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NUMERICAL CONDITION OF POLYNOMIALS IN DIFFERENT FORMS∗
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Abstract. The zeros of high-degree polynomials are notoriously sensitive to changes in the coefficients, causing
problems for available zero-finding software. In this paper, we study how this sensitivity depends on the polynomial
representation. We first extend the algebraic characterization of polynomial pseudozero sets from the power basis
to general bases. We show that for a polynomial, the numerical conditions of its values and zeros are closely
related and can be visualized simultaneously by its pseudozero sets. Comparing the pseudozero sets on a set of
testing polynomials in the power, Taylor, Chebyshev, and Bernstein bases reveals that appropriate representation of
polynomials gives rise to locally well-conditioned zeros, which then leads to an Iterative Refinement Algorithm that
combines symbolic formulation with numeric processing to reduce computational errors of polynomial zeros located
in the region of interest.
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1. Introduction. The problem of solving a polynomial equation

p(z) = c0 + c1z + c2z
2 + · · ·+ cnzn = 0(1.1)

has deeply influenced the development of mathematics since antiquity and continues to play
a major role in many areas of science and engineering. Recent sources of interest include
computer algebra, computational algebraic geometry, and computer aided geometric design.
In these applications, one usually needs to solve (1.1) for large n, typically well above 100 and
sometimes on the order of several thousands [7, 9, 11]. The zeros of high-degree polynomials
are notoriously sensitive to changes in coefficients, causing problems for available software.
However, the dependency of this sensitivity on the choice of polynomial basis has received
little attention. Deeper quantitative understanding of this sensitivity dependency would be
helpful for improving computational techniques and design of new algorithms.

Condition numbers are commonly used in the study of the sensitivity of polynomials.
They are a kind of derivative, enabling us to estimate the magnitude of the changes of the
values and zeros of a given polynomial that result from changes in the coefficients. See the
classical work of Wilkinson [15]. Some authors have investigated the effect of polynomial
bases on the condition numbers. For instance, Gautschi compared the condition numbers of
polynomials in the power, orthogonal, and Lagrangian bases [6]. Farouki and Rajan derived
the condition numbers for polynomials in the Bernstein basis [4, 5]. In recent years, a geo-
metric approach has been used, which enables one to compute and view the regions in the
complex plane in which the zeros may vary as the coefficients are perturbed [3, 10, 13]. With
this approach, one can display detailed geometric information not only for simple polynomial
zeros, but also for multiple zeros and clusters of zeros. The mathematical insight provided by
this approach leads to well-conditioned representations of the problems as well as enhanced
algorithms.

This paper takes the geometric approach. In section 2, we first extend the algebraic char-
acterization of the polynomial pseudozero set represented in the power basis, introduced by
Mosier [10], Toh and Trefethen [13], to general polynomial bases. We then show that for
a polynomial, the numerical conditions of its values and zeros are closely related, and can
be visualized simultaneously by its pseudozero sets. In section 3, we display and compare
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the pseudozero sets for a set of carefully selected polynomials in the power, Taylor, Cheby-
shev, and Bernstein bases. In section 4, the insight gained from the comparison leads to an
Iterative Refinement Algorithm, which is shown to generate local optimal approximations to
polynomial zeros under described practical situations. Finally, we present and discuss results
of experiments with the algorithm, and point out issues for further investigation.

2. Condition of polynomial evaluation and polynomial zero. Let Pn denote the set
of polynomials with complex coefficients and degree at most n, and let

B(z) = (p0(z), p1(z), ..., pn(z))

be a basis of Pn. For each p(z) ∈ Pn, there are unique ck ∈ C such that

p(z) =

n
∑

k=0

ckpk(z).(2.1)

We will also use p to denote the vector of coefficients (c0, c1, ..., cn)T , when there is no dan-
ger of confusion. As usual, ‖p‖∞ := max0≤k≤n{ck}. For any vector d = (d0, d1, ..., dn)T ,
‖ · ‖d defines a pseudo-norm on Pn defined by

‖p‖d = max
0≤k≤n

|dkck|, p ∈ Pn.

Of course, if all dk 6= 0, ‖ · ‖d is a d-weighted ∞-norm. In particular, ‖p − p̂‖d =
max0≤k≤n |dk(ck − ĉk)| measures the perturbations in the coefficients of p(z) relative to
the weights given by d. We define the vector d−1 = (d−1

0 , · · · , d−1
n )T , where

d−1
k =

{

1/dk if dk 6= 0
0 otherwise

, k = 0, · · · , n,

and we let

‖B(z)‖d−1 =

n
∑

k=0

|d−1
k pk(z)|.

