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MULTIGRID PRECONDITIONING AND TOEPLITZ MATRICES
�

THOMAS HUCKLE AND JOCHEN STAUDACHER
�

Abstract. In this paper we discuss multigrid methods for symmetric Toeplitz matrices. Then the restriction
and prolongation operators can be seen as projected Toeplitz matrices. Because of the intimate connection between
such matrices and trigonometric series we can express the multigrid algorithm in terms of the underlying functions
with special zeros. This shows how to choose the prolongation/restriction operator in order to get fast convergence.
We start by considering Toeplitz matrices with generating functions having a single zero of finite order in �������	�
� ,
and we extend previous results on multigrid for Toeplitz matrices, in particular, by introducing a natural coarse grid
operator. Afterwards we carry over our reasoning to cases with more than one zero and, we study how the previous
cases relate to Toeplitz systems resulting from the discretization of Fredholm integral equations of the first kind
which arise in image processing. Next, we take a brief look at Block Toeplitz systems with Toeplitz Blocks. We
show how the one-dimensional techniques can be carried over easily for positive definite problems with a single zero
in �������	�
�� and we also present a multigrid algorithm for linear systems arising from practical image deblurring
problems. Finally, we give a new characterization of the well-known difficulties encountered in the indefinite case.

Key words. multigrid methods, iterative methods, preconditioning, Toeplitz matrices, Fredholm integral equa-
tions, image deblurring.
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1. Introduction.

1.1. Toeplitz matrices and generating functions. Let ������� be a real-valued continuous
function on the interval ��������� �!��" which is periodically extended to the whole real axis.
Given the Fourier coefficients of �������#%$ � &' � (*)+ ) ����,��.- +0/ $2143 ,5� for 6 an integer,

we can define the sequence of Toeplitz matrices 798;:=<?>@:@�A�@�CB9: , associated with the gener-
ating function ������� . Its entries are given by �	8D:E�.F�G HI� # F + H :

8 : �
JKKKKKKL

#�M # +@N OPO4OQOPOPO # NR+ :# N # M # +SN ...
...

. . .
. . .

. . .
...

... # N #�M # +SN# : +@N OPO4O OPO4O # N # M
TPUUUUUUVXW

Note that the matrices 8 : are Hermitian, since ���Y�0� is real-valued. In the case when ���Y�0� is
an even function, we are dealing with a sequence of real symmetric Toeplitz matrices.
Furthermore, we know that the spectrum of 8 : is contained in Z #�[�\ -]�	�@� .

Example 1: The well-known matrix ^_Za` 3 ` #
\ �b�dc Wfe � & �P�dc W e � , i.e., the one-dimensional
Laplacian, is related to the function �����0�=�g�dc Wfe - +0/ihkj & �lc W e - /�h � & �lmPn�o
�Y�0� . The
eigenvalues of 8 : are contained in the interval � cE� ' " . The small eigenvalues of 8 : , that lead
to the large condition numbers, are caused by the zero � M �pc of � , ����� M �;�q���	c
�D�Xc , of
multiplicity two.r
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If we want to solve 8 : � � �
iteratively we could use a further Toeplitz matrix � –

which should be easy to invert – as a preconditioner and consider � +@N 8 : �?��� +@N � . A
good preconditioner could, e.g., be one with an underlying function � ����� of � having the
same zero as ���Y�0� with the same multiplicity. If we can prove that the spectrum of � +@N 8 :
is contained in an interval � # � � " , c�� #�� � �
	 , independent of [ , then this guarantees fast
convergence, e.g., for the preconditioned conjugate gradient method (see, e.g., [30]).

1.2. Additive and multiplicative multigrid methods. For many classes of linear sys-
tems, multigrid methods are among the fastest iterative solvers. Frequently, their compu-
tational complexity is of the same order as the multiplication of the system matrix with a
vector, i.e., � � [ � for a sparse matrix and � � [����� � [ �!� in the case of a Toeplitz matrix, where[ denotes the number of unknowns in the linear system.

Before going deeper into the discussion of multigrid preconditioners we would like to
review certain basic concepts very briefly as they will be of major importance for the rest of
the paper. First of all, multiplicative multigrid cycles can be used as stand-alone solvers. We
would now like to give a compact version of a multigrid cycle. For more algorithmic details
see, e.g., the books by Greenbaum [20], pp. 193, or Briggs [4], pp. 48.

Algorithm 1: Solving 8d� � �
iteratively by a multigrid cycle:

Proceed with the following iteration until the stopping criterion is satisfied.
(a) Smooth (e.g., by the Richardson method) in order to get a new iterate ������� .
(b) Compute the residual Z;� 8d��������� � .
(c) Restrict the residual Z������! #"%$��'&)( Z , using the restriction operator &*( .
(d) Set up the coarse grid matrix, e.g., via the Galerkin approach 8 �����! �"+$ �,& ( 8-& .
(e) Solve the residual equation 8�����! #"%$�. � Z������! #"%$ on the coarse grid – if not already on
coarsest level, then apply the multigrid cycle recursively.
(f) Update �/�����10 �l�/�������2&. using the prolongation operator & .

If within the recursive solution in step (e) we use one cycle, we get a so-called V-cycle
algorithm. By applying two cycles, we recognize the W-cycle algorithm.

However, multigrid cycles can also be used as preconditioners for Krylov subspace meth-
ods, such as, e.g., the Conjugate Gradient (CG) algorithm. For complicated problems in
Scientific Computing this may be favourable because the Krylov subspace method guaran-
tees convergence. In any event, we shall see in the following that for the structured problems
investigated in this paper, multigrid cycles will usually perform more efficiently when used
as stand-alone solvers.

In contrast to the multiplicative multigrid algorithms discussed so far there are also ad-
ditive preconditioners like the celebrated BPX-preconditioner [1] or the multilevel diagonal
scaling method [39]. These methods are designed to work as preconditioners only, and al-
though they can rarely outperform their multiplicative counterparts on a serial computer, they
are highly interesting for their usually superior parallel performance. The following expres-
sion gives a simplified BPX-preconditioner without smoothing (– the matrices & N � WPWPW ��& $denote the prolongation operators on the individual levels)�	� j & N �Y� j &43 �Y� j OPO4O �Y� j & $ & ($ � OPOPO �%& (3 �%& (N � W(1.1)

One of the goals of this paper will be to develop appropriate transfer operators for
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solving Toeplitz systems. Hence we finally mention the well-known fact that better transfer
operators for multiplicative multigrid algorithms will normally also lead to better additive
preconditioners and vice versa.

1.3. Multigrid and Toeplitz systems – A brief motivation. In multigrid methods we
need to apply a restriction and prolongation operator. If we use a Galerkin approach – accord-
ing to step (d) in Algorithm 1 – we can in the symmetric case write the coarse grid matrix for
a two-grid step as8 :�� 3 � � (:]G :�� 3���� (: � 8 : ��� : � � :]G :�� 3 � & (: � 8 : � & : �
with a Toeplitz matrix � : related to a function

� ����� , and the elementary projection matrix

� :]G :�� 3 �
JKKKKKL &cQcc & cc cc & O

T UUUUUV � �0� & 0 [ � & 0 ' 0 [ �2�
in MATLAB-notation with the identity matrix � . In most cases we will consider only sym-
metric � : with real-valued generating function

� �Y�0� .
As a starting point for our paper let us introduce the following heuristics. With

��������d�� ����� � ���Y�0� � � ����� , the entries of the matrix � (: � 8 : ��� : are “asymptotically given” by the
coefficients of

�� ����� ; therefore the coefficients of 8 :�� 3 can – up to a perturbation of low rank

– be found by deleting every second entry in
�� �Y�0� W� 3 ����� �X� &	� ' � � 
 � 3 � � ' �b��� � ' � j � 3 � � ' j � �!��� � ' j � ��� W(1.2)

Let us assume that ���Y�0� has a unique zero � M of finite order
' 6 in the interval "E��� �!��" . Now

the new matrix 8 :�� 3 should be closely related to the original 8D: . Hence the related function� 3 �Y�0� should have a zero with the same multiplicity as ������� . In view of �������� c , this is
only possible if

� ��� M j � ��� c . Therefore, we can easily motivate the use of a prolongation
operator of the form

� ���0� � �	m2n�o���� M � j m2n�o������b� $ W(1.3)

Remark 1: Note that in general a suitable prolongation operator
� �Y�0� may have

an additional zero
� ��� N � � c without generating an additional zero in � 3 ����� as long as� ��� N j � �b���Y� N j � ����gc . More generally we could even use prolongation operators of

the form
� �Y�0� ��� ���0� with any nonnegative function � , but in most cases we are strongly

interested in retaining sparsity by setting � ���0� < &
.

