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PIECEWISE LINEAR WAVELET COLLOCATION, APPROXIMATION OF THE
BOUNDARY MANIFOLD, AND QUADRATURE ∗

S. EHRICH† AND A. RATHSFELD‡

Abstract. In this paper we consider a piecewise linear wavelet collocation method for the solution of boundary
integral equations of order r = 0,−1 over a closed and smooth boundary manifold. The trial space is the space
of all continuous and piecewise linear functions defined over a uniform triangular grid and the collocation points
are the grid points. For the wavelet basis in the trial space we choose the three-point hierarchical basis together
with a slight modification near the boundary points of the global patches of parametrization. We choose three,
four, and six term linear combinations of Dirac delta functionals as wavelet basis in the space of test functionals.
The usual compression results apply, i.e., for N degrees of freedom, the fully populated stiffness matrix of N 2

entries can be approximated by a sparse matrix with no more than O(N [log N ]2) nonzero entries. The topic of the
present paper, however, is to show that the parametrization can be approximated by low order piecewise polynomial
interpolation and that the integrals in the stiffness matrix can be computed by quadrature, where the quadrature rules
are combinations of product integration applied to non analytic factors of the integrand and of high order Gauß
rules applied to the analytic parts. The whole algorithm for the assembling of the matrix requires no more than
O(N [log N ]4) arithmetic operations, and the error of the collocation approximation, including the compression,
the approximate parametrization, and the quadratures, is less than O(N−1[log N ]2). Note that, in contrast to well-
known algorithms by v.Petersdorff, Schwab, and Schneider, only a finite degree of smoothness is required.

Key words. boundary integral equation of order 0 and -1, piecewise linear collocation, wavelet algorithm,
approximation of parametrization, quadrature.

AMS subject classifications. 45L10, 65D32, 65R20, 65N38.

1. Introduction. It is a well-known fact that conventional finite element discretizations
of linear integral equations (e.g., of boundary integral equations) lead to systems of linear
equations with fully populated matrices. Thus, even an iterative solution method requires a
huge number of arithmetic operations and a large storage capacity. In order to improve upon
these finite element approaches for integral equations, several algorithms have been devel-
oped. One of these consists of employing wavelet bases of finite element spaces. The basic
idea goes back to Beylkin, Coifman, and Rokhlin [3], and has been thoroughly investigated
by Dahmen, v.Petersdorff, Prößdorf, Schneider, and Schwab [14, 15, 35, 34, 33, 47] (cf. also
the contributions by Alpert, Harten, Yad-Shalom, and the authors [1, 24, 41, 21]). In the
present paper, we shall apply the wavelet technique to the piecewise linear collocation of
two-dimensional boundary integral equations of order r = 0 and r = −1 corresponding to
three-dimensional boundary value problems.

First, we shall recall the definition of a simple biorthogonal wavelet basis analyzed in
[43] (cf. the familiar constructions in [26, 49, 29], and in [16, 17, 18, 6, 7, 8, 19]). The
grids will be supposed to be uniform refinements of a coarse initial triangulation, and the
basis will be the system of three-point hierarchical basis functions, i.e., each basis function
will be a linear combination of no more than three finite element functions defined over the
corresponding level of a grid hierarchy. In comparison to other bases of continuous wavelet
functions our basis functions will have a rather small support, and we believe that this property
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is essential for the wavelet algorithm. Indeed, small supports lead to better compression
rates, especially, for lower levels and to faster quadrature algorithms for the assembling of
the stiffness matrix. For the basis in the test space spanned by Dirac delta functionals, we
shall take the usual test functionals which can be considered as scaled versions of difference
formulas (cf. the wavelet collocation methods by Dahmen, Prößdorf, Schneider, Harten, Yad-
Shalom, and one of the authors [15, 24, 41, 40, 42]). Applying the wavelet basis functions of
the trial and test space, we shall obtain the well-known compression results for trial wavelets
with vanishing moments due to Dahmen, v.Petersdorff, Prößdorf, Schneider, and Schwab
[15, 35, 47]. The compression for trial functions without vanishing moments is the same
as in [40] (cf. also the univariate analogue for the Galerkin method treated in [35, 4]). In
particular, to compute an approximate collocation solution with optimal asymptotic order of
convergence, it is sufficient to compute and storeO(N [logN ]2) entries of the fully populated
N ×N stiffness matrix. Here N stands for the number of degrees of freedom.

In general, the stiffness matrix cannot be computed exactly. This is the case, for instance,
if the boundary manifold is given only by a discrete set of points, or if no analytic formula
is available to integrate the kernel and trial function. Therefore, we shall consider an algo-
rithm for the approximation of the boundary surface and for the quadrature of the integrals.
We emphasize that this is the most time consuming and the most difficult part of the wavelet
method. To set up the stiffness matrix, we shall proceed as follows. Depending on the test
functional, we shall define an appropriate partition of the supports of the trial basis functions.
Over these subdomains we shall replace the parametrization of the boundary manifold by a
quadratic or cubic interpolation. We shall assume that the kernel function is a finite sum of
terms (P,Q) 7→ k(P,Q)p(P − Q)/|P − Q|α, where k(P,Q) is 2 − r times continuously
differentiable, and where p(P − Q) is a polynomial with constant coefficients. For the part
k(P,Q) of the kernel function, we shall apply a low order product integration rule with the
weight function chosen as the product ofQ 7→ p(P−Q)/|P−Q|α times the trial wavelet. The
quadrature weights of the product rule, i.e., the integrals over the function p(P−Q)/|P−Q|α