Below, p is generally fixed and the ck’s are relative to a basis B. We put d := ‖p‖∞p−1 =
‖p‖∞(c−1

0 , · · · , c−1
n )T , which corresponds to coefficient-wise perturbations to p. Under this

d, we have

‖p‖d = ‖p‖∞ = max
0≤k≤n

|ck|, and ‖B(z)‖d−1 =

(

n
∑

k=0

|ckpk(z)|

)

/‖p‖∞.

We define the ε-neighborhood and the ε-pseudozero set of p(z) as

Nε(p, B) = {p̂ ∈ Pn : ‖p− p̂‖d ≤ ε},

and

Zε(p, B) = {z ∈ C : p̂(z) = 0 for some p̂ ∈ Nε(p, B)}.(2.2)

They are respectively, the set of all polynomials p̂ and their zeros obtained by coefficient-wise
perturbations of p of size ≤ ε.
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LEMMA 2.1. For any ẑ ∈ C, define the polynomials

r(z) =

n
∑

k=0

rkpk(z), where rk = |d−1
k |e−i arg(pk(ẑ)),

and

pẑ(z) = p(z)−
p(ẑ)

r(ẑ)
r(z).

Then, we have,
1. pẑ(ẑ) = 0,
2. pẑ(z) ∈ Nε(p, B), with ε = |p(ẑ)|

‖B(ẑ)‖
d−1

, and

3. ‖pẑ − p‖d = |p(ẑ)|
‖B(ẑ)‖

d−1
= min{‖p̂− p‖d : p̂ ∈ Pn and p̂(ẑ) = 0}.

Proof. Using r(ẑ) = ‖B(ẑ)‖d−1 and ‖r‖d = 1, follow the proof given by Mosier (see
[10, p. 266]). 2

An algebraic characterization of the ε-pseudozero set Zε(p, B) under the power basis
was first introduced by Mosier [10], then by Toh and Trefethen [13]. Here we extend their
results to general bases B(z).

PROPOSITION 2.2. Let p(z) ∈ Pn. If p(z) has the coefficients p = (c0, c1, ..., cn)T with
respect to the basis B(z) = (p0(z), p1(z), ..., pn(z)), then

Zε(p, B) = {z ∈ C : |p(z)|
‖B(z)‖

d−1
≤ ε}.(2.3)

Proof. Straightforward application of Lemma 2.1. 2

The quantity ‖B(z)‖d−1 , which appeared in the ε-pseudozero set of p(z), also appears
in the condition numbers for the polynomial evaluation at z.

LEMMA 2.3. Let p(z) =
∑n

k=0 ckpk(z). Then the absolute and the relative condition
numbers for the evaluation of p(z) at z0 are respectively

κ̂(z0, p, B) = ‖B(z0)‖d−1 and κ(z0, p, B) =
‖p‖d|‖B(z0)‖d−1

|p(z0)|
.(2.4)

Proof. Define the map M : Cn+1 → C, which associates with each vector p =
(c0, c1, ..., cn)T ∈ Cn+1 the value p(z) =

∑n
k=0 ckpk(z). The absolute condition number of

M at p is defined as (see [14, p. 90])

κ̂(z0, p, B) = lim
δ→0

sup
‖p̂−p‖d≤δ

|p̂(z0)− p(z0)|

‖p̂− p‖d
, where p̂(z0) =

n
∑

k=0

ĉkpk(z0).

Since

|p̂(z0)− p(z0)| =

∣

∣

∣

∣

∣

n
∑

k=0

dk(ĉk − ck)d−1
k pk(z0)

∣

∣

∣

∣

∣

≤ ‖p̂− p‖d‖B(z0)‖d−1 for any p̂ ∈ Cn+1,

thus κ̂(z0, p, B) ≤ ‖B(z0)‖d−1 . The upper bound ‖B(z0)‖d−1 can be attained for any given
p = (c0, c1, ..., cn)T ∈ Cn+1 and z0 ∈ C by choosing p̂ = (ĉ0, ĉ1, ..., ĉn)T with ĉk =
ck + δ|d−1

k |e−i arg(pk(z0)), because ‖p̂− p‖d = δ and |p̂(z0)− p(z0)| = δ‖B(z0)‖d−1 .
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The relative condition number is

κ(z0, p, B) := κ̂(z0, p, B)
‖p‖d

|p(z0)|
=
‖p‖d‖B(z0)‖d−1

|p(z0)|
.2

The pseudozero set Zε(p, B) quantifies the conditioning of the zeros of the polynomial
p. Using a stable zero-finding algorithm, the computed zeros of p should lie in a region
ZCu(p, B), where C = O(‖p‖d) and u is the machine precision. (O(f) denotes any function
whose absolute value is at most c|f | for a positive constant c, see [1, p. 7]). If ε is chosen
of the same order as u, i.e., ε = O(u), then the computed zeros of p should fall into a
region that almost coincides with Zε‖p‖d

(p, B). On the other hand, the condition number
κ(z, p, B) provides bounds for possible perturbations of the computed value of p(z). When p
is evaluated at z by a stable method with the machine precision ε, the relative computing error
in evaluating p(z) should be no more than εκ(z, p, B). Although the polynomial evaluations
and polynomial zeros are two distinct problems, Proposition 2.2 and Lemma 2.3 reveal an
interesting relationship between their numerical conditions:

COROLLARY 2.4.