1.4. Existing work on multigrid for Toeplitz systems. Multigrid methods for sym-
metric positive definite Toeplitz matrices were first proposed by Fiorentino and Serra for the
univariate and the block case in [16] and [17], respectively. In [18] they try to extend their
work to indefinite symmetric Toeplitz systems via an additive algorithm. In these papers the
main focus lies on Toeplitz systems with a generating function in the Wiener class having a
single zero � M�� � c5�!��" of finite order. Fiorentino and Serra use prolongations and restrictions
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corresponding to the function (1.3) and employ Galerkin coarse grid operators and Richard-
son smoothers in their algorithms. Furthermore, they were the first to come up with (1.2).

Multigrid algorithms for Toeplitz systems were also studied by R. Chan and collabora-
tors in [9] and [35]. In [9] a convergence proof for multigrid solvers is given for a class of
symmetric positive definite Toeplitz systems generated by functions with isolated zeros of
orders at most

' W In particular, [9] deals with results in cases where a prolongation operator
corresponding to (1.3) is no longer appropriate, such as, e.g., for Toeplitz systems generated
by ������� � & � m2n�o�� ' �0� . The paper [9] first establishes two-grid convergence. In analogy with
the papers by Serra and Fiorentino [16], [17], this is done on the basis of a general theorem by
Ruge and Stüben ([28], p. 89) which gives conditions for level-independent convergence of
two-grid solvers with Galerkin coarse grid operators. Then a convergence result for V-cycle
solvers is presented. However, in general the convergence rate of these multigrid solvers is
level-dependent (see [9], section 4). The algorithms studied in [9] employ damped Jacobi
smoothing and – as we already mentioned – use Galerkin coarse grid operators.

Recently, Serra [31] also gave a detailed proof of convergence for two-grid solvers
based on the assumption that the generating function � has a single zero � M of finite order
at the origin. Again, the proof is founded on Ruge and Stüben’s theory [28]. In particular,
Serra’s precise analysis of two-grid optimality (see [31], section 5) also explains rigorously
why prolongation operators according to (1.3) are suitable – and it suggests lower and upper
bounds for 6 within (1.3).

The work of Serra and Fiorentino is driven by pointing out close relations between
Toeplitz matrices and matrices from trigonometric algebras. In particular, they also give
multigrid convergence proofs for � -matrices, i.e., the algebra of matrices that can be
diagonalized by the fast sine transform. In [32] and [33] Serra and Tablino very recently
presented multigrid approaches for circulant matrices. We finally wish to mention that
formula (1.2) holds the same way for these matrix algebras since it is actually based on a
convolution argument.

1.5. Outline of this paper. We start by taking a look at the case of generating functions
with a single zero � M � � c5�!��" of finite order. We report problems that can arise in a multi-
grid approach with the prolongation operator corresponding to (1.3) for certain positions of� M and briefly present a new idea on how to overcome such difficulties by projections onto
every � -th column. However, we observe that such algorithms are not very recommendable
computationally. Instead, we focus on another way to overcome the problems. It is trivial
and well-known that we can scale every Toeplitz matrix with a zero � M � "�� � �b��" such that� M is shifted to the origin. We then turn to the problem that we will normally lose Toeplitz
structure on coarser levels, if we set up our coarse grid matrices using a Galerkin approach
according to Algorithm 1, step (d). In the case when our generating function has only got a
single zero � M�� "�� � �b��" , our strategy of shifting the zero to the origin helps us to get rid of
such inconveniences completely, because it allows us to use a natural coarse grid operator.

Then we carry over our multigrid algorithms with natural coarse grid operators to prob-
lems with equidistant zeros of finite order in "0� � �!��" . Afterwards we investigate Fredholm
integral equations of the first kind arising from one-dimensional image deblurring. We are
attempting to make a connection with linear systems considered previously by interpreting
the system matrices to be associated with a “zero of infinite order”. We extend an algorith-
mic idea by R. Chan, T. Chan and J. Wan [7] – again by obtaining the coarse grid operators
via rediscretization – and put the new algorithm into the context of the established multigrid
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method of the second kind by Hackbusch (see [22], chapter 16.)
The final section deals with Block Toeplitz matrices with Toeplitz blocks (BTTB matri-

ces). We show how the one-dimensional techniques carry over easily in the case of a single
zero � M�� "]��� �b��" 3 . Again, we follow the strategy of fixing the zero at the origin, combined
with a natural coarse grid operator. Obtaining coarse grid operators via rediscretization also
leads to a practical multigrid algorithm for deblurring images with Tikhonov regularization.
We note that the advantages of employing a natural coarse grid operator – in terms of pre-
serving BTTB structure – are even more striking than in one dimension. Finally, we also take
a look at indefinite BTTB matrices. We give a new phenomological characterization of the
problems encountered in designing multigrid algorithms for such systems which seems to be
strongly related to a very recent algorithm by Brandt and Livshits [3] for Helmholtz problems
with constant coefficients.

We would like to emphasize right now that – very much unlike the papers by Serra and
Fiorentino and R. Chan and collaborators, respectively – the focus of our paper does not lie on
mathematical proofs. Instead, we are concerned with the development of algorithms. In any
event, we will point out how our new algorithms fit into the existing mathematical framework.

Due to our focus on algorithmic issues we feel the need to give the reader plenty of
numerical results. We will report numerical experiments for additive and multiplicative
multigrid preconditioners as well as for multigrid algorithms as stand-alone solvers. There
we will put particular emphasis on W-cycle solvers. (Note also that multigrid convergence
proofs can frequently only be achieved for W-cycles and not for V-cycles.)

We always employ the following stopping criterion to obtain the iteration counts we list
in our tables. � Z ����� ���� Z � M � � � � & c +�� W
Here Z ����� denotes the residual after � iterations and Z � M � the original residual, i.e., we stop
iterating when the relative residual corresponding to the maximum norm is less than or equal& c +�� . Unless otherwise stated, we use two steps of the Richardson method for pre- and
post-smoothing in our multigrid cycles. According to [16] and [17] we use the damping
parameters � N � &	���
	�� 1��� + ) G )�� ���Y,
� for pre-smoothing and � 3 � ' ���
	�� 1��� + ) G )�� ���Y,
� for
post-smoothing, respectively. We finally note that it would not be sensible to apply a variant
of Gauss-Seidel for smoothing in a Toeplitz context, unless the matrix was sparse.

2. Generating functions with zeros of finite order: Simple cases.

2.1. Model problems. In this and the following two subsections we will assume that
our Toeplitz matrix 8 is connected with a generating function � in the Wiener class having a
single zero � M � � c5�!��" of finite order. Although we are actually interested in dense Toeplitz
matrices our reasoning is most easily explained by first considering sparse linear systems.

Example 2: Our standard example in what follows will be the sparse matrix belonging
to the generating function ���Y�0� �X�Ym2n�o��Y� M ��� mPn�o
�Y�0�!� 3 �
with � M�� ����� �b��"���7�� ) 3 B . Thus � has the zeros � � M . Note that we deliberately exclude the
case � M ��� ) 3 , which we will investigate separately in section 3.
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The matrices from Example 2 are strongly related to the indefinite matrices correspond-
ing to

����Y�0� � m2n�o���� M �5�=m2n�o������ , which can be seen as the result of a uniform finite difference
discretization of the 1D Helmholtz equation

� h9h j�� 3 � � \ W
Note that the matrices from Example 2 will in general differ from the Helmholtz normal

equations by a perturbation of low rank.

