 is the initial error and the condition number κ = λmax/λmin is the ratio of the two
extreme eigenvalues of A. In practical situations, this bound is often too pessimistic, and one
observes an increase in the convergence rate as n increases. This phenomenon is known as
superlinear convergence of the CG method.

Once one knows more about the spectrum ofA, one may exploit the link to some polyno-
mial extremal problem (see (2.12) below) and obtain sharper error estimates using techniques
from approximation theory; see for instance [13, 16, 17, 35, 36] and the references therein.
Indeed, according to a well-known observation in numerical linear algebra, superlinear con-
vergence behavior means that some of the Ritz values approach very well some eigenvalues;
see for instance [33, 15, 32, 13]. However, it seems that an analytic description of this su-
perlinear convergence behavior for matrices has only been given recently: in [5] (see also
([6]), the authors take the point of view that there is a sequence of systems ANx = bN to be
solved, AN of order N , with the symmetric positive definite matrices AN having an asymp-
totic eigenvalue distribution. More precisely, denoting by Λ(AN ) the spectrum of AN , we
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suppose that there is a probability measure σ such that, for every function f ∈ C(R),

(1.2) lim
N→∞

1

N

∑

λ∈Λ(AN )

f(λ) =

∫
f(λ) dσ(λ).

This assumption is natural in a number of applications such as the solution of (block) Toeplitz
systems (see, e.g., [10, 8] and [5, §4]) or the discretization of elliptic PDEs via finite difference
techniques (see, e.g., [30, 31, 34] and the discussions in [5, §5] or [4]).

Under some additional weak regularity assumptions stated in §2 below, the following
estimate for the error in Conjugate Gradients1 after n iterations for the system ANx = bN
was established in [5, Theorem 2.1]

(1.3)
‖en,N‖AN

‖e0,N‖AN

<≈ exp
(
−N ·

∫ n/N

0

gS(τ)(0) dτ
)
,

where gS(z) is the Green function with pole at ∞ for the complement of the compact set S.
Here <≈ means that ≤ holds if we take N th roots on both sides and let n,N tend to infinity
in such a way that n/N tends to a limit t ∈ (0, 1). The set S(t) equals the free part of the
extremal measure in a constrained energy problem connected to σ. Since this set decreases
as t increases, the logarithm of the right-hand side of (1.3) describes some concave curve for
fixed N and for increasing n, leading to a CG convergence estimate which corresponds to
superlinear convergence.

We should mention that our estimate is only proved to be an upper bound after taking
roots and passing to the limit. However, in all examples studied so far (see [5, 4] and below)
the right-hand side of (1.3) is actually an upper bound (as long as the effects of finite precision
arithmetic can be neglected). Moreover, if we distinguish between the ranges of sublinear,
linear and superlinear convergence (see, e.g., Nevanlinna [25]), then one observes quite often
(at least for random right-hand sides and random starting vectors) that, in the ranges of linear
and superlinear convergence, the CG error curve coincides up to some constant with the curve
corresponding to our estimate.

Besides by the distribution of eigenvalues, the CG convergence rate is also governed
by the components of the initial residual r0,N = bN − ANx0,N in the directions of the
eigenvectors of AN , where x0,N is a starting vector. We choose here x0,N = 0, so that
r0,N = bN . Then, if the eigenvector components of bN vary widely in size, the estimate (1.3)
may be too pessimistic. It is the aim of this paper to analyze this situation in the spirit of
[5] and to improve the estimate (1.3) for certain situations with special right-hand sides. Our
assumption is that there is a non-negative functionQ(λ) such that the component of the right-
hand side bN in the direction of the eigenvector associated with eigenvalue λ is in absolute
value less than

exp(−N(Q(λ) + o(1))) as N → ∞,

with o(1) uniform in λ.
As in [5] our tools come from the asymptotic theory of discrete orthogonal polynomials

and from extremal problems in logarithmic potential theory [29]. The function Q plays the
role of an external field, whereas the measure σ comes in as a constraint. The interaction
of the external field with the constraint is quite delicate, and not yet fully understood. As a

1We assume exact arithmetic. Notice that the restriction to Conjugate Gradients is just for the ease of presenta-
tion. Similar techniques apply to other iterative Krylov subspace methods, as for instance BiCG and MINRES, but
also for GMRES in case of normal matrices.
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result, the potential theoretic analysis is more complicated than the one in [5]. We are able
to prove the analogue of (1.3) only under some simplifying technical assumptions given in
Definition 2.4 and Theorem 2.5 below.

As a motivating model problem, we consider the one dimensional Poisson equation

−u′′(x) = f(x), x ∈ [0, 1],

with homogeneous Dirichlet boundary conditions u(0) = u(1) = 0. The usual central finite
difference approximation on the uniform grid j/(N + 1), j = 0, 1, . . . , N + 1, leads to a
linear system ANx = bN with N equations and unknowns, where

(1.4) AN =




2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2




N×N

, bN = (N + 1)2 ·




f(1/(N + 1))
f(2/(N + 1))
f(3/(N + 1))

...
f(N/(N + 1))



.

Both the one dimensional Poisson problem and the system ANx = bN are easy to solve;
however, this toy problem can serve to explain convergence behavior observed also in less
trivial situations.

As it is well known, the eigenvalues ofAN are given by λj,N = 2− 2 cos(πj/(N + 1)),
j = 1, ..., N , leading to the asymptotic eigenvalue distribution σ, with

(1.5)
dσ

dx
(x) =

1

π
√
x(4 − x)

, x ∈ [0, 4],

the equilibrium measure of the interval [0, 4]. In the setting of [5], one checks that S(t) =
[0, 4] for all t ∈ (0, 1), and thus the right-hand side of (1.3) trivially equals one. Indeed, for
general f , we may not observe superlinear convergence, as being confirmed by the first two
plots of Figure 1.1.