Zε‖p‖d
(p, B) = {z ∈ C :

1

κ(z, p, B)
≤ ε}.(2.5)

That is, when the coefficients of a polynomial p(z) are perturbed, κ and 1/κ provide infor-
mation on how the values and the zeros, respectively, of p may change; or in other words, the
numerical conditions of a polynomial, for both its values and zeros, can be revealed simulta-
neously by the magnitudes of either κ(z, p, B) or 1/κ(z, p, B). Since κ(z, p, B) = ∞ at the
zeros of p, it is appropriate to use the quantity 1/κ(z, p, B), whose ε-level set is exactly the
boundary of Zε‖p‖d

(p, B), the ε‖p‖d-pseudozero set of p(z).

3. Condition of polynomial basis. The conditions of polynomials are basis-dependent,
a fact that has been noticed and investigated by several researchers using the condition num-
bers. For instance, Gautschi introduced the condition numbers of polynomials in the power,
orthogonal, and Lagrangian bases [6]. He compared the condition numbers of the zeros of the
polynomials (i) and (vii) given below in the power and the Chebyshev bases, and concluded
that “it is quite possible that equations that are ill-conditioned in power form become well-
conditioned when expanded as orthogonal polynomials, and vice versa.” Farouki and Rajan
[4] derived the condition numbers for polynomials in the Bernstein basis, and proved that the
condition numbers for both simple and multiple polynomial zeros on a real interval (α, β) are
always smaller in the Bernstein basis than in the Taylor basis about any s /∈ (α, β).

Our discussions in the previous section yield a geometric, closed-form representation
(eqs. (2.4) and (2.5)) for the conditions of polynomials with respect to any basis B(z) of Pn.
To be more specific, the influence of a basis on the conditioning of the polynomial (2.1) is
determined by the quantity

1

κ(z, p, B)
=

|p(z)|

‖p‖d‖B(z)‖d−1

=
|p(z)|

∑n
k=0 |ckpk(z)|

, when d = ‖p‖∞p−1,

whose ε-level sets are boundaries of the pseudozero sets Zε‖p‖d
(p, B), which can be effi-

ciently computed and displayed in the complex plane.
In this section, we examine four bases of Pn:
• the power basis: B(0)(z) = (1, z, z2, · · · , zn),
• the Taylor basis about s: B(s)(z) = (1, z − s, (z − s)2, · · · , (z − s)n)

(note that the power basis B(0)(z) is a special case of the Taylor basis),
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• the Chebyshev basis: Bc(z) = (T0(z), T1(z), · · · , Tn(z)), where
Tk(z) = cos k(arccos z), −1 ≤ Re(z) ≤ 1, and

• the Bernstein basis: Bb(z) = (bn
0 (z), bn

1 (z), · · · , bn
n(z)), with

bn
k (z) = (n

k )(β − z)n−k(z − α)k/(β − α)n, α ≤ Re(z) ≤ β.
The power basis is by far the best understood and most commonly used basis for polyno-
mials. The Taylor basis is simply a shift or a variable exchange of the power basis. The
Chebyshev basis is an orthogonal basis and has been used in approximation theory, alge-
bra, and number theory, as well as numerical analysis and computation. The Bernstein basis
was originally constructed by probabilistic reasoning for use in approximating continuous
functions. One of its applications is in parameterizing Bernstein-Bézier curves, which have
enjoyed considerable popularity in computer aided design applications due to their elegant
geometric properties and the simple recursive algorithms available for processing them.

For each of the bases listed above, we explore the following degree-20 polynomials, most
of which are chosen or modified from [13]:

(i) scaled “Wilkinson polynomial”: p(z) =
∏20

k=1(z − k/20).
(ii) the Chebyshev polynomial of degree 20: p(z) = cos 20(arccos z), −1 ≤ Re(z) ≤ 1.
(iii) the monic polynomial with zeros equally spaced on the curve z = x + i sin(πx), −1 ≤

x ≤ 1, namely, 2(k + 0.5)/19 + i sin 2π(k + 0.5)/19, k = −10,−9, · · · , 9.
(iv) p(z) =

∑20
k=0(10z)k/k!.