2.2. The position of the zero. Let us consider Toeplitz matrices 8;: connected to������� �p�	m2n�o���� M � � mPn�o
�Y�0�!� 3 . According to (1.3) we use a function with zeros at � � M j �
as prolongation operator, namely �	m2n�o���� M � j m2n�o����0�!� $ . The corresponding prolongation
matrices � : are^_Za` 3 ` #
\ �	c Wfe � m2n�o���� M �R� c Wfe � ,� - [ ^ # 3 ` #
\ �Yc W ' e �!mPn�o
�Y� M �2�!m2n�o���� M � 3 j &	� ' �!mPn�o
�Y� M �2�!c W ' e � ,o9- � ^ # 3 ` #
\ � N� � �� mPn�o
�Y� M �R� �3 m2n�o��Y� M � 3 j �� �!mPn�o
�Y� M � � j �3 mPn�o
�Y� M �R� �3 m2n�o��Y� M � 3 j �� � �� m2n�o���� M �2� N� �R�
and so on. The Galerkin coarse grid matrix matrix 8 :�� 3 of half size is – up to a low rank term
– related to the function� 3 �Y�0�*� � &	��' � 
 �YmPn�o
�Y� M � j m2n�o�� � ' �b� 3 $ �	m2n�o���� M � � m2n�o�� � ' �b� 3 j

j �	m2n�o���� M � � m2n�o�� � ' �b� 3 $ �Ym2n�o��Y� M � j mPn�o
� � ' �!� 3 � �
�YmPn�o
�Y� M � 3 � m2n�o�� � ' � 3 � 3 � 
 �	m2n�o���� M � j m2n�o�� � ' �b� 3 $ + 3 j �YmPn�o
�Y� M � � m2n�o�� � ' �b� 3 $ + 3 � � ' �
�YmPn�o
� ' � M ��� m2n�o������b� 3 � 
 �YmPn�o
�Y� M � j m2n�o�� � ' �b� 3 $ + 3 j �Ym2n�o���� M � � m2n�o�� � ' �b� 3 $ + 3 � ��� W

That way our heuristics points out that ��3 �Y�0� has the zeros � ' � M with the same multiplicity
as ���Y�0� . The new function ��3 ����� can be seen as a slightly changed version of the original �
with the new zeros � ' � M . (Note that this has been studied rigorously e.g. in [16], [17], [31]).
We observe that the case � M �pc is exceptional because

' � M �q� M �pc and we can use the
same prolongation and restriction operators in every step.

Remark 2: In general, this change of the zeros � � M , � ' � M , �
	 � M , and so on, can lead
to difficulties if in the course of the multigrid method we reach a zero near � ' � j & �_� � ' ; this
case is e.g. also related to the function �����0�D�qm2n�o����0� 3 with two double zeros at � � ' and� � � ' . Then � M and � M j � are both zeros of � , and ��3 will have

' � M as a zero of higher
multiplicity than ���Y�0� ; then our reasoning shows that the above approach will lead to a
deterioration of the condition number of the related linear system.

Remark 2 can easily be confirmed in numerical experiments. The following tables com-
pare iteration numbers for additive multilevel preconditioners of the form (1.1) for the Con-
jugate Gradient method.
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number of unknowns � �?c W ' � �?c W & e � � c W & � � c W c & � � c W c c &' e � � c � � & � � & e � &����
e &9' � � &
& & ' c c ' 	 � '�� eTable 1. CG Iteration numbers for additive preconditioners:������� � �	m2n�o���� M � � m2n�o��Y�0�b� 3 , � ����� �X�Ym2n�o���� M � j m2n�o����0�!� 3 and � M �?� � 	 j � .

number of unknowns � �?c W ' � �?c W & e � � c W & � � c W c & � � c W c c &' e � & e � & ��� '5& � ' '%& ' �
'
e &9' '�� 	 � e c �	��� 	 &
� 	 ' '

Table 2. CG Iteration number for additive preconditioners:������� � �	m2n�o���� M � � m2n�o��Y�0�b� 3 , � ����� �X�Ym2n�o���� M � j m2n�o����0�!� 3 with � M �?� � ' j � .

2.3. Projections onto every � -th column – the first idea for a result. In order to avoid
the problem outlined in Remark 2 we could also introduce elementary projections onto every
third, fourth, or general � -th column/row of 8;: . Instead of reducing 8D: to half size we use8 :���� . To this aim we apply elementary projections � :]G : �� . Making use of our heuristics
(1.2) once again this is related to picking every � -th entry out of

�������� � � �Y�0� 3 ������� . Then
we get

� � �Y�0� � &
�

� +@N�

��
M �� � � j ' �
�� � � &

�

� +@N�

��
M � 3 � � j ' �
�� �b��� � j ' � �� � �

which is again a
' � -periodic function. If � has a zero � M we have to generate a zero with the

same multiplicity in � � . This can be achieved by defining

� ����� � 
 � +@N�

�� N �YmPn�o
�Y� M � � m2n�o���� �
' �
�
� � � $ W

Then the function � � will have a zero at � � M with the desired multiplicity. Therefore, by
choosing � in every step of the multigrid method we could at least avoid the exceptional
case � M�� � ' � j & �_� � ' .

However, it has long been known that multigrid algorithms usually work best if the
restriction yields a reduction to every second column. This has been confirmed in all
our numerical experiments which have been leading us to the conclusion that the new
algorithmic idea outlined in this subsection is not very recommendable for use in practice.
In the following table we simply compare iteration counts for additive preconditioners for8 �?^_Za` 3 ` #
\ �.� & � ' �4� & � .

number of unknowns
&9' � ' e � e &9' & c ' 	 ' c 	 � 	
c �	�

reduction 1:2 per step; 5 levels used
& � & � &
� ' c '5& '5&

reduction 1:4 per step; 3 levels used
��� 	�c 	 & 	 & 	 & 	 &

Table 3. CG Iteration numbers for additive preconditioners of the form (1.1): We clearly
observe that a reduction to every second column is superior to a reduction to every fourth
column.
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2.4. Diagonal scaling – the better result. Regarding the fact that�	m2n�o���� M � � m2n�o������b� 3 � � & � mPn�o
�Y�=� � M �b� � � & � m2n�o��Y� j � M �!�R�(2.1)

there is a much simpler strategy to solve the problems from Example 2. The product form
(2.1) allows us to devise a simple and effective preconditioner. We solve the two matrix
problems related to

& � m2n�o���� � � M � (e.g., by multigrid) and use the result to precondi-
tion conjugate gradients. Note that the matrices related to

& �lm2n�o���� � � M � can be treated
very efficiently by multigrid, because they are nothing else than diagonally scaled versions
of ^_Z9` 3 ` # \ �.�dc W e � & �P�dc Wfe � – i.e., the one-dimensional Laplacian With the two (orthogonal)
diagonal matrices� N � 3 ` #
\ � & � - /ih�� �!- 3 /ih�� � WiW�W �R�

�
3 � 3 ` #
\ � & � - +0/ih�� � - + 3 /ih�� � WiWiW �2�

we can write� N � ^_Z9` 3 ` # \ �.�dc W e � & �P�dc Wfe � �
�
3 � ^_Z9` 3 ` # \ �.�dc W e - /ih�� � & �@�dc Wfe - +0/ih�� � W(2.2)

It is plain that the diagonal scaling strategy (2.2) can be applied to any Toeplitz matrix in
order to shift the generating function along the � -axis. Furthermore, as long as we have
only a single zero � M � " �?� �!��" , the whole algorithm is simplified by shifting � M to the
origin. Then we can use the same kind of transfer operators in every step – i.e., standard
prolongations and restrictions according to

� �Y�0� �X� & j m2n�o����0�!� $ .

2.5. Natural coarse grid operator. For the rest of section 2 we shall assume that
our Toeplitz matrices are related to a nonnegative generating function with a unique zero� M�� "E� � �b��" . (Note that this does not in general include the matrices from Example 2.)
In the previous subsections we have presented a number of arguments for scaling the Toeplitz
system with the diagonal matrices

� N G 3 � 3 ` #
\ � & � -�� /�h � �!-�� 3 /ih � � WiW�W � , before treating it by
multigrid. However, we have not yet presented a way to handle the problem that our Galerkin
coarse grid operators lose their Toeplitz structure. R. Chan and collaborators already pointed
out in [9] that if we use standard linear interpolation (according to

� �����d� & j m2n�o��Y�0� ) then
we can only be sure to preserve Toeplitz structure on all the coarse levels if the size [ of the
matrix is of the form [ � '�� � &

(with 	 integer). Otherwise perturbations of low rank can
be introduced. But note that this loss of Toeplitz structure may cause severe difficulties when
we go down to lower levels.

There is a very simple result. First scale the matrix according to (2.2) – and then
employ a natural coarse grid operator! In any event, let us start from scratch. Going
back to the earliest papers on multigrid (such as, e.g., [2]), researchers did not think in
terms of Galerkin coarse grid operators. Instead they used a natural coarse grid operator
based on an appropriate rediscretization of the underlying partial differential equation.
We wish to emphasize that using a natural coarse grid operator is still the most popular
choice among multigrid practitioners. In particular, the recent 600-page monograph by
Trottenberg, Oosterlee and Schüller [37] deals almost entirely with this type of coarse grids.
Galerkin coarse grid operators are mainly preferred from an algebraic viewpoint for their
superior stability properties, e.g., in connection with partial differential equations with highly
oscillatory or discontinuous coefficients (see e.g. [25]) – and, furthermore, the underlying
variational principle facilitates proving convergence theorems.
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But let us take a closer look at the Toeplitz problems in question. Considering the one-
dimensional Laplace problem with the system matrices8 : � � &	� � 3 � � ^_Za` 3 ` #
\ �.� & � ' �4� & � with � � &[ �
it is well-known that natural coarse grid operators work out perfectly and convergence proofs
are not difficult.