Here we will be interested in what happens for the CG starting vector 0 and particularly
smooth functions f , namely

f(x) =

∞∑

j=1

fj sin(πjx), x ∈ [0, 1],

where we suppose that the Fourier coefficients satisfy

(1.6) r := lim sup
j→∞

|fj |1/j ∈ (0, 1).

As we will see below in Lemma 3.1, here the eigenvector components of bN decrease expo-
nentially for increasing j. Thus, roughly speaking, eigenvalues close to zero will be earlier
matched by Ritz values, leading to superlinear convergence. For this model problem, we will
show that an improved estimate of the form (1.3) holds with sets S(t) = [α(t), β(t)] ⊂ (0, 4)
explicitly given in terms of Jacobi elliptic functions, see Lemma 3.2 below. The set S(t)
corresponds to the part of the support of an extremal measure in a constrained equilibrium
problem with external field where the constraint is not met.

We already noted that the additional external field does not occur (or, what amounts to
the same, equals zero) in the analysis of [3, 4, 5, 6, 19]. Indeed, the analysis presented in
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FIG. 1.1. The CG relative error curve (energy norm, blue) for the one dimensional Poisson problem discretized
on a uniform grid (N = 1000, x0,N = 0) for four choices of f(x) =

∑N
j=1

fj sin(jπx): there is hardly any
superlinear convergence for the upper two examples (fj = 1, fj random) and one has to reach approximately the
dimension of the system in order to achieve full precision. In contrast, for the lower two examples (fj = 2−j ,
fj = 4−j ) we observe superlinear convergence. For the sake of completeness, we have also drawn in black the
error bound (1.1) for the four examples. This bound is only significant for the first two examples.

these papers is based only on the asymptotic eigenvalue distribution and allows for any start-
ing residual; therefore one may understand these results somehow as worst case estimates.
In contrast, here we discuss the situation where the eigenvector components of the starting
residual strongly vary in size: we obtain superlinear convergence for CG even for an a priori
“bad” eigenvalue distribution. We have the impression that this phenomenon also occurs in
less trivial applications in the discretization of PDEs for smooth right-hand sides since quite
often high frequencies have a much smaller amplitude than small frequencies.

In order to conclude this introduction, let us return to the correspondence between su-
perlinear convergence and the convergence of Ritz values. Under some stronger assumptions
— being for instance true for many right-hand sides of our model problem — one may show
generalizing ideas of [19, 3] that the extremal measure mentioned above just gives the asymp-
totic distribution of Ritz values as n,N → ∞, n/N → t. More precisely, one may show
that the nth Ritz values match all eigenvalues within [0, α(n/N)] with an exponential rate,
and that there are essentially no nth Ritz values in [β(n/N), 4]. A precise formulation of the
assumptions and a proof of this statement will be given in a future publication. Here we only
show some numerical results which fully confirm our claim; see Figure 1.2.

The remainder of the paper is organized as follows: in §2 we recall the well-known
connection between CG convergence and discrete orthogonal polynomials. We describe and
discuss our assumptions for the sequence of systems under consideration, and briefly recall
some extremal problem in logarithmic potential theory. Subsequently, we show in Theo-
rem 2.2 that the solution of this extremal problem leads to a new asymptotic estimate taking
into account the asymptotic distribution of the spectrum, but also the characteristics of par-
ticular starting residuals. In Theorem 2.5 we show that a formula like (1.3) remains valid for
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FIG. 1.2. Convergence of Ritz values for our model problem with N = 100, x0,N = 0, and f(x) =∑N
j=1

rj sin(jπx), r ∈ {1/4, 1/10}. The two black curves indicate the graphs of α, β. We draw in the nth
column, 1 ≤ n ≤ N , the position of the nth Ritz values (red or blue) within the interval [0, 4]. A red cross is used if
the Ritz value is closer than 0.001 to some eigenvalue of AN . Notice that nearly all Ritz values are red in the range
[0, α(t)], t = n/N , that there are no Ritz values in [β(t), 4], and that in the range [α(t), β(t)] hardly any Ritz value
converged (up to some exceptions by “accident”).

our more general setting. We conclude §2 by recalling in Theorem 2.7 and Theorem 2.8 some
known results for computingS(t), especially for a particular interval case, often referred to as
the “left ansatz”. In §3 we give a detailed analysis for our model problem, and finally present
some numerical results.

2. The link with an extremal problem in potential theory. In what follows we denote
by en,N = A−1

N bN − xn,N the error in Conjugate Gradients after n iterations for the system
ANx = bN using the starting vector x0,N , and by rn,N = Aen,N = bN − ANxn,N the
corresponding residual.

We denote by (λj,N , vj,N ), j = 1, 2, ..., N , 0 < λ1,N ≤ λ2,N ≤ ... ≤ λN,N , ||vj,N || =
1, the eigensystem of the matrix AN and use the spectral decomposition of the first residual

(2.1) r0,N =

N∑

j=1

wj,Nvj,N , wj,N = (r0,N , vj,N ) ∈ R.

It will be useful to adopt polynomial language in order to describe the CG error [14]. We
consider the discrete scalar product with varying weights

(2.2) (p, q)N =

N∑

j=1

w2
j,Np(λj,N )q(λj,N )

with corresponding norm ||p||N =
√

(p, p)N , and denote the corresponding orthonormal
polynomials by p0,N , p1,N , .... As it is well known [14, 28, 36], these discrete orthonormal
polynomials may be used to describe the error in CG as follows:

(2.3) en,N =
1

pn,N(0)
pn,N (A)e0,N =

1

pn,N(0)
A−1pn,N(A)r0,N ,
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and thus

‖en,N‖AN

‖e0,N‖AN

=
‖rn,N‖A−1

N

‖r0,N‖A−1
N

=
1

|pn,N (0)|
‖pn,N(λ)/

√
λ‖N

‖1/
√
λ‖N

.(2.4)

In numerical linear algebra terminology, the zeros of pn,N are referred to as nth Ritz values
of AN . Let us notice that these Ritz values are used to approximate (parts of) the spectrum of
AN . In order to exploit (2.4), we need to know the asymptotic behavior of discrete orthogonal
polynomials and in particular their zero distribution.