(v) the monic polynomial with zeros: 10/11− 2−k, k = 1, 2, · · · , 20.
(vi) p(z) = (z − 10/11)20.
(vii) the monic polynomial with zeros: 2−19, 2−18, · · ·, 1.
(viii) p1(z) = 1 + z + z2 + · · ·+ z19 + z20, p2(z) = (1 + z + z2 + · · ·+ z10)2, and

p3(z) = (1 + z + z2 + · · ·+ z5)4.
Figures 6.1 - 6.9 display the pseudozero sets Zε‖p‖d

(p, B) whose boundaries are labeled
by log10 ε. The experiments were implemented using MATLAB and its Symbolic Math Tool-
box. We first input a polynomial p(z) in the power basis. We then converted the coefficients
to the coefficients in three other bases symbolically or using 128 decimal precision. Next,
we numerically evaluated the function 1/κ(z, p, B) at 100× 100 grid points in a rectangular
region that contains all the zeros of p. We finally drew the level sets of − log10 κ(z, p, B)
using the MATLAB function contour.

All the figures confirm that the pseudozero sets of polynomials are basis-dependent, con-
sequently the numerical conditioning of polynomial evaluation and polynomial zero are basis-
dependent.

The first phenomenon observed in our experiments is that the components of the pseu-
dozero sets in the power basis B(0) that contain polynomial zeros with small magnitudes are
smaller than those containing zeros with larger magnitudes. In particular, the component that
contains a root in a neighborhood of z = 0 is significantly smaller than the rest of the com-
ponents of Zε(p, B(0)). This observation is verified by eqs. (2.4)-(2.5), since ‖B(0)(z)‖d−1

is a monotonic decreasing function of |z|:

‖B(0)(z)‖d−1 =
n
∑

k=0

|d−1
k ||zk| <

n
∑

k=0

|d−1
k ||z̃k| = ‖B(0)(z̃)‖d−1 , whenever |z| < |z̃|.

Consequently, the component of Zε(p, B(s)) in the Taylor basis about s that contains the
polynomial zeros in the neighborhood of s would be smaller than the other components of
Zε(p, B(s)). The Bernstein basis bn

k(z) = (n
k )(β − z)n−k(z − α)k/(β − α)n, k = 0, · · · , n,

behaves analogously around z = α and z = β.
Now let us consider polynomial zeros that are far from the origin z = 0. Figures 6.1 -

6.4 show that at well-isolated simple zeros, either real or complex, the pseudozero sets in any
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of the three bases, power, Chebyshev, and Bernstein, have areas within an order of magnitude
of one another. In general, the Bernstein basis has slightly smaller pseudozero sets than
the other two. On the other hand, figures 6.5 - 6.7 show that the conditions of clustered or
multiple polynomial zeros are generally worse than those of simple zeros for each of the four
bases. Between these bases, the Bernstein basis has the smallest pseudozero sets, followed
by the Chebyshev basis, and the power basis is the worst (except the case in which a cluster
or a multiple zero is located around z = 0, such as the polynomial (vii) for which the power
basis behaves better than the Chebyshev basis; also see [6]).

Figures 6.8 and 6.9 reveal that, as polynomial zeros become closer or multiplicities of
polynomial zeros become larger, the conditioning of the polynomials in the power basis, and
of course in the Taylor basis, deteriorates rapidly, yet the pseudozero sets of the polynomials
in the Bernstein basis are relatively unchanged. This phenomenon is also observed in figures
6.5 and 6.6, in which the disparities between the conditioning of the power, Chebyshev, and
Bernstein bases become more striking as the cluster of polynomial zeros ξk = 10/11− 2−k,
k = 1, · · · , 20, merges into a single 20-fold zero ξ = 10/11.

4. Accuracy refinement of polynomial zeros. The analysis and experiments given in
the previous sections demonstrate that polynomial bases that have smaller ‖B(z)‖d−1 in the
region of interest give rise to locally better conditioned representations, which suggests that
conditioning of polynomials can be improved through careful basis transformation. Since
the zero-finding procedure used for the power basis can be applied directly to the Taylor
basis representation by a variable substitution, an immediate application of this idea is to use
the Taylor basis B(s)(z) with s chosen in the region of interest to improve local numerical
condition of polynomials that are initially represented in the power basis. Another application
is to refine approximated polynomial zeros to optimal accuracy using a sequence of Taylor
bases {B(sk)(z), k = 1, 2, · · ·}.

Let p(z) ∈ Pn be represented in the power basis B(0)(z). With no loss of generality,
we assume p(0) 6= 0. (Otherwise p(z) = zmg(z) with g(0) 6= 0, the same discussions are
applied to g(z).) For any two Taylor bases B(s1)(z) and B(s2)(z), assuming O(|p(s2)|) =
O(|p(s1)|) as si → ξ with p(ξ) = 0, if |z − s2| � |z − s1|, then

‖B(s2)(z)‖d−1 =
∑n

k=0 |
p(k)(s2)

k! (z − s2)
k|

�
∑n

k=0 |
p(k)(s1)

k! (z − s1)
k| = ‖B(s1)(z)‖d−1 ,

which implies that when |ξ − s2| � |ξ − s1| with p(ξ) = 0, the conditioning of the zero
ξ under the basis B(s2)(z) is likely better than using the basis B(s1)(z). Proposition 4.1
formalizes this argument.