Now let us switch over to general Toeplitz matrices belonging to a generating function �
that satisfies (cf. also [9], section 3)

�����1��� + ) G )�� ����,
�& � mPn�o
�Y,
� � c W(2.3)

If � has a zero of order
'
, such as, e.g., �����0��� � 3 , then we know that the corresponding

sequence of Toeplitz matrices will have the same spectral properties as the 1D Laplace
matrices from Example 1 (see [21]). This fact motivates the idea to simply mimic a multigrid
algorithm with a natural coarse grid operator, i.e., just as we would do it for the Laplacian,
our coarse level matrix is nothing but an appropriately scaled Toeplitz matrix of half size
corresponding to the same generating function ������� .

Remember that, in a multigrid algorithm with natural coarse grid operators for a second
order finite difference discretization of the 1D Laplacian, the fine grid matrix and the matrix
representation on the following coarse grid bear the different factors � &	� � � 3 and � &	� ' � � 3 ,
respectively. Hence if we prefer to multiply our discrete equations by the factor � 3 , then it is
evident and well-known that care must be taken to use the correct factor 	 � 3 on the coarse
grid, i.e., we must not forget to multiply the residual Z �����  �"%$ in Algorithm 1, step (c), with
the factor � # m�� 	 (see e.g., [37], sec. 2.7).

When we mimic this procedure for a general Toeplitz matrix generated by a function� satisfying (2.3), then the appropriate factor to be used for scaling the defects needs to
reflect the order � of the zero of the function � , i.e. � # m;� '��

. (And, as there is no physical
grid associated with our Toeplitz matrix, we will most certainly prefer to have this factor on
the right hand sides of our equations.) In other words, our multigrid algorithms with natural
coarse grid operators need to take into account carefully the order of the zero of the generating
function involved, such that defects are scaled correctly.

In order to show the computational feasibility of our approach, we will deliberately
choose the matrix sizes in our numerical experiments in most cases to be of the forms [ � ' �
or [ � ' � j &

, i.e., we are mainly studying cases in which the Toeplitz structure would be
lost on the coarse levels if a Galerkin operators were employed. All the numerical results
presented in the subsections 2.6, 3.3 and 4.3 were obtained with multigrid W-cycles with the
coarsest level matrix always chosen to be a

�	� �
,
�
� �

or
�
� �

-matrix, respectively. On this
coarsest level we perform a direct solve. Finally, we wish to emphasize once again that our
idea of using natural coarse grid operators crucially depends on the fact that our single zero� M � "0� � �!��" of finite order is indeed shifted to the origin, for otherwise, (2.3) could not be
satisfied.

2.6. Numerical results. In our numerical experiments we will show that the new multi-
grid algorithms with natural coarse grid operators perform very well. We will only give nu-
merical results for dense Toeplitz matrices as the loss of Toeplitz structure on coarser levels
is only an issue in this case.
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Example 3: Generating functions for dense Toeplitz matrices with a single zero of order
at most two at the origin.
(a) � N �Y�0� � � 3 with the Fourier expansion

� N �Y�0� � � 3� j 	 � �
�

�� N �.�
& � �
� 3 m2n�o�� � � �0���

(b) � 3 ����� � ��� � 	�� � o4` [ ��� ��' � with the Fourier expansion

� 3 �Y�0� � &� j '� �
�
�

�� N �b� & � � � � 	 � � 3 j & �� ' � �k� & � 3 � � ' � � j & � 3 m2n�o�� � � �0���
(c) � � �Y�0� ��� ��� with the Fourier expansion

� � ����� � � ' � 	� �
�
�

�� N
&� ' � �I� & � 3 m2n�o��b� ' � �I� & � � �����

(d) � � ����� ��� o4` [ ��� ��' ��� with the Fourier expansion

� � ����� � '� � 	� �
�
�

�� N
&� ' � �I� & � � � ' � � j & � mPn�o
� � � ��� W

Note that for the matrices from Examples 3 (a)–(d) the celebrated circulant precon-
ditioner [10] will in general not lead to optimal computational performance, because the
underlying functions are not strictly positive. The matrices from Examples 3 (a) and (b)
have zeros of order

'
and hence – just as we would do it for the Laplacian – we scale the

residuals with a factor 	 . For Examples 3 (c) and (d) we regard the zeros to be of order
&

and
hence multiply the defects by

'
. According to the existing theory, the prolongation operator

to be used for multigrid treatment of all the matrices from Example 3 is linear interpolation
corresponding to

� �Y�0� � & j mPn�o
�Y�0� .
number of unknowns e & � & c ' e ' c 	 � 	�c ��� �E&
� � &�� � � e� N �Y�0� �l� 3 � � � � � �� 3 �Y�0� �X��� � 	]� � oP` [ �Y� ��' � &
& &a' & & &9' &9' &a'� � ���0� ��� ��� e e e e e e� � �Y�0� ��� o4` [ ��� ��' ��� � � � � � �

Table 4. Iteration numbers for the preconditioned conjugate gradient method for the dense
matrices from Example

�
: We use a W-cycle for preconditioning.

number of unknowns e &9' & c ' 	 ' c 	 � 	�c ��� �E&
��' &�� � � 	� N �Y�0� �l� 3 &
& &a' &9' &9' &9' &a'� 3 �Y�0� �X��� � 	]� � oP` [ �Y� ��' � &a' &a' &9' &9' &9' &a'� � ���0� ��� ��� � � � � � �� � �Y�0� ��� o4` [ ��� ��' ��� e e e e e eTable 5. Iteration numbers for W-cycle solvers for the dense matrices from Example
�
.
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Tables 4 and 5 show very clearly that our new multigrid algorithms lead to fast con-
vergence with iteration counts independent of the number of unknowns involved. Hence they
give very efficient solvers of optimal computational complexity � � [����� [ � . Furthermore, our
multigrid method has no problem at all with the fact that � � ���0� � � ��� and � � ���0� � � oP` [ �Y� ��' � �
are not differentiable at the origin. On the contrary, the fact that the order of the zero is lower
than

'
leads to even faster convergence.

Finally, let us also take a brief look at zeros of higher order.

Example 4: Generating functions for dense Toeplitz matrices with a single zero of order
higher than

'
at the origin.

(a) � � ����� �l� � with the Fourier expansion� � �Y�0� � � �
e
j �

�

�� N � 	 �� ' � �k� & � � � � � 3� ' � �k� & � 3���� ��� �!� ' � �k� & � � �0� jj �
�

�� N �
' � 3
� 3 � �' � � � �	� �
� � ' � � � �0���

(b) � � ����� ��� ��� � with the Fourier expansion� � �Y�0� � � �
	
j '� �

�
�

�� N �
&9'� ' � ��� & � � � � � 3� ' � ��� & � 3 � � �
� �!� ' � ��� & � � �0� jj �

�

�� N
� �� ' � �]� 3�� ��� � ' � � � ��� W

For the matrices generated by � � we deal with a zero of fourth order and hence scale the
defects by a factor of

&��
. As for � � the third derivative is discontinuous – we treat it as a zero

of third order and use the scaling factor
�
.

Now equation (1.3) tells us to employ a prolongation operator corresponding to� �����D� � & j mPn�o
�Y�0�!� 3 – this will be abbreviated by “Prol. squared” in the following tables.
However, it might be very interesting also to try standard linear interpolation corresponding
to
� ����� � & j m2n�o��Y�0� (abbreviated by “Prol. simple”):

number of unknowns e & & & c ' � ' c 	 � 	�c � e �5&
�E& &
� � � �� � ����� � � � , Prol. simple
'�� ' � '�� '�� '�� ' �� � �Y�0� �?� � , Prol. squared
� � � � � � � � � � � �� � �Y�0� ��� ��� � , Prol. simple
& 	 & 	 & 	 & 	 & 	 & 	� � ���0� � � ��� � , Prol. squared
&
� &
� &
� &�� &�� &
�

Table 6. Iteration numbers for W-cycle solvers for the dense matrices from Example 	 .