Starting with a paper of Rakhmanov [27], a number of people [12, 23, 2, 7, 18] con-
tributed to the theory of asymptotics of discrete orthogonal polynomials, see also [22] for a
survey. This study is related to an extremal problem in logarithmic potential theory. Before
going into details, let us first state the precise assumptions in terms of AN , bN .

ASSUMPTION 2.1.
(a) The eigenvalues of the matrices AN are uniformly bounded, so that they are all in a fixed

interval [0, R] for some R > 0.
(b) The matrices AN have the asymptotic eigenvalue distribution σ defined by (1.2).
(c) The logarithmic potential Uσ of σ, given by

Uσ : C → (−∞,+∞] : λ 7→
∫

log
1

|λ− λ′| dσ(λ′),

is a continuous, real-valued function on C.
(d) The limit (1.2) also holds for the function f(λ) = logλ.
(e) There exists a nonnegative continuous function Q : S → [0,+∞) such that

(2.5) lim sup
N→∞

max
j

exp(Q(λj,N )) ·
( |(r0,N , vj,N )|

||r0,N ||
)1/N

≤ 1.

It follows from Assumption 2.1(a),(b) that σ has a compact support in [0, R]. Assump-
tion 2.1(b) is natural in a number of applications like for instance in the finite difference
discretization of elliptic PDEs. Notice that the measure σ in (1.2) remains invariant if one
slightly perturbs the matrix AN , see, e.g., [37]. For example, σ is preserved in the context
of elliptic PDEs if we change the boundary conditions. Here we agree to count eigenvalues
in (1.2) according to their multiplicities. Indeed, all following results remain valid (and may
become sharper) if we count an eigenvalue only once disregarding multiplicities as in [5], but
in applications it is in general difficult to know in advance the multiplicity of eigenvalues.

With regard to Assumption 2.1(c), recall that the logarithmic potential Uσ is always
superharmonic on C (in particular lower semi-continuous), and harmonic on C\supp(σ), see
[29, 26]. The regularity assumption (c) does not allow σ to have point masses. In applications,
σ will typically have a density with respect to Lebesgue measure. Assumption 2.1(c) is
satisfied for example if the density is continuous.

Assumption 2.1(d) prevents eigenvalues from approaching 0 too fast as N → ∞ (see
[5] for an interpretation in terms det(AN )). Finally, notice that Assumption 2.1(e) trivially
holds with Q ≡ 0. Indeed, the function Q ≡ 0 has been chosen in [3, 4, 5, 6, 19]. As a
consequence, these results describe the CG convergence behavior for a “favorable” eigen-
value distribution and for the “worst case” choice of the starting residual. In contrast, if the
eigenvector components of the starting residual corresponding to eigenvalues in some part
of S decrease exponentially (as it is the case for our model problem) then we may choose
Q to be strictly positive on this part of S. This will enable us to prove superlinear conver-
gence for particularly smooth starting residuals even in the case of a “worst case” eigenvalue
distribution.



ETNA
Kent State University 
etna@mcs.kent.edu

SUPERLINEAR CG CONVERGENCE FOR SPECIAL RIGHT-HAND SIDES 7

The sets S(t) appearing in (1.3) for some fixed t ∈ (0, 1) are characterized using a
constrained energy problem with external field where σ acts as the constraint and Q as an
external field. This extremal problem is to minimize the weighted logarithmic energy

(2.6)
∫∫ (

log
1

|λ− λ′| + 2Q(λ)

)
dν(λ)dν(λ′)

among all Borel measures on [0, R] that satisfy

(2.7) 0 ≤ ν ≤ σ,

∫
dν =: ||ν|| = t.

The condition ν ≤ σ means that ν(B) ≤ σ(B) for every Borel set B.
Rakhmanov [27, Theorem 3] and Dragnev and Saff [12, Theorem 2.1] showed that there

is a unique solution νt of this extremal problem,2 and that, among all measures satisfying
(2.7), this solution is uniquely characterized by equilibrium conditions: there exists a constant
Ft ∈ R such that

(2.8) Uνt(λ) +Q(λ)

{
≤ Ft, λ ∈ supp(νt),
≥ Ft, λ ∈ supp(σ − νt).

Now the sets S(t) are defined as

(2.9) S(t) = supp(σ − νt) ∩ supp(νt).

Note that the minimizer νt and the set S(t) also depend on σ and Q. However, we do not
indicate this in the notation. For the ease of presentation we will suppose in the sequel
that supp(σ) is an interval, implying that S(t) 6= ∅ and thus the extremal constant Ft is
unique. Let us mention that in the case of a trivial external field Q ≡ 0 one can establish the
relationship supp(νt) = supp(σ) (and therefore S(t) = supp(σ − νt)), and the inclusion
S(t) ⊂ S(τ) for 0 < τ < t < 1. These latter properties may get lost for Q 6≡ 0; see our
example in §3.

For the particular case of a trivial external field Q ≡ 0, the asymptotic bound (1.3)
was established in [5, Theorem 2.1] under Assumptions 2.1(a)–(d). As main guides in the
proof we were inspired by a result of Rakhmanov [27, Theorem 1] who showed (under some
additional assumptions concerning the separation of eigenvalues) that the Ritz values (zeros
of pn,N ) are asymptotically distributed according to the measure νt/t as n,N → ∞ with
n/N → t. From this it follows that there are roughly speaking as many eigenvalues of
AN outside S(t) as there are Ritz values. See [19, 2] for estimates on the distance between
Ritz values and eigenvalues in this setting. As a second important result, we showed using
fundamental ideas of Buyarov and Rakhmanov [9] that in the case Q ≡ 0 there holds

(2.10)
∫ t

0

gS(τ)(0) dτ = Ft − Uνt(0).