Let p(z) ∈ Pn. Suppose p(z) has n0 well-separated zeros (here, a cluster of zeros is
considered as a multiple zero). For ε > 0 small enough, the set Zε(p, B) has n0 disjoint

connected components, each of which contains a zero of p(z) (see [10]). We use Z
(ξ)
ε (p, B)

to denote the connected component of Zε(p, B) that contains the zero ξ.
PROPOSITION 4.1. Let ξ be an m-fold zero of p(z), and Z1 = Z

(ξ)
ε‖p‖d

(p, B(0)) ∩ {z ∈

C : |z − ξ| ≤ δ0}, where δ0 is chosen such that Z1 is a small neighborhood of ξ. Define

Zk = Z
(ξ)
ε‖p‖d

(p, B(sk−1)) ∩ Zk−1, k = 2, · · · , m,

where sk−1 ∈ Zk−1, and δk = max{|z − ẑ| : ∀z(ẑ ∈ Zk)}. Then,

|p(z)| ≤ O(εk) for any z ∈ Zk, and δk ≤ O(εk/m).(4.1)
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Proof. We prove the proposition by induction on k. Let T denote the function

T (z, s) = ‖p‖d‖B
(s)(z)‖d−1 =

n
∑

i=0

∣

∣

∣

∣

p(i)(s)

i!
(z − s)i

∣

∣

∣

∣

, ∀(z, s) ∈ C2,

(note that d = ‖p‖∞p−1 and p(z) =
∑n

i=0
p(i)(s)

i! (z − s)i ). For k = 1, ∀z ∈ Z1, |p(z)| ≤
εT (z, 0) = O(ε), because T (z, 0) is bounded on Z1. Then, we have,

|z − ξ| =

∣

∣

∣

∣

p(z)

p(m)(ξ)/m! + O(z − ξ)

∣

∣

∣

∣

1/m

≤ O(|p(z)|1/m) ≤ O(ε1/m),

leading to |z− ẑ| ≤ |z− ξ|+ |ẑ− ξ| ≤ O(ε1/m) for any z and ẑ ∈ Z1. Thus δ1 ≤ O(ε1/m).
Now, suppose |p(z)| ≤ O(εk), ∀z ∈ Zk and δk ≤ O(εk/m) for 2 ≤ k < m. Then, for

sk ∈ Zk,

|p(sk)| ≤ O(εk),

and

|p(i)(sk)| =

∣

∣

∣

∣

p(m)(ξ)

(m− i)!
(sk − ξ)m−i + O((sk − ξ)m−i+1)

∣

∣

∣

∣

≤ O(δm−i
k ), i = 1, 2, · · · , m−1.

Thus, ∀z ∈ Zk+1,

T (z, sk) = |p(sk)|+
∑m−1

i=1

∣

∣

∣

p(i)(sk)
i! (z − sk)i

∣

∣

∣
+
∑n

i=m

∣

∣

∣

p(i)(sk)
i! (z − sk)i

∣

∣

∣
( since z, sk ∈ Zk)

≤ O(εk) +
∑m−1

i=1 O(δm−i
k )δi

k + O(δm
k )

≤ O(εk),

which gives

|p(z)| ≤ εT (z, sk) ≤ O(εk+1).

Using the same discussion as in the case k = 1, we obtain |z − ẑ| ≤ O(ε(k+1)/m), for any
z and ẑ ∈ Zk+1, i.e., δk+1 ≤ O(ε(k+1)/m). 2

Proposition 4.1 yields a constructive way to refine the accuracy of approximations to
polynomial zeros. Based on this, we designed the following Iterative Refinement Algorithm.

Algorithm: ξ̂new = REFI(p, ξ̂old, tol)
Input: p: polynomial with complex coefficients and degree n.

ξ̂old: an approximation to ξ, where ξ is an m-fold zero of p.
tol: error tolerance.

Output: ξ̂new: |ξ̂new − ξ| < |ξ̂new | · tol, or a new approximation to ξ.

Set ξ̂1 = ξ̂old.
For k = 1, · · · , m− 1

(i) Form p(z) =
∑n

i=0 ai(z − ξ̂k)i = f(y), where y = z − ξ̂k.
(ii) Compute ξ̂f , the root of f(y) with the smallest magnitude by a stable zero-finding numerical method.
(iii) Set ξ̂k+1 = ξ̂k + ξ̂f .
(iv) If |ξ̂f | < |ξ̂k+1| · tol, stop.