We observe that in practice it is sufficient to use standard linear interpolation for
prolongation and restriction. Surprisingly, in this case results are even better if we use the
transfer operators corresponding to

� ������� & j m2n�o������ – although the convergence theory
for the two-grid case presented in [31] clearly tells us to use

� �Y�0� � � & j m2n�o������b� 3 . In
any case, this confirms the well-known advice of multigrid practitioners that higher order
interpolations might frequently not pay off. Finally, note that level-independent convergence
for the matrices from Example 4 has yet only been established for two-grid solvers (see [31])
– but we also observe optimality for our W-cycle solvers.
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2.7. Conclusions. In this section we have presented a new and efficient way to
solve Toeplitz systems corresponding to an underlying function having a single zero� M � "�� � �!��" of finite order. One first scales the matrix with diagonal matrices of the form3 ` #
\ � & �!-�� /ih�� � -�� 3 /�h�� � WiWiW � in order to shift the zero to the origin and then solves the scaled
system by a multigrid algorithm employing a natural coarse grid operator.

3. Generating functions with equidistant zeros of finite order.

3.1. Equidistant zeros. The case when the generating function has more than one zero
of finite order is certainly more complicated. Let us start with a fairly simply example which
has first been addressed in [9]. For generating functions of the form ������� � &�� m2n�o�� � � ��� ,
� integer, it is no longer appropriate to use prolongation operators of the form (1.3). Instead,
Chan, Chang and Sun [9] use prolongations corresponding to

� ����� � & � m2n�o�� � � �0� and
their multigrid algorithms based on Galerkin coarsening work out perfectly. Choose �����0� �& � m2n�o�� � � ��� and observe that this idea also matches the heuristics (1.2)� 3 ���0� � � & j m2n�o�� � � �' �b� 3 � � & �dm2n�o�� � � �' �b� j � & j m2n�o�� � � �' j � �!� � � & �dm2n�o�� � � �' j � �!� 3 �
�X� & j m2n�o�� � � �' �b� 3 � � & � m2n�o�� � � �' �!� j � & � mPn�o
� � � �' �b� 3 � � & j m2n�o�� � � �' �b� �

� ' � � & �l�Ym2n�o�� � � �' �!� 3 � � & � m2n�o�� � � �0� W
Note that for this sparse example the appropriate choice for the prolongation operator could
also be written in the form

� �Y�0� � ����� j � � whenever � is odd. This choice is closely related
to the so-called “Matrix Multilevel Method” [25] recently proposed by the authors for much
more general sparse matrices.

However, the prolongation operators
� ����� � & j m2n�o�� � � ��� are applicable in case the

generating function of our Toeplitz matrix has � equidistant zeros of order at most
'

in the
interval � c5� ' � � , one of which needs to be at the origin, i.e., the generating function has the
zeros � M �?cE�b� N � 3 )� � W4WPW �!� � +@N � 3 � � � +SN � � )� .

We can again apply our reasoning from section 2. In case none of our � equidistant zeros
of order at most

'
is at the origin, we first scale the matrix according to (2.2). Afterwards we

observe that ��������� & � m2n�o�� � � ��� can again be interpreted as a discretization of the 1D
Laplacian – and, analogously to (2.3), we can carry over our approach to Toeplitz matrices
associated with a generating function � satisfying

� ���1 �� + ) G )�� ���Y,
�& � m2n�o�� � � ,�� � c W(3.1)

In other words, we are able to use multigrid algorithms with natural coarse grid operators
and the prolongations

� ����� � & j m2n�o�� � � �0� for functions satisfying (3.1).

3.2. A block interpretation. The above case also leads us to an interesting observation.
Let us take a look at the matrix connected with ���Y�0� � & � m2n�o�� � � ��� and the corresponding
transfer operators

� ���0� � & j mPn�o
� � � ��� . Now we can interpret this also in terms of matrix
valued functions. ���Y�0� � � � � m2n�o��Y� � � �0� � � � � � & � m2n�o������b�
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is treated by prolongations of the form

� �Y�0� � � � j m2n�o��Y� � � ��� � � � � � & j m2n�o������b�R�
with � � denoting the � -by- � identity matrix. Thus we can view this case as standard multi-
grid applied to Block Toeplitz matrices with � -by- � blocks. By inserting block matrices
different from the identity we can carry over this idea to general Block Toeplitz matrices
(i.e., also without Toeplitz blocks). This will be presented later in a separate paper [26].

However, note that the strategy outlined in subsection 3.1 also applies to other cases,
e.g., Toeplitz matrices generated by ���Y�0� � � � o4` [ �Y�0� which are not covered by the above
block interpretation (see Example 5(c) in subsection 3.3 for the Fourier expansion). As������� � � � o4` [ ���0� has the two zeros � M � c and � N � � we can interpret the appropri-
ate prolongation

� �Y�0� �X� & � m2n�o����=� � M �b� � � & � mPn�o
�Y� � � N �b� � &' � � & � m2n�o�� ' � ���b�(3.2)

analogously to (1.3) as the product of the two prolongations corresponding to � M and � N .
This interpretation has previously been given by Serra in [31], although he has not published
any numerical experiments to confirm it.

3.3. Numerical results. In the following we will test our multigrid algorithms employ-
ing natural coarse grid operators for problems with equidistant zeros in � cE� ' � � .

Example 5: Generating functions for dense Toeplitz matrices with two zeros � M � c and� N �?� of order at most two.
(a) ���
���0� �?� 3 � ���I� � � 3 (– defined on � c5�!��" and then evenly extended to ����� � cE� –) with the
Fourier expansion

��������� � � �� c �
�
�

�� N
�' � � ' � �]� � � m2n�o�� ' � � � �0�R�

(b) � � ����� ��� o4` [ ���0��� with the Fourier expansion

� � ���0� � '� � 	� �
�
�

�� N
'� ' � �k� & � � � ' � � j & � � m2n�o�� ' � � � �0�2�

(c) ��� ����� �l� � oP` [ �Y�0� with the Fourier expansion

��� �Y�0� � & � &' m2n�o������ � ' � �
�

�� 3
�.� & � �� ��� & � � � � j & � � m2n�o�� � � ��� W� � has two isolated zeros of order

'
and hence we expect to treat as like�������D� & � m2n�o�� ' � �0� and use the factor 	 for scaling the defects. For � � the zeros are of

order
&

and defects are multiplied by
'

when going down to coarser levels. ��� is the most
challenging example. The zero � M � c has order

'
, whereas the zero � N � � has order

&
. As

the arithmetic mean of the orders of the zeros is
& W e we employ the scaling factor

' N�� � � '�� '
.
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number of unknowns e & � & c ' e ' c 	 � 	�c ��� �E&
� � &
� � � e �
'�� �	�� � ����� �?� 3 � ��� ��� � 3 & & &9' &9' &9' &9' &a' &9'� � ���0� � � o4` [ �Y�0��� e e e e e e e� � ����� �l� � o4` [ ����� � � � � � � �

Table 7. Iteration numbers for W-cycle solvers for the dense matrices from Example e .
We observe optimal computational behaviour of our multigrid algorithms for all

problems from Example 5. Thus we can confirm numerically that the multigrid algorithms
suggested in section 2 carry over to the case of generating functions with � equidistant zeros
in � c5� ' � � .

4. Image Deblurring. Today image processing is may be the most eminent field of
applications of Toeplitz matrices (see, e.g., [5], [6]). The best known example are dense
matrices from image deblurring.

4.1. The model. Let us start with an idealized model for one-dimensional image de-
blurring. There we want to solve an integral equation of the first kind of the form

� � ����� � (
� 6@��� ����� � � �Y��� � 3 ��� �(4.1)

with a convolution kernel of the form 6@�Y�0�;�p-4� � �b��� 3 ��� 3 � , with
� � " c5� & � on the interval� � ��� � � � " . The operator

�
is often referred to as “Gaussian blur”.

We can now discretize this integral equation on a uniform grid via the midpoint quadrature
rule and will end up with a Toeplitz matrix (see, e.g., [5], section 4.4, or [27], chapter 2). We
work with the mesh size � � 3	�: and the midpoints� � � � � j � ' � �I� & � � � ' � ��� & � ' � WPW4W � [ W
Then we use the midpoint quadrature rule and the convolution operator (4.1) translates into

� � ��� / � � ( �+ � 6@�Y� / � ��� � � ����� � 3 ��� � : +SN�

��
M 6@�Y� / � � � � � �Y� � � � � � 
��� " / �

with the symmetric positive definite Toeplitz matrix


�� � � ^.n - �� ` ^	�0�	6@�	c
�2� 6@� & � � �R� WPWPW � 6@�!� [ � & � � � �!�R�and the vector �� �X� � ��� N �2� WPW4W � � ���0:E� " ( .