The theory of asymptotics of discrete orthogonal polynomials has been developed also
for the general case of a nontrivial external field. The aim of the following considerations is
to show that we may generalize [5, Theorem 2.1], leading to some counterpart of estimate
(1.3) for particularly smooth starting residuals. We will proceed in two steps. Firstly, we

2In the presence of an external field we found it convenient to use a normalization different from, e.g., [5, 6]: if
Q ≡ 0, the extremal measure µt of [5, 6] satisfies µt = νt/t.
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establish in Theorem 2.2 a bound in terms of the extremal quantities νt and Ft in a quite
general setting, and discuss the sharpness of this new asymptotic bound in Remark 2.3. As
second step, we express in Theorem 2.5 our new bound in terms of Green functions for the
special case of an interval S(t). We believe that such a formula may be established in a more
general setting following ideas of Buyarov and Rakhmanov [9]. However, in order to avoid
technical difficulties, we will restrict ourselves to this simpler case which enables us already
to fully analyze our model problem.

THEOREM 2.2. Let (AN ) be a sequence of symmetric positive definite matrices such
that Assumptions 2.1(a)-(e) are satisfied, with supp(σ) being an interval. Then, for every
t ∈ (0, 1),

(2.11) lim sup
n,N→∞

n/N→t

1

N
log

(‖en,N‖AN

‖e0,N‖AN

)
≤ Uνt(0) − Ft,

where νt and Ft are from (2.8).
Proof. As our proof follows closely the lines of the proof of the corresponding part in

[5, Theorem 2.1] for Q ≡ 0, we only indicate the necessary changes (compare also [12,
Lemma 5.3] and [23, Lemma 7.1]). Let t ∈ (0, 1) and n = nN be fixed such that nN/N → t
for N → ∞. By definition of CG, for any polynomial p of degree ≤ n there holds

(2.12)
‖en,N‖AN

‖e0,N‖AN

≤ 1

|p(0)|
‖p(λ)/

√
λ‖N

‖1/
√
λ‖N

,

where we recall that, according to (2.4), there is equality for p = pn,N . Since all eigenvalues
are bounded below by λ1,N and above by R, we have the rough estimate

‖p/
√
λ‖N

‖1/
√
λ‖N

≤ R

λ1,N
· ‖p‖N

||r0,N ||

≤ R

λ1,N

√
N ·

(
max

k
e−NQ(λk,N )|p(λk,N )|

)
·
(
max

j
Q(λj,N ))

|(r0,N , vj,N )|
||r0,N ||

)
.

It follows from Assumption 2.1(a),(d) that

lim
N→∞

|λ1,N |1/N = 1.

Combining these findings and using Assumption 2.1(e) we may conclude that, for any se-
quence of polynomials (pN )N , pN of degree at most n = nN , there holds

lim sup
N→∞

1

N
log

(‖en,N‖AN

‖e0,N‖AN

)

≤ lim sup
N→∞

1

N
log

(
max

k

|e−NQ(λk,N )pN (λk,N )|
|pN (0)|

)
.(2.13)

We now consider for ε > 0 the set

Kε := {λ ∈ R : Uνt(λ) +Q(λ) ≤ Ft − ε}

and notice that, by (2.8), the two measures νt and σ coincide on Kε. Following the con-
struction in [5, Proof of Theorem 2.1] based on a discretization of νt and making use of the
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Assumption 2.1(a)-(d), we find monic polynomials pN of degree n = nN such that

all zeros of pN lie in Λ(AN ),

pN (λk,N ) = 0 for λk,N ∈ Kε,

lim
N→∞

1

N
log |pN (0)| = −Uνt(0), and

lim sup
N→∞

1

N
log

(
max

k
eNUνt (λk,N )|pN(λk,N )|

)
≤ 0.

Injecting these properties in (2.13), we obtain

lim sup
n,N→∞

n/N→t

1

N
log

(‖en,N‖AN

‖e0,N‖AN

)

≤ Uνt(0) + lim sup
N→∞

max
λk,N 6∈Kε

(
−Q(λk,N ) − Uνt(λk,N )

)

≤ Uνt(0) − Ft + ε.

Since ε can be chosen arbitrarily close to zero, assertion (2.11) follows.
REMARK 2.3. We claim that estimate (2.11) cannot be improved. In order to see this let

us briefly describe a subclass of problems for which equality is attained. We suppose instead
of (2.5) that

lim
N→∞

max
j

exp(Q(λj,N )) ·
( |(r0,N , vj,N )|

||r0,N ||
)1/N

= lim
N→∞

min
j

exp(Q(λj,N )) ·
( |(r0,N , vj,N )|

||r0,N ||
)1/N

= 1,(2.14)

that is, theN th root of the normalized eigenvector component of the starting residual behaves
like exp(−Q(λj,N )) uniformly in j. Furthermore, we require that the eigenvalues in Λ(AN )
are sufficiently separated. More precisely, we suppose that one of the various separation
conditions considered by Rakhmanov [27], Dragnev–Saff [12], Kuijlaars–Van Assche [23],
or Beckermann [2] holds; see also [22] for a survey. Then for the corresponding orthonormal
polynomials we have nth root asymptotics (see, e.g., [2]), namely

(2.15) lim
n,N→∞

n/N→t

1

N
log |pn,N (z)| = Ft − Uνt(z)

for all z ∈ C \ S. Moreover, following the techniques of [19] one shows using Assump-
tion 2.1(d) that (2.15) remains valid for z = 0. Injecting this information in (2.4) enables us
to determine the exact rate of convergence:

lim
n,N→∞

n/N→t

1

N
log

(‖en,N‖AN

‖e0,N‖AN

)
= Uνt(0) − Ft.