Set ξ̂new = ξ̂k+1.
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The algorithm generates a set of approximations {ξ̂k} to ξ, an m-fold zero of p(z). As-
suming that ε is of the order of the machine precision, and that the input ξ̂old ∈ Z1 =

Z
(ξ)
ε‖p‖d

(p, B(0)) is well separated from other connected components of Zε‖p‖d
(p, B(0)), then

each ξ̂k is expected to fall into Z
(ξ)
ε‖p‖d

(p, B(ξ̂k−1)), since ξ̂k is computed by a stable zero-

finding numerical method for p(z) represented in the basis B(ξ̂k−1)(z). Although it is impos-
sible to rigorously establish that each ξ̂k also lies inside Zk−1 as required by Proposition 4.1,
we can reasonably conjecture that when ε is small enough,

δk = O(εk/m) � O(ε(k−1)/m) = δk−1, k = 2, 3, · · · ,

i.e., Zk is much smaller than Zk−1 if they have similar geometric shapes. Since ξ is a com-
mon interior point of Zk−1 and Zk, it is likely that Zk = Z

(ξ)
ε‖p‖d

(p, B(ξ̂k−1)) ∩ Zk−1 ≈

Z
(ξ)
ε‖p‖d

(p, B(ξ̂k−1)), and consequently it is highly possible that ξ̂k ∈ Zk. According to Propo-

sition 4.1, {ξ̂k} then converges to ξ linearly at the rate ε1/m, and it would take at most m− 1
refinements to get an optimal approximation within the given machine precision.

The Taylor coefficients p = (a0, a1, · · · , an)T in Step (i) can be computed by using from
about 9n log2 n to 18n log2 n arithmetic operations [1]. Since basis conversions from the
power basis are usually numerically unstable [5], the coefficients in the new bases should be
computed either symbolically or numerically with high digit precision.

The algorithm can be used interactively. For example, after a set of desirable zeros
of the polynomial p(z) is computed by a zero-finding routine, the pseudozero set can be
plotted around the computed zeros as shown in figures 6.1 - 6.9. If a suspect ill-conditioned
zero is viewed, say ξ̂, we may implement REFI with ξ̂old = ξ̂ (ξ̂old can also be input by
clicking the mouse on the computer screen at the center of the suspect component of the
pseudozero set). The zeros can be refined either one at a time, or simultaneously on several
subsets. For the former, after each zero is refined, the polynomial is deflated and REFI is
then applied to the deflated polynomial (care should be taken to ensure deflation stability, see
[8, 12, 15] for details); while for the latter, since the refinement of one zero is independent
of the others, REFI can be applied concurrently to several subsets of the computed zeros on
parallel computers or on clusters of workstations.

5. Numerical experiments. We implemented REFI for the polynomials given below
on a SUN Ultra 170E workstation. Our programs were written in the MATLAB language,
which uses double precision numeric arithmetic. We first computed numerical zeros {ξ(0)

i }

in the power basis by the MATLAB roots function. We then implemented REFI with ξ̂old

chosen in the desired region. The Taylor coefficients were computed symbolically using the
MATLAB Symbolic Math Toolbox. There was no noticeable time delay for using symbolic
formulations in our implementations.

Example 5.1. The square of “Wilkinson polynomial”: p(z) =
∏20

k=1(z − k)2.

We first computed all 40 numerical zeros in the power basis. We then plotted them
(marked by green o) together with Zε(p, B(0)) (marked by green curves) in figure 6.10 (left),
in which ε = eps‖p‖d, eps = 2.2×10−16 is the MATLAB machine precision. As shown, 34
numerical zeros fell into the same connected component of Zε(p, B(0)), indicating that they
could be ill-conditioned. Therefore, we implemented one iteration of REFI with ξ̂old = 14,
because 14 is located roughly in the center of this suspect component. The roots of f(y) were
also computed using the MATLAB roots function, which generated 40 new numerical zeros
of p(z) (marked by blue x). Next, we plotted Zε(p, B(14)) (marked by blue curves) in the
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same figure. Among a total of 80 numerical zeros, those that lie inside the set Zε(p, B(0)) ∩
Zε(p, B(14)) are better approximations. All 40 x’s and 9 o’s fell into this set. Among them,
we picked 9 o’s (because they are closer to s = 0 than those x’s to s = 14 in the same region)
and 31 x’s that are closer to s = 14 as new approximations to the zeros of p(z). figure 6.10
(right) shows the approximation errors before REFI (marked by green o), after one iteration
of REFI (marked by blue x), and the new approximations (marked by dot-dash line).

Example 5.2. The monic polynomial with the n-fold zero ξ = 10/11: p(z) = (z − 10/11)n.