times the trial wavelet will be computed by Gauß rules of order less thanO(logN). By doing
this and using well-known ideas to treat singular integrals, we shall arrive at a fully discretized
wavelet algorithm with O(N [logN ]4) arithmetic operations to compute O(N [logN ]2) en-
tries of the stiffness matrix. Assuming that the collocation is stable, the asymptotic error of
the exact collocation solution is known to be less than O(N−(2−r)/2), which is optimal for
piecewise linear trial spaces. The fully discrete wavelet algorithm will also be shown to be
stable, and to be convergent with an almost optimal error less than O(N−(2−r)/2[logN ]2)
for r = 0 and less than O(N−(2−r)/2[logN ]1.5) for r = −1.

Note that alternative quadrature algorithms have been considered by Beylkin, Coifman,
and Rokhlin [3] for integral operators with smooth kernels, and by v.Petersdorff, Schwab,
and Schneider [35, 47] (cf. also the numerical implementation by Lage and Schwab [28])
for boundary integral operators with Green kernels over piecewise analytic boundaries. To
our knowledge, the fully discrete algorithm of the present paper is the first which applies to
boundary integral equations over surfaces with finite degree of smoothness. In fact, the re-
quired degree of smoothness for the geometry will be equal to the convergence order 2 − r

increased by one, i.e., the same as for the conventional collocation algorithm. Moreover, be-
sides the usual singular main part p(P−Q)/|P−Q|α of Green kernels, the kernel function of
the integral operator will be allowed to have an additional factor k(P,Q) of finite smoothness
degree 2− r. In the proof of the corresponding error estimates, we shall show that the tech-
niques developed for the compression algorithm apply to the analysis of the discretization as
well. The only thing to do is to replace the decay properties in the matrix entries due to the
vanishing moments of the trial functions and the norm estimates due to the smoothness of
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the solution by error estimates of the approximate parameter mappings and of the quadrature
rules, respectively.

The powers of the logarithms in the asymptotic convergence and complexity estimates
are, of course, not optimal. Using the refined compression technique of Schneider [47],
choosing wavelet basis functions with more vanishing moments, and applying higher order
quadrature rules, the logarithmic powers can be dropped or, at least, their exponents can be
reduced. Note, however, that the application of higher order moment conditions and quadra-
tures requires additional smoothness assumptions. Furthermore, we believe that a simple
algorithm like the one in the present paper is often more efficient than an asymptotically op-
timal method, since the number of degrees of freedom does not tend to infinity in realistic
numerical computations.

The plan of the paper is as follows. In §2 we shall describe the boundary manifold,
the integral equation, and the conventional piecewise linear collocation method. In §3 we
shall introduce the three-point hierarchical wavelet functions of the piecewise linear trial
space, the test wavelet functionals, and the corresponding compression algorithm. Section 4
will be devoted to the description of the interpolation of the parameter mappings and to the
quadrature algorithm. All proofs will be deferred to §5 and §6. In particular, in §5 we shall
recall some technical results from the compression estimates. The discretization including the
approximation of the parametrizations and of the integration will be analyzed in §6. Finally,
we present a numerical example in §7.

2. The piecewise linear collocation method.

2.1. The manifold. We suppose that the integral equation to be solved is given on a
closed boundary manifold Γ ⊂ R

3 with finite degree of smoothness. More exactly, we
assume that Γ is the union of mΓ triangular patches Γm, i.e.,

Γ = ∪mΓ
m=1Γm, Γm := κm(T ),(2.1)

T :=
{

(s, t) ∈ R
2 : 0 ≤ s ≤ 1, 0 ≤ t ≤ min{s, 1− s}

}

.

Here the κm denote parametrization mappings from the standard triangle T to the manifold
Γ. We assume that the κm extend to mappings from a small neighbourhood of T ⊆ R

2 to
Γ and that these extensions are dΓ times continuously differentiable. Here dΓ is an integer
which is assumed to be greater than or equal to three when dealing with zero order operators
and greater than or equal to four when dealing with operators of order r = −1. Furthermore,
we suppose that the intersection of two patches Γm and Γm′ is either empty or a corner point
for both patches or a whole side for Γm and Γm′ . In the last case we assume that the two
representations of Γm ∩ Γm′

{

κm

(

c1 + λ(c2 − c1)
)

: 0 ≤ λ ≤ 1
}

=
{

κm′

(

c′1 + λ(c′2 − c′1)
)

: 0 ≤ λ ≤ 1
}

satisfy the condition

κm

(

c1 + λ(c2 − c1)
)

= κm′

(

c′1 + λ(c′2 − c′1)
)

, 0 ≤ λ ≤ 1.(2.2)

Note that, for the numerical method, the parameter mappings κm need not be given for all
points of T . We shall use only the values of κm at the points of a uniform grid over the
triangle T .

Since the manifold is at least thrice continuously differentiable, for each Q ∈ Γ, there
exists a unit vector nQ normal to Γ at Q and pointing into the exterior domain bounded by
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Γ. The Sobolev spaces Hs(Γ) over Γ can be defined in the usual way. We define the space
Hs(Γm) over Γm as the image of the Sobolev space over T , i.e.,

Hs(Γm) := {f : f ◦ κm ∈ Hs