DEFINITION 2.4. (see [11, Chapter 11] and [21]) We say that the “left ansatz” holds
if supp(σ) = [A,B], and if there are continuous and increasing functions α, β : (0, 1) →
(A,B) such that, for all t ∈ (0, 1),

(2.16) supp(νt) = [A, β(t)], supp(σ − νt) = [α(t), B], α(t) < β(t).
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The left ansatz plays a prominent role in the study of the continuum limit of the Toda
lattice, see, e.g., [11, 20, 21]. Notice that here S(t) = [α(t), β(t)] by (2.9) and (2.16). For
this interval case we recover the particular form of our estimate (1.3).

THEOREM 2.5. If the left ansatz holds, then

(2.17) Ft − Uνt(0) =

∫ t

0

gS(τ)(0) dτ + min
λ∈[A,B]

Q(λ).

In particular, if AN , bN , σ are as in Theorem 2.2 and if the left ansatz holds, then

(2.18) lim sup
n,N→∞

n/N→t

1

N
log

(‖en,N‖AN

‖e0,N‖AN

)
≤ −

∫ t

0

gS(τ)(0) dτ.

Proof. We only need to show formula (2.17) since (2.18) is a consequence of (2.11),
(2.17), and the fact that Q is nonnegative on [A,B] by Assumption 2.1(e). Consider for
0 < t < t′ < 1 the sets St,t′ ⊂ S′

t,t′ being defined by

St,t′ := S(t) ∩ S(t′) = [α(t′), β(t)], S′
t,t′ := S(t) ∪ S(t′) = [α(t), β(t′)],

together with

νt,t′ :=
νt′ − νt

t′ − t
, Ft,t′ :=

Ft′ − Ft

t′ − t
,

where t′ − t is sufficiently small such that St,t′ 6= ∅. According to [20, Proposition 4.1],
νt,t′ is a probability measure which by (2.9) is supported on S ′

t,t′ . From (2.8) and (2.16)
we know that Uνt,t′ equals Ft,t′ on St,t′ , and is less than or equal to this constant on S ′

t,t′ .
Consequently,

Uνt,t′ (λ) + gSt,t′
(λ) ≥ Ft,t′ , λ ∈ St,t′ ,(2.19)

Uνt,t′ (λ) + gS′

t,t′
(λ) ≤ Ft,t′ , λ ∈ S′

t,t′ .(2.20)

By the principle of domination for logarithmic potentials [29, Theorem II.3.2], the inequali-
ties (2.19) and (2.20) remain valid for all λ ∈ C. Comparing the values at infinity we obtain

(2.21) − log(cap (S ′
t,t′)) ≤ Ft,t′ ≤ − log(cap (St,t′)),

where cap (.) denotes the logarithmic capacity, e.g., cap ([a, b]) = (b − a)/4. Hence for all
λ ∈ C,

(2.22) log(cap (S ′
t,t′)) + gSt,t′

(λ) ≥ −Uνt,t′ (λ) ≥ log(cap (St,t′)) + gS′

t,t′
(λ).

Passing to the limit t′ → t+ and taking into account the continuity of α and β, we get from
(2.22) the relation

− d

dt
Uνt(λ) = log(cap (S(t))) + gS(t)(λ), t ∈ (0, 1), λ ∈ C.

Notice also that, by the monotone convergence theorem,

lim
t→0+

Uνt(λ) = 0, λ ∈ C.
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Integrating the above identity with respect to t gives us for every t ∈ (0, 1) and every λ ∈ C

−Uνt(λ) = Gt +

∫ t

0

gS(τ)(λ) dτ,

where

Gt =

∫ t

0

log(cap (S(τ))) dτ.

Similarly, (2.21) leads to dFt/dt = − log(cap (S(t))), and hence for all t, t′ ∈ (0, 1)

Gt −Gt′ = −Ft + Ft′ .

Therefore

(2.23) C := Uνt(λ) − Ft +

∫ t

0

gS(τ)(λ) dτ = −Ft −Gt

is independent of λ and t. In particular, we may choose λ = β(t) which by (2.16) is an
element of supp(νt) ∩ supp(σ − νt). Applying (2.8) we obtain

C := −Q(β(t)) +

∫ t

0

gS(τ)(β(t)) dτ, 0 < t < 1,

leading to C = −Q(β(0+)) by continuity of β and Q. Finally, we consider

M :=
⋂

0<t<1

supp(νt).

It is shown in [21, Lemma 5.2] that Q attains its minimum on [A,B] exactly in the set M . In
our setting there holds M = [A, β(0+)] by (2.16). Hence the minimum value of Q in [A,B]
is Q(β(0+)) = −C, and assertion (2.17) follows from (2.23).

REMARK 2.6. We recall from the proof of Theorem 2.5 that a combination of (2.11) and
(2.17) leads to the more precise assertion

lim sup
n,N→∞

n/N→t

1

N
log

(‖en,N‖AN

‖e0,N‖AN

)
≤ −

∫ t

0

gS(τ)(0) dτ −Q(A)

which may be a strict improvement of (2.18). Indeed, Q(A) ≥ 0 is the minimum of Q on
supp(σ), which can be strictly larger than zero.3 In terms of linear algebra, this happens if
there is some “outlier” eigenvalueλ ∈ Λ(AN )\supp(σ) for allN such that the corresponding
eigenvector component of r0,N strongly dominates the other eigenvector components.

We still need a simple criterion to decide whether the left ansatz is true, and in this case
how to compute S(t) = [α(t), β(t)]. Here we may apply the following two known results.