We first computed n zeros {ξ(0)
i } in the power basis B(0)(z). We then arbitrarily picked

an ξ
(0)
i as ξ̂old and implemented REFI with tol = 10−15. The approximations at the k-th

iteration are denoted by {ξ(k)
i }. Table 5.1 gives, when the multiplicity of the roots increases,

the number of refinements (k), the accuracy improvement made by REFI, and the computed
ε that appears in the rate of convergence. In the 5-th column, we list δ0 = ε

1/m
0 , where

ε0 = 2−1022 is the underflow threshold for IEEE double precision (see [2, p. 11]), m is
the multiplicity of the zero ξ = 10/11 (here, m = n). It is interesting to notice that the
approximations achieved by REFI (the 4-th column) almost coincide with the m-th root of
the machine underflow threshold, δ0. This observation not only confirms the inequalities (4.1)
proved by Proposition 4.1, but also further indicates that any numerical approximation ξ̂ to
an m-fold zero of p(z), ξ, is subject to the constraint

O(|ξ̂ − ξ|) ≥ δ0 = ( the machine underflow threshold )1/m,

i.e., |ξ̂ − ξ|m = O(|p(ξ̂)|) > 0 has to be machine representable. The numerical results
suggest that REFI is able to improve computed polynomial zeros to the optimal numerical
approximations under the given machine precision.

No. of Refi. Error before REFI Error after REFI Computed

n k mini |ξ
(0)
i − ξ| mini |ξ

(k)
i − ξ| δ0 ε

10 12 4.4507e-02 1.1111e-16 1.7169e-31 1.5859e-13
20 27 2.9050e-01 1.7870e-15 4.1435e-16 1.0656e-11
30 32 2.4666e-01 1.5771e-11 5.5579e-11 1.0890e-10
40 35 7.3744e-01 8.0332e-09 2.0356e-08 3.5192e-10
50 37 9.2639e-01 3.3792e-07 7.0299e-07 8.0302e-10

TABLE 5.1
Error reduction for the zeros of p(z) = (z − 10/11)n

For n = 40, figure 6.11 (left) shows {ξ(0)
i } (green o’s), {ξ(k)

i } (x’s, each color represents
an iteration of REFI) obtained by the first few refinements (k = 1, 2, · · ·); figure 6.11 (right)
shows {ξ(k)

i } (x’s), obtained from the last few refinements (k = · · · , 34, 35) and the exact

multiple zero ξ (red +). Figure 6.12 shows mini |ξ
(k)
i − ξ|, the error reduction of REFI for

n = 40. It confirms the linear convergence of the algorithm with the rate ε1/m.

We attempted to refine all zeros computed in the power basis, ξ
(0)
i , i = 1, · · · , n, for a

set of test polynomials. For a polynomial p(z) satisfying

Z(ξi)
ε (p, B(0)) ∩ Z(ξj)

ε (p, B(0)) = ∅, ∀i 6= j,(5.1)

where ε = eps‖p‖d, and {ξi} are exact zeros of p(z), REFI is guaranteed to produce the
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optimal approximations to each ξi (in the meaning given by Example 5.2) by choosing ξ̂old =

ξ
(0)
i . Table 5.2 gives numerical results of REFI on

Example 5.3. The scaled “Wilkinson polynomial”: p(z) =
∏20

k=1(z − k/20).

Error before REFI Error after REFI No. of Refi.

ξi |ξ
(0)
i − ξi| |ξ

(k)
i − ξi| k

1/20 1.6453e-13 0 1
2/10 2.2462e-12 0 1
3/20 2.7104e-10 0 1
4/20 1.5041e-09 0 1
5/20 1.3142e-07 0 2
6/20 1.9093e-06 0 2
7/20 1.5435e-05 0 2
8/20 8.5185e-05 0 2
9/20 3.5601e-04 0 2

10/20 1.1012e-03 0 2
11/20 2.9596e-03 0 2
12/20 5.2658e-03 0 2
13/20 9.2826e-03 0 2
14/20 1.0416e-02 0 2
15/20 8.8301e-03 0 2
16/20 6.5150e-03 0 2
17/20 2.7471e-03 0 1
18/20 9.8058e-04 0 1
19/20 1.9272e-04 1.1102e-16 1
20/20 1.8238e-05 0 1

TABLE 5.2
Error reduction for the zeros of p(z) =

∏20

k=1
(z − k/20).

For polynomials that fail to meet condition (5.1), i.e., when there exists Z
(ξi)
ε (p, B(0))

that contains more than one distinct zero of p(z), REFI is able to generate at least one op-
timal approximation to a zero ξj ∈ Z

(ξi)
ε (p, B(0)). Conceptually, the rest of the zeros in

Z
(ξi)
ε (p, B(0)) can be approximated to their optimal approximations by removing the ac-

cepted approximation of ξj in the manner similar to the approaches of [8, 12, 15], and then
applying REFI to the deflated polynomial. However, we encounted numerical difficulties in
deflation stability for high-degree polynomials with multiple zeros, e.g., p(z) in Example
5.1. Since polynomial deflation is a challenging research topic of its own, and is beyond the
consideration of this paper, we would leave it for future investigation.