It is well-known that the blurring matrices 
 are highly ill-conditioned and hence de-
blurring algorithms are extremely sensitive to noise [19]. In other words, we are dealing with
an inverse problem and hence we need to regularize.
In the following we shall only investigate Tikhonov regularization [15], [38]. If we minimize
the Tikhonov functional in the � 3 -norm our system matrix becomes

�*��
 j�� �E�(4.2)

with regularization parameter
�

. If we use the � N -norm instead, then the system matrix
becomes

� ��
 j���� �
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with
� �?^_Za` 3 ` #
\ �.� & � ' �4� & � denoting the one-dimensional Laplacian.

For simplicity, we will in the following only discuss the � 3 -based case (4.2). However,
carrying over our reasoning to the � N -based case is straightforward.

4.2. Transfer operators and smoothers. So far, there has essentially been only one
paper by R. Chan, T. Chan and J. Wan [7] on multigrid methods for image deblurring. In
the following we shall attempt to put their observations and algorithms into the context of
multigrid methods for Toeplitz matrices and the so-called multigrid method of the second
kind.

The paper [7] reports that, for the system matrices in question, standard relaxation meth-
ods like Richardson fail as smoothers. To overcome this difficulty, a semi-iterative smoother
is used. They employ conjugate gradients with optimal cosine transform preconditioner [8].
The approach does not make any explicit use of Toeplitz structure; furthermore, standard pro-
longations and restrictions and Galerkin coarsening are used without any further explanation
(see [7], p. 70).

Do the methods presented in section 2 relate to this case? First of all, we need to state
that obviously there is no underlying function connected with our matrices 
 . However, if
we simply assign functions to matrices of different size, we observe that our matrices behave
as if we were dealing with a “single zero of infinite order” located at � M �?� .

However, this information does not help us to devise multigrid transfer operators. The
reasoning associated with (1.3) is no longer applicable as we certainly do not want to use
anything like

� �Y�0� �X� & � m2n�o������b� � .

On the other hand, reasonable information on the prolongation operators & and the re-
striction operators � is given if we look at the ideas from [7] in the context of the multigrid
method of the second kind, proposed by Hackbusch (see [22], chapter 16), i.e., W-cycle al-
gorithms for the efficient numerical solution of Fredholm integral equations of the second
kind.

As long as we discretize our integral operator (3.1) via the midpoint quadrature rule
the discretization error will be of order � � � 3 � and in that case it has been pointed out by
Hackbusch [22], p. 308, why piecewise linear interpolation – i.e. corresponding to

� ����� �& j m2n�o����0� – should be used for prolongation. For the restrictions � trivial injections are
shown to be the canonical choice – since they satisfy � � & � � on every level – but it is
pointed out why weighted restrictions with &p���*( on every level come out to be suited as
well. (See again [22], pp. 306, for the details and underlying consistency results).

From the Toeplitz point of view we would like to emphasize that Hackbusch’s theory
states clearly that it would be totally inappropriate to scale the system via the diagonal ma-
trices

3 ` #
\ � & �!-�� / ) �!-�� 3 ) � WiWiW � in order to move the zero � M � � to the origin for the discrete
integral operators from (4.1). In this case shifting the zero would mean violating consistency
conditions and thus would corrupt the whole algorithm.

Let us view our system matrix �l��
 j � � � in terms of a Fredholm integral equation
of the second kind. Setting

�6@��� �+.5� 0 �g� 6S��� ��.5� and obtaining a discretization
�

 via the

midpoint quadrature rule we can rewrite (4.2) as

� � � � �k� �

 �

in the standard form of an integral equation of the second kind.
In standard applications of integral equations of the second kind we mostly deal with the

case
� � &

and then the multigrid method of the second kind – which usually employs one



ETNA
Kent State University 
etna@mcs.kent.edu

96 Multigrid preconditioning and Toeplitz Matrices

step of Richardson (pre)smoothing – works out perfectly. However, if
�

becomes small, then
the Richardson smoother is strongly divergent and this can cause severe problems for the
W-cycle solvers, because the smoothing steps ”worsen” the approximate solution in every
iteration (and on each level). Thus the standard version of the multigrid method of the second
kind may also diverge rapidly as its convergence factor depends quadratically on � &	� � � (see
[22], sec. 16.2.1).

Furthermore, there are variants of the multigrid method of the second kind which are
designed especially for the case of small

�
(and also employ Richardson smoothing). We

mention in particular a variant by Hemker and Schippers [24] and a variant by Hackbusch
which basically omits every second smoothing step on all the coarse levels (see [22], sec-
tion 16.2.3).

However, the convergence factors of the improved versions still depend linearly on � &	� � �
and we have checked very carefully in plenty of numerical experiments that they do not lead to
convergent algorithms for the small regularization parameters

�
we need to deal with in image

deblurring problems. Instead, we confirm the need for a semi-iterative smoother according
to [7]. We know that an appropriate smoother would be a scheme that never diverges for
problems of the form (4.2) – and (preconditioned) conjugate gradients are an algorithm known
to have this property. For more details and analysis we refer to the upcoming Ph.D. thesis
[34].

As we are not using a stationary iterative smoother, our multigrid cycles are no longer
available for standard Krylov subspace solvers. In fact, our multigrid preconditioner changes
during the iteration as a result of the CG-smoothing. However, we could use so-called ”flexi-
ble” Krylov subspace methods, such as, e.g., the FGMRES variant by Saad [29], which allows
to use a different preconditioner in every iteration step. But as our system matrix (4.2) is sym-
metric positive definite, symmetric versions of flexible Krylov solvers would also come into
account (see [12]).

Finally, we emphasize that again we prefer to use a natural coarse grid operator – instead
of Galerkin coarsening used by R. Chan, T. Chan and J. Wan (see [7], p. 70) – in order to
preserve Toeplitz structure on the coarse levels. We will point out why this can be regarded
as a major algorithmic improvement.

4.3. Numerical results. In the following we give numerical results for discretizations of
the one-dimensional deblurring problem on

� � ��� & � & " using �13 -based Tikhonov regulariza-
tion with different regularization parameters

�
. We have implemented a multigrid algorithm

using conjugate gradients with the optimal circulant preconditioner [10] as a smoother. In all
our tables the W-cycle solvers employ two pre-smoothing and no post-smoothing steps.

Within our multigrid cycles we also wanted to check whether it is preferable to use trivial
injection for restriction or if the standard full-weighting operator gives better results. We will
distinguish between these two choices by the abbreviations “MG (triv)” and “MG (lin)”,
respectively.

The following tables 8a, 8b and 8c list the iteration counts for W-cycle solvers with
natural coarse grid operators and two pre-smoothing steps of preconditioned CG for the
choice

� � c W & in (4.1) and for the three regularization parameters
� � & - � � , � � & - � 	

and
� � & - � e . For comparison we also list the iteration counts of CG with circulant

preconditioning as a stand-alone solver, abbreviated by ”Circ-CG”.
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number of unknowns e &a' & c ' 	 ' c 	 � 	
c ��� �E&
�
' &�� � � 	 �
'	� � �
MG (triv) e e 	 � � ' �

MG (lin) e 	 	 � � � �

Circ-CG
� � � � � � �

Table 8a. Iteration counts for 1D deblurring problem (4.2) with
� � & -�� � .

number of unknowns e &a' & c ' 	 ' c 	 � 	
c ��� �E&
�
' &�� � � 	 �
'	� � �
MG (triv)

� e e e 	 � �

MG (lin)
� � � e e 	 	

Circ-CG
& e & e &�� & e & e & e & eTable 8b. Iteration counts for 1D deblurring problem (4.2) with

� � & - � 	 .
number of unknowns e &a' & c ' 	 ' c 	 � 	
c ��� �E&
�
' &�� � � 	 �
'	� � �

MG (triv)
& c & c � � 	 	 �

MG (lin)
��� ' � & � &a' � � �

Circ-CG
'	� ' e '�� '�� '�� ' � '��

Table 8c. Iteration counts for 1D deblurring problem (4.2) with
� � & -�� e .