THEOREM 2.7. Let supp(σ) = [A,B], and suppose that the functions Q and Q̃ defined
by

Q̃(x) = −Q(x) − Uσ(x)

3It can be shown using Assumption 2.1(e) that the minimum of Q on S has to be equal to 0.
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are continuous in [A,B] and have a continuous derivative in (A,B). Suppose in addition
that the functions x 7→ (x − A)Q′(x) and x 7→ (B − x)Q̃′(x) are increasing functions on
[A,B]. Then the left ansatz holds.

Proof. See [21, Lemma 3.1 and Theorem 3.3] and [20, Proposition 4.1]. Parts of this
assertion have been already shown in [12, Theorem 2.16(b)].

THEOREM 2.8. If the left ansatz holds then, for any t ∈ (0, 1), the quantities α(t) and
β(t) satisfy

0 =
1

π

∫ β(t)

α(t)

Q′(λ) dλ√
(β(t) − λ)(λ − α(t))

−
∫ α(t)

A

dσ(λ)√
(β(t) − λ)(α(t) − λ)

,(2.24)

t =
1

π

∫ β(t)

α(t)

λQ′(λ) dλ√
(β(t) − λ)(λ− α(t))

−
∫ α(t)

A

λ dσ(λ)√
(β(t) − λ)(α(t) − λ)

.(2.25)

Proof. See [11, Chapter 4] and [21, Proof of Lemma 6.2].
The two assertions above do apply to our model problem, but also to several other cases.
In order to conclude this section, let us give another interpretation of estimate (1.3) (or

(2.18)) in terms of some “effective” condition number, compare, e.g., the discussion in the
introduction of [33].

REMARK 2.9. If S(t) equals some interval [α(t), β(t)] for all t ∈ (0, 1), then we can
use the fact that

(2.26) g[α,β](0) = log
(√

β +
√
α√

β −√
α

)
, 0 ≤ α < β

in order to rewrite (1.3) (or (2.18)). Indeed, replacing the integral in (1.3) by some rectangle
quadrature formula and the Green function by (2.26), we obtain the estimate

(2.27)
‖en,N‖AN

‖e0,N‖AN

<≈
n−1∏

j=0

√
β(j/N)/α(j/N) − 1√
β(j/N)/α(j/N) + 1

.

Comparing with (1.1) we see that the ratio β(j/N)/α(j/N) has an interpretation as “effec-
tive” condition number after j iterations of CG for the system ANx = bN . Moreover, the
product of these first n effective condition numbers (instead of the condition number of AN )
leads to error estimates reflecting superlinear convergence.

3. The analysis of the model problem and examples. In this section we want to show
how our model problem (1.4) with (1.6) enters in the general frame described in Section §2.
Our analysis consists of two steps: in Lemma 3.1 we show that Assumption 2.1(e) holds with
the function

(3.1) Q(λ) =
log(1/r)

π
arccos(

2 − λ

2
), λ ∈ [0, 4].

Recall that Assumptions 2.1(a)-(b) have been already verified in §1: S = [0, 4], and σ is the
equilibrium measure of S. Assumption 2.1(c) follows from Uσ + gS ≡ 0, and a verification
of Assumption 2.1(d) is straightforward; we omit details. Our second step consists then in
determining, in Lemma 3.2, the set S(t) in terms of Jacobi elliptic functions as a function of
r and t. At the end of this section we present some numerical experiments.

LEMMA 3.1. Let AN , bN be as in (1.4), and take as starting vector for CG the trivial
choice x0,N = 0.
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If f is as in (1.6) then Assumption 2.1(e) holds with the functionQ from (3.1). Moreover,
for the particular function

f(x) =

∞∑

j=1

rj sin(πjx) =
r sin(πx)

r2 + 1 − 2R cos(πx)

of (1.6) we have the stronger condition (2.14).
Proof. We first determine the spectral decomposition of r0,N = bN . Recall that the

(normalized) eigenvector to the eigenvalue λj,N = 2− 2 cos(πj/(N +1)) ofAN is given by

vj,N =

√
2

N + 1
·
(
sin

( πjk

N + 1

))

k=1,...,N
, j = 1, ..., N.

Hence

wj,N = (vj,N , bN ) =

√
2

N + 1
·

N∑

k=1

sin(
πjk

N + 1
)f(

k

N + 1
)

=

√
2

N + 1
·

N∑

k=1

∞∑

`=1

f` sin(
πjk

N + 1
) sin(

π`k

N + 1
)

=

√
2

N + 1
·

N∑

k=1

N∑

m=1

∞∑

`=1
`≡m(2N+2)

[f` − f2N+2−`] sin(
πjk

N + 1
) sin(

πmk

N + 1
)

=

√
N + 1

2
·

∞∑

`=1
`≡j(2N+2)

[f` − f2N+2−`]

=

√
N + 1

2
·

∞∑

`=0

[f(2N+2)`+j − f(2N+2)(`+1)−j ].

Notice that Q in (3.1) is nonnegative on S, and

exp(−Q(λj,N )) = rj/(N+1), j = 1, ..., N.

In the particular case fj = rj , the sums for wj,N can be evaluated, leading to

eQ(λj,N )|wj,N |1/(N+1) =
((N + 1)/2)1/(2N+2)

rj/(N+1)
· [r

j − r2N+2−j

1 − r2N+2
]1/(N+1)

= ((N + 1)/2)1/(2N+2) · [ 1 − r2N+2−2j

1 − r2N+2
]1/(N+1)

which uniformly for 1 ≤ j ≤ N tends to 1 for N → ∞. In particular,

lim
N→∞

||bN ||1/N = lim
N→∞

max
j

|wj,N |1/N = 1,

and condition (2.15) follows.
We now turn to more general coefficients fj as in (1.6) where similar techniques may be

applied. Let ρ ∈ (r, 1). By assumption, there exists a J such that |fj | ≤ ρj for j ≥ J . Let
N > J . Then for 1 ≤ j < J we have

(fj −
2ρ2N+2−j

1 − ρ2N+2
)1/(N+1) ≤ |wj,N |1/(N+1)

((N + 1)/2)1/(2N+2)
≤ (fj +

2ρ2N+2−j

1 − ρ2N+2
)1/(N+1)
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and the two bounds tend to 1 uniformly for 1 ≤ j < J for N → ∞. In particular it follows
that

lim inf
N→∞

||bN ||1/N ≥ lim inf
N→∞

|w1,N |1/N = 1.