6. Concluding remarks.
• REFI is independent of the zero-finding algorithm by which the original zero ap-

proximations {ξ(0)
i } are computed, and can be adapted to any numerical scheme

that is used for computing zeros of f(y) at Step (ii) to reduce the approximation

errors in {ξ(0)
i }.

• REFI is a local algorithm mixing symbolic and numerical computations. For low-
degree polynomials, computational speed is not a concern. The high-degree poly-
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nomials encountered in practice are usually sparse. Moreover, only a small subset
of their zero set is generally of interest (see [7]). In this situation, REFI could be
implemented at reasonable cost by exploring sparse data structure at Step (i) and by
adopting more efficient numerical local zero-finding algorithm at Step (ii). Readers
may refer to [11] for available local zero-finding methods.

Acknowledgements. I would like to thank Prof. James Madden of Louisiana State
University for interesting discussions and careful reading of the manuscript.
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k=1
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FIG. 6.5. Pseudozero sets for the monic polynomial with zeros: 10/11 − 2−k , k = 1, 2, · · · , 20.
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ETNA
Kent State University 
etna@mcs.kent.edu

84 H. Zhang

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
1
(z) = 1 + z + z2 + ... +z20 

  −1   −
1

  −1

  −1

  −
1

  −1

  −1
  −1

−0.5

−0.5

−0.5

−0.5

−0.5

−0.5

−
0.

5

−0.5

−1.2
−1.2

−1
.2

−1.2
−1.2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
1
(z) = 1 + z + z2 + ... +z20 

−5

−5

−4−4

−4

−4

−4

−4

−3

−3

−3

−3

−2

−2

−2

−2

−1

−1

−1

−1.2
−1.2

−1.2

−1
.2

s = −0.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
2
(z) = ( 1 + z + z2 + ... +z10 )2

  −2

  −2

  −
2

  −
2

  −2

  −
2

−1.5

−1.5 −1.5

−1.5

−1.5

−1.5

−1.5

−1.5

−1
.5

  −1

  −1  −
1

  −1
  −

1

  −
1

−
0.5

−0.5

−
0.

5

−0.5

−
0.

5
−1.2 −1.2

−
1.2

−1.2

−1
.2

−1.2

−1.2

−1.2

−1.2

−1.2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
2
(z) = ( 1 + z + z2 + ... +z10 )2

−4

−4

−4

−4

−3−3

−3

−3

−3

−3

−3

−2

−2

−2

−2

−1

−1

−1

−1.2

−1
.2

−1.2

s = −0.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
3
(z) = ( 1 + z + z2 + ... +z5 )4

 −
4

 −4

 −2

 −2

 −2

 −2  −2

 −2

−1.2

−1.2

−1.2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
3
(z) = ( 1 + z + z2 + ... +z5 )4

 −
4

 −2

 −2

 −2

 −
2

−1.2

−1.2

−1.2

−1
.2

−1.2

s = −0.5

FIG. 6.8. Pseudozero sets for the polynomials p1(z) = 1 + z + z2 + · · ·+ z20,
p2(z) = (1 + z + z2 + · · ·+ z10)2, and p3(z) = (1 + z + z2 + · · ·+ z5)4.
Left-hand column: in the power basis; Right-hand column: in the Taylor basis.
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FIG. 6.9. Pseudozero sets for the polynomials p1(z) = 1 + z + z2 + · · ·+ z20,
p2(z) = (1 + z + z2 + · · ·+ z10)2, and p3(z) = (1 + z + z2 + · · ·+ z5)4.
Left-hand column: in the Chebyshev basis; Right-hand column: in the Bernstein basis.
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FIG. 6.10. p(z) =
∏20

k=1
(z − k)2.

Left: exact zeros (red +); computed zeros in the basis B(0) (green o) and Zε(p,B(0)) (green curves); computed
zeros in the basis B(14) (blue x) and Zε(p,B(14)) (blue curves).
Right: approximation errors in the basis B(0) (green o), in the basis B(14) (blue x), and the new approximation
errors (dot-dash line).
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FIG. 6.11. p(z) = (z − 10/11)40 .
Left: exact zero ξ = 10/11 (red +); computed zeros in the basis B(0) (green o) and improved zeros obtained by the
first few refinements, k = 1, 2, · · ·, (x’s, each color represents an iteration of REFI).
Right: exact zero ξ = 10/11 (red +); improved zeros obtained from the last few refinements, k = · · · , 34, 35, (x’s,
each color represents an iteration of REFI).
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