Tables 8a to 8c show that by using circulant-preconditioned conjugate gradients as a
smoother we can obtain the typical convergence behaviour of the multigrid method of the
second kind also for the case of very small

�
, i.e., iteration numbers even decline for a larger

number of unknowns. Hence the idea to employ a semi-iterative smoother can be seen as an
extension of the multigrid method of the second kind, in order to handle very small

�
. For

more details we again refer to the Ph.D. thesis of the second author [34].

Furthermore, we observe that using trivial injection as the restriction operator leads to
smaller iteration counts in our W-cycle solvers. We also emphasize that the multigrid structure
itself comes out to be sensible and to pay off from the point of view that for large problems
and small

�
our W-cycle solvers need significantly less PCG smoothing steps on the finest

level than circulant-preconditioned CG used as a stand-alone solver.

We would like to admit right now that the comparisons with fixed regularization param-
eters

�
reported in the previous tables may seem slightly questionable from the point of view

of solving an inverse problem from signal or image processing. Certainly, the regularization
parameter would normally not be picked without looking at the matrix first. However, we
are deliberately presenting our numerical results in this way in order to focus on the strong
connection of our algorithms and the multigrid method of the second kind.

We would finally like to stress that by obtaining the coarse grid matrices via redis-
cretization we have improved the algorithms from the paper [7] considerably. Note that it
is problematic to compute the optimal T. Chan circulant preconditioner – which is needed
within our PCG smoothing – for a general dense matrix (such as, e.g., a coarse grid matrix
obtained via the Galerkin approach) with a computational effort less than � � [ 3 � ; on the
other hand, as long as we construct our coarse level matrices via rediscretizations we will
have Toeplitz structure on all levels and can set up our preconditioner with � � [ � efforts as
explained in [10].
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5. Twodimensional case: Block Toeplitz matrices with Toeplitz Blocks.

5.1. Positive definite problems generated by nonnegative functions. In the 2D-case
we consider Block Toeplitz matrices with Toeplitz blocks (BTTB matrices) related to a func-
tion of the form ����� �+.5� � � #

� G $ - / � h - / $�� �
e.g., ����� ��.5� � ' � m2n�o��Y�0� �*m2n�o�� .5� for the Laplacian discretized on the unit square by the

e -point stencil. The bad condition numbers of the matrices are again caused by the zeros� �'. � c of ����� �+.5� .
We are in the simple case as long as the function � has only a unique isolated zero ��� M �+. M � �" � � �b��" 3 . Then we can try to proceed with multigrid algorithms similar to section 2. For
simplicity, let us first take a look at the case of a single isolated zero �Y� M ��. M � of order

'
. In a

multigrid approach we can choose
� ��� ��.5� � �	m2n�o���� M � j m2n�o������b� � �	m2n�o�� . M � j m2n�o�� .5�b�(5.1)

for prolongation and restriction. Note that this is nothing else than the Kronecker product of
the corresponding 1D matrices. According to our heuristics (1.2) the function � 3 associated
with the Galerkin coarse grid operator is the reduction of

�� �Y� ��.%� � � �Y� ��.%�!����� �+.5� � �Y� ��.%�
to every second coefficient relative to � and . . For the matrix this is nothing else than the
projection onto every second row/column and row/column block, respectively. Therefore, we
have, � 3 �Y� ��.%� � &

	 �

 �� � � ' � . ' � j ���� � ' j � � . ' � j �� � � ' � . ' j � � j �� � � ' j � � . ' j � � � W(5.2)

Hence, � 3 will have the isolated zero � ' � M � ' . M � – and the prolongation
� �Y� ��.%� needs to have

the three zeros �Y� M j � �+. M � , �Y� M �+. M j � � and ��� M j � �+. M j � � .
However, for BTTB matrices it is even more important to use a natural coarse grid operator
instead of Galerkin coarsening. Again, for Galerkin coarsening and standard transfer
operators we can only be sure to preserve BTTB structure on every coarse grid if the matrix
size is of the form [ � � ' � � & � 3 (with 	 integer). More importantly, the perturbations
introduced via Galerkin operators are no longer of low rank like in the Toeplitz case, but
normally grow proportional to the matrix size.

However, the result is as simple as in section 2. For a single zero ��� M �+. M � � "�� � �!��" 3 we
can scale our linear system first via the matrices� � 3 ` #
\ � & � - � /ih�� � - � 3 /�h�� � WiWiW � and

3 ` # \ � & �!- � / � � �!- � 3 / � � � WiW�W � � �E�
respectively, and thus shift the zero to the origin.

Then we can proceed as usual just as we would do for the 2D Laplacian. We can carry
over virtually everything presented in subsection 2.5 from diagonal scalings to natural coarse
grid operators via Kronecker products, as long as we have only a single zero.

Analogously to 2.5 we recall the fact that multigrid algorithms with natural coarse grid
operators have been long been known to converge for two-dimensional Laplace problems.
As in [36] we carry over our reasoning to employ a natural coarse grid operator to functions����� �+.5� satisfying

� ���
� h G � � �� + ) G )���� ����� �+.5�' � m2n�o��Y�0��� m2n�o�� .5� � c W(5.3)
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Note that (5.3) certainly includes non-separable generating functions, as e.g., ����� �+.5� � ' c �� � mPn�o
�Y�0��� � � m2n�o�� .5��� 	 � m2n�o������ � m2n�o�� .%� , which corresponds to a
�
-point discretization of

the Laplacian on the unit square. However, we shall only give numerical results for separable
problems in the following table. There we list iteration counts for W-cycle solvers with
natural coarse grid operators for separable BTTB problems related to generating functions
from Example 3. In all experiments reported in this section the coarsest level representation
is a

' � � ' �
-matrix.

number of unknowns
&
� � &
� �
' � �
' � 	 � � 	 &a' � � &9' � ' e � � ' e �\ N ��� �+.5� � � 3 j . 3 & 	 & 	 & 	 & 	 & 	\ 3 �Y� �+.5� � � 3 j � . � 	�� � o4` [ � . ��' � ' � ' 	 ' 	 ' 	 ' 	\ � ��� �+.5� ��� ��� j � . � � � � � �\ � �Y� ��.%� � � � � � � j � o4` [ � . ��' � � � � � & c & c\ � ��� �+.5� � � 3 j � . � & e & e & e & e & eTable 9. Iteration numbers for W-cycle solvers for BTTB systems related to the matrices from

Example
�
.

Again, our multigrid algorithms give efficient solvers of optimal computational complex-
ity � � [� � � [ � . Note that for \ N and \ 3 we deal with a zero of order

'
and – as in the Laplace

case – we scale the residuals with the factor 	 , whereas for \ � and \ � the appropriate scaling
factor is

'
since we are dealing with a zero of order

&
. As for \ � we assign the order

& Wfe to
the zero and scale the defects with the factor

' N�� � � ' � '
.

However, our approach runs into trouble as soon as there is more than a single zero of fi-
nite order. According to (5.1) and (3.2) we would need to build prolongations

� ��� ��.5� incorpo-
rating all the zeros. However, this forces us to build prolongations which are much too dense.
For example, for BTTB matrices belonging to the function ���Y� ��.%� � ' � m2n�o�� ' �0��� mPn�o
� ' .5� ,
we would – in view of (5.1) – need to work with prolongations involving

�
”elementary”

factors corresponding to the 	 zeros �	c5�!c��R�9�Yc5�!� �R�9��� �!c��R�9��� �b� � . This does not lead to
computationally feasible algorithms.

5.2. An algorithm for restoring images subject to atmospheric turbulence blur. The
algorithms from section 4 carry over simply to practical (i.e. two-dimensional) image deblur-
ring problems. There we are dealing with a Gaussian blur again, i.e., we need to solve an
integral equation of the first kind of the form

� � �Y� ��.%� � (
� 6@�Y�=� � � �+. � . � � � ��� � ��. � � 3 � � 3 . � �(5.4)

with a convolution kernel 6@�Y� ��.%���g-9� � �.����� 3 j . 3 � � � 3 � , with
� � " c5� & � on the square� � ��� � � � " 3 . This kernel models atmospheric turbulence blur and it is used in practice,

e.g., for the restoration of satellite images.

Analogously to section 4, we discretize via midpoint quadrature and end up with a
positive definite BTTB matrix 
 connected to a “single zero of infinite order” at � M � �Y� �b� � .
Then we can do Tikhonov regularization with respect to the � 3 -norm and need to solve a
linear system of the form � ��
 j � � � .