In the case j ≥ J we have

|wj,N |1/(N+1)

ρj/(N+1)
≤ ((N + 1)/2)1/(2N+2)

ρj/(N+1)
· [ρ

j + ρ2N+2−j

1− ρ2N+2
]1/(N+1)

and the right-hand side tends to 1 uniformly for J ≤ j ≤ N for N → ∞. Combining these
findings, we may conclude that

lim sup
N→∞

max
1≤j≤N

ρ−j/(N+1) ·
( |wj,N |
||r0,N ||

)1/N

≤ 1

for all ρ > r, implying (2.5).
Suppose that f(x) = sin(πx) ·g(cos(πx)). Then it is not difficult to verify that the series

in (1.6) corresponds to an expansion in terms of Chebyshev polynomials of the second kind
of g. In particular, denoting by ER, R > 1, the interior of the ellipse with foci at ±1 and
semiaxes (R± 1/R)/2, assumption (1.6) will be true iff g is analytic in E1/r but in no larger
ER. Moreover, it is not difficult to verify that the stronger condition (2.14) remains true if g
is meromorphic in some larger ER, with exactly one pole on the boundary of E1/r.

In the second part of this section we explicitly solve the constrained equilibrium prob-
lem with external field for the data of our example in terms of Jacobi elliptic functions and
complete elliptic integrals of the first kind

K(k) =
1

2

∫ 1

0

dt√
t(1 − t)(1 − k2t)

, k ∈ [0, 1).

For some detailed account on these functions see, e.g., [1].
LEMMA 3.2. Let σ be the equilibrium measure of S = [0, 4], and Q as in (3.1). Fur-

thermore, let k = k(r) ∈ (0, 1) be defined by

(3.2)
log(1/r)

π
K(k) = K(

√
1 − k2).

Then, for 0 < t < 1, the left ansatz holds, and S(t) = [α(t), β(t)], where

α(t) = 4cn2((1 − t)K(k); k),(3.3)

β(t) = α(t)/dn2((1 − t)K(k); k).(3.4)

In addition, we have

gS(t)(0) = log
(1 + dn((1 − t)K(k); k)

1 − dn((1 − t)K(k), k)

)
.(3.5)

Proof. Let us show that the assumptions of Theorem 2.7 are satisfied. Indeed, for our
particular data σ,Q we have

[A,B] = [0, 4],
dσ

dx
(x) =

1

π

1√
x(4 − x)

, Q′(x) =
log(1/r)

π

1√
x(4 − x)

.



ETNA
Kent State University 
etna@mcs.kent.edu

SUPERLINEAR CG CONVERGENCE FOR SPECIAL RIGHT-HAND SIDES 15

Notice that Uσ is constant on [0, 4], and that both functions

x 7→ xQ′(x) =
log(1/r)

π

√
x√

4 − x
and x 7→ (4 − x)Q̃′(x) = − log(1/r)

π

√
4 − x√
x

are increasing on [0, 4]. Hence Theorem 2.7 may be applied, showing that the left ansatz
holds. By combining (2.9) and (2.16) we obtain the particular form of S(t).

It remains to establish the explicit formulas (3.3)-(3.5). In our setting, formula (2.24)
takes the form

log(1/r)

π2

∫ β(t)

α(t)

dx√
x(β(t) − x)(x − α(t))(4 − x)

=
1

π

∫ α(t)

0

dx√
x(β(t) − x)(α(t) − x)(4 − x)

.(3.6)

Notice that both integrals are complete elliptic integrals of the first kind, evaluated at com-
plementary modules. In order to see this, recall that, for x1 < x2 < x3 < x4 or for
x2 < x3 < x4 < x1,

∫ x3

x2

dx√
|(x− x1)(x − x2)(x3 − x)(x4 − x)|

=
2K(k)√

|(x3 − x1)(x4 − x2)|
,

where

k2 =
(x3 − x2)(x4 − x1)

(x3 − x1)(x4 − x2)
.

After identification of the involved quantities and some elementary computations we deduce
from (3.6) that

(3.7) k2 =
4(β(t) − α(t))

β(t)(4 − α(t))
∈ (0, 1),

where k is as in (3.2). Notice that (3.2) fixes a unique k as a function of r since k 7→
K(k)/K(

√
1 − k2) is strictly increasing in (0, 1), takes the value 0 at 0 and +∞ at 1.

A second relation enabling us to prove (3.3)-(3.5) is found as follows: we define γ(t) ∈
(α(t), β(t)) by

∫ β(t)

α(t)

(x− γ(t)) dx√
x(4 − x)(β(t) − x)(x − α(t))

= 0.

Subtracting γ(t) times (2.24) from (2.25), we obtain the relation

(3.8) t =
1

π

∫ α(t)

0

(γ(t) − x) dx√
x(4 − x)(β(t) − x)(x − α(t))

.