In any event, as for the mathematical theory concerning regularization and the multigrid
method of the second kind, the treatment of the two-dimensional convolution operator (5.4)
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does not differ at all from the one-dimensional case. Asin section 4 we can build efficient
multigrid algorithms by employing conjugate gradients with either the BCCB preconditioner
by T. Chan and J. Olkin [11] or the Block circulant extension preconditioner by Hanke and
Nagy [23] as a smoother. Note that this idea can only lead to a practical � � [� � � [ � image
deblurring algorithm if we get our coarse grid operators via rediscretization. In particular,
observe that the Block circulant extension preconditioner is only defined for BTTB matrices.

In our numerical tests we are dealing with a discretization of the two-dimensional
deblurring operator (5.4) on

� � ��� & � & " 3 . Again, our W-cycle solvers employ two PCG
steps for pre-smoothing and no post-smoothing.

This time more different variants are to be considered than in the 1D case. Within
our multigrid algorithms we wish to test two different restrictions and two different BCCB
preconditioners inside our PCG smoother. Like in subsection 6.2.4 “triv” will indicate that
we use trivial injection for restriction whereas “lin” identifies the full weighting operator.
As the BCCB preconditioner by T. Chan and J. Olkin [11] minimizes the Frobenius norm
we indicate it by “FR-CI” whereas “EX-CI” stands for the block circulant extension
preconditioner. Analogously, “FR-CI-CG” and “EX-CI-CG” identifty BCCB-preconditioned
conjugate gradient methods as stand-alone solvers.

The following tables list the iteration counts for our W-cycle solvers with natural coarse
grid operators for the choice

� � c W c e in (5.4) and for the two regularization parameters� � & - � 	 and
� � & - � e . The linear systems are of the form (4.2), i.e. we use � 3 -based

Tikhonov regularization.

number of unknowns
� 	 � � 	 &9' � � &9' � ' e � � ' e � e &9' � e &a' & c ' 	 � & c ' 	

MG (FR-CI, triv)
& e � � e 	

MG (FR-CI, lin)
' c &9' � e eFR-CI-CG
' 	 ' e ' e ' e ' eMG (EX-CI, triv)
� � e e 	

MG (EX-CI, lin)
� � � 	 	

EX-CI-CG
& � & � & � & � & �

Table 10a. Iteration counts for 2D deblurring problem (5.4) with
� � & - � 	 .

number of unknowns
� 	 � � 	 &9' � � &9' � ' e � � ' e � e &9' � e &a' & c ' 	 � & c ' 	

MG (FR-CI, triv) 	 ' �
' '%& & 	 �
MG (FR-CI, lin)

� � � c ' c ' 	 '5&
FR-CI-CG

��� 	 & 	 	 	 � 	 	
MG (EX-CI, triv)

'
' ' � & � & � �
MG (EX-CI, lin)

&�� &
� '%& &�� & �
EX-CI-CG

��� 	
c 	 & 	 ' 	 '
Table 10b. Iteration counts for 2D deblurring problem (5.4) with

� � & -�� e .
From the above tables we can observe the typical convergence behaviour of the multigrid

method of the second kind. For fixed regularization parameter
�

iteration counts decrease for
larger matrix sizes. Again, our multigrid algorithms can also handle very small regularization
parameters

�
.

Furthermore, we also observe that trivial injection for restriction does a better job than
full weighting. However, the differences are a little less striking than in the one-dimensional
case. We also confirm the observation by Vogel (see [38], ch. 5) that the Block circulant
extension preconditioner usually leads to slightly faster convergence than the optimal BCCB
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preconditioner from [11]. Due to its faster convergence it also gives the better smoother.

5.3. Indefinite Problems. The situation gets much more complicated if the condition����� �+.5�D�pc has a whole curve �Y� �Y^b�R�+.@�Y^b�b� as solution. Certainly, we can no longer “shift”
the curve of zeros to the origin by scaling. For the Multigrid prolongation in view of (1.3) we
need a function with zeros at ��� ��^b� j � �+.@��^b�!� , �Y� �Y^b�R�+.@�Y^b� j � � , and ��� �Y^b� j � ��.@��^b� j � � . We
can build such a function by setting

� ��� �+.5� � ����� j � �+.5� � ����� �+. j � � � ���Y� j � �+. j � � W
Again, the disadvantage of this approach is that the resulting matrices connected to � 3 �Y� �+.5�
are getting more and more dense – and we cannot expect to obtain a practical algorithm.

Let us take a look at shifted Laplacians with the underlying function of the form���Y� ��.%� � ' ��� � m2n�o����0� � m2n�o�� .%� W
For small � the curve described by ����� ��^b�R��.@��^b�b� � c is nearly the circle around the origin
with radius

� ' � .

Asymptotically the eigenvalues of the BTTB matrix are given by (see e.g. [30])

���Y� � ��. � � � ' ��� � m2n�o�� � �[ j & ��� m2n�o�� � 6[ j & � � � 3 � � 3 j 6 3 �� [ j & � 3 ��� � � �C6 � & � WiW�W � [ W
As we are dealing with shifted 2D-Laplacians our matrices can be diagonalized by the 2D-

Sine Transform matrix with
� N � � 3:�� N �	o4` [ ��� �]6 � � [ j & �!� :� G $ � N , � 3 � � N � � N , and

� 3 � > � 3 � 3 ` #
\ � � � j � $ �����R�
where

�
� are the eigenvalues of the 1D-Laplacian. Hence, the eigenvalues are exactly given

by

���Y� � ��. � � � ' ��� � m2n�o�� � �[ j & ��� m2n�o�� � 6[ j & �*� �
� 6=� & � WiWiW � [ �
and the eigenvectors related to the near-zero eigenvalues are of the formo4` [ ��� � � � � [ j & �b� :� � N � o4` [ ��� 6 � � � [ j & �b� :� � N �
with

� 3 j 6 3 � � � [ j & � 3 � � 3 W(5.5)

Hence we have to design a method that can deal with the error components in these
directions. For the same problem a very sophisticated and highly promising algorithm
that is related to this idea has been introduced by Brandt and Livshits based on a totally
different approach [3]. There, more than one coarse grid is employed in order to resolve the
problematic error components.

Finally, we wish to emphasize that the above indefinite model problem should not be
viewed as a Helmholtz problem. Helmholtz equations usually model scattering phenomena
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FIG. 5.1. Curve �����]�����
	�� and approximate circle

on an exterior domain and the system matrices can never be expected to have Toeplitz
structure. Furthermore, absorbing boundary conditions have to be introduced which turn
the system complex-symmetric. For a state of the art algorithm for multigrid for Helmholtz
problems that is also applicable to the non-constant coefficient case, we refer to recent work
by Elman, Ernst and O’Leary [13], [14].

In Figure 5.1 we display the � �
�C65� -grid (5.5) with the curve ����� �+.5� � c and the
approximating circle in the �Y� ��.%� -plane. Figure 5.2 shows the exact eigenvalues of the matrix
on the mesh in the positive ��� ��.5� -quadrant and the curve with ���Y� �+.5�;�pc . The mesh also
models the surface described by the function � .

6. Outlook and conclusions. We have proposed new multigrid algorithms with natural
coarse grid operators for Toeplitz matrices generated by nonnegative functions with a finite
number of isolated equidistant zeros of finite order in the interval "���� �b��" . That way we can
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overcome the problem that usually Toeplitz structure is lost on the coarse levels if Galerkin
coarsening is employed. The numerical experiments show clearly that these algorithms lead
to optimal � � [ ����� [ � solvers. In the future we will try to give rigorous proofs of convergence
for our algorithms. However, this comes out to be very difficult even in the two-grid case,
since we are no longer using a Galerkin coarse grid operator, the seminal result of Ruge and
Stüben ([28], p. 89) is no longer at our disposal.

In section 4 we have extended our ideas to Fredholm integral equations with a kernel of
convolution type. By employing preconditioned conjugate gradients for smoothing, we have
been able to extend the multigrid method of the second kind for the case that the parameter�

is very small. This idea certainly deserves further attention and we plan to investigate also
on general Fredholm integral equations not necessarily related to convolution kernel.
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Finally, we have carried over our ideas to symmetric BTTB matrices. If the matrix is
related to a function with a single isolated zero � M � " �l� �b��" 3 , then usually the methods
presented here are applicable. In particular, the need to use a natural coarse grid operator is
even more prominent. Natural coarse grid operators also help to develop feasible multigrid
algorithms with semi-iterative smoothing for image deblurring problems. However, if the
function has a nontrivial curve of zeros then more advanced algorithms, possibly employing
more than one coarse grid, need to be developed.

Acknowledgments. The authors wish to thank the referees whose suggestions helped
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