Here the right-hand side equals ω(∞), where ω is the harmonic measure being 1 on [0, α(t)],
0 on [β(t), 4], continuous in the extended complex plane C and harmonic in Ω := C \(
[0, α(t)] ∪ [β(t), 4]

)
; see, e.g., [38, §4 and §14]. Thus (3.8) gives us the second relation

(3.9) t = ω(∞).
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In order to find the harmonic measure (and especially its value at infinity), it will be useful to
map the doubly connected domain Ω to some ring domain using the elliptic sine,

sn(u; k) = x, i.e., u =

∫ x

0

dt√
(1 − t2)(1 − k2t2)

(
√

1 = 1),

being meromorphic and doubly periodic, with periodicities 4K(k) and 2iK(k ′), k′ =
√

1 − k2,
see, e.g., [1, §24, §25, and Example 3 in §49]. Let

z = φ(u) =
4α(t)sn2(u; k)

4sn2(u; k) − (4 − α(t))
.

Then

φ(0) = 0, φ(iK(k′)) = α(t),

φ(−K(k)) =
4α(t)

4 − (4 − α(t))
= 4, φ(iK(k′) −K(k)) =

4α(t)/k2

4/k2 − (4 − α(t))
= β(t).

One checks (compare with [1, Example 3 in §49]) that φ maps conformally the rectangle
{u : −K(k) < <(u) < 0,−K(k′) < =(u) < K(k′)} on C \ [0, 4]. Let

u = ψ(w) =
K(k′)

π
log(w) (log(1) = 0),

then the set {ρeis : R < ρ < 1,−π < s < π} is mapped via ψ on the above rectangle, where

log(R) = −π K(k)

K(k′)
=

π2

log(r)

Pasting at the segment [−1,−R], we have shown that f := φ ◦ ψ maps the ring domain
R := {w : R < |w| < 1} conformally on Ω. Moreover, f(w) approaches [0, α(t)] (and
[β(t), 4], repectively) if w approaches |w| = 1 (and |w| = R, repectively).

Hence for the harmonic measure ω we have the explicit formula

ω(f(w)) =
log(R) − log(|w|)

log(R)
, w ∈ R,

the harmonic measure for the ring domain R. Since

f−1(∞) = ψ−1(u0), sn(u0; k) = −
√

1 − α(t)/4,

we may conclude using (3.9) that

1 − t = 1 − ω(∞) =
log(|ψ−1(u0)|)

log(R)
= u0 ·

π

K(k′) log(R)
= − u0

K(k)
,

and hence
√

1 − α(t)/4 = sn((1 − t)K(k); k).

Using the relation cn2(u; k) = 1 − sn2(u; k) we finally arrive at (3.3). Formula (3.4) is
obtained by inserting (3.3) in (3.7), and by using the relation dn2(u; k) = 1 − k2sn2(u; k).
Finally, in order to show (3.5) we use (2.25) together with (3.3) and (3.4).
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FIG. 3.1. The one dimensional Poisson problem discretized on a uniform grid (N = 500) for f(x) =∑N
j=1

rj sin(jπx), r = 0.1, 0.3, 0.5, 0.8. We find the CG (relative) error curve (energy norm) in blue, the classical
bound (1.1) in black, and our new asymptotic bound in red. For comparison we give the MINRES relative residual
curve in green.

To summarize, we have shown that the assumptions of Theorem 2.7 and Theorem 2.5
hold. Using the explicit formulas of Lemma 3.2 and Remark 2.9, we obtain for our model
problem the error estimate

(3.10)
‖en,N‖AN

‖e0,N‖AN

<≈
n−1∏

j=0

1 − dn((1 − j/N)K(k); k)

1 + dn((1 − j/N)K(k); k)
,

where k = k(r) is defined in (3.2).
For the function

f(x) =

N∑

j=1

rj sin(jπx)

and four different choices of r, numerical results are given in Figure 3.1. Notice that our
estimator describes quite precisely the convergence rate of CG, and even better the relative
residual curve for MINRES, applied to our model problem. In contrast, the classical estimate
(1.1), based only on the condition number, is not significant for the convergence process,
perhaps up to the case r = 8/10 where the superlinear convergence is less pronounced.
Again it is striking to observe that our estimate overestimates the actual CG error curve, but
that the ratio of estimate and error is constant (about 100) in the superlinear range.

Similar phenomena occur for different choices of N and r. To see this we present in
Figure 3.2 a different numerical example based on the model function

f(x) =

∞∑

j=1

rj sin(πjx) =
r sin(πx)

r2 + 1 − 2r cos(πx)



ETNA
Kent State University 
etna@mcs.kent.edu

18 B. BECKERMANN AND A. B. J. KUIJLAARS

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

N=20

lo
g 10

( r
el

. r
es

id
ua

l )

0 10 20 30 40 50 60

−12

−10

−8

−6

−4

−2

0

N=100

lo
g 10

( r
el

. r
es

id
ua

l )
0 20 40 60 80 100 120

−12

−10

−8

−6

−4

−2

0

N=1000

lo
g 10

( r
el

. r
es

id
ua

l )

0 20 40 60 80 100 120

−12

−10

−8

−6

−4

−2

0

N=5000

lo
g 10

( r
el

. r
es

id
ua

l )

FIG. 3.2. The one dimensional Poisson problem discretized on a uniform grid for f(x) = sin(πx)/[r2 +1−
2r cos(πx)], r = 1/4, and N = 20, 100, 1000, 5000. We find the CG (relative) error curve (energy norm) in blue,
the MINRES relative residual curve in green, the classical bound (1.1) in black, and our new asymptotic bound in
red.

of Lemma 3.1 with r = 1/4 and N ∈ {20, 100, 1000, 5000}. It is interesting to observe that
the gap between error curve and estimator is about the same for any choice of N ; hence it
does not depend on the condition number of the underlying system. We also observe that,
for sufficiently large N , the number of iterations required to achieve full precision seems to
depend no longer on N nor on the condition number of AN . Such a phenomenon occurred
also in [24] where the authors discussed the same Poisson model problem (1.4) with the
right-hand side (β > 0 being some parameter)

f(x) =

N∑

j=1

sin2( πj
2N+2 )

cosβ( πj
2N+2 )

· sin(πjx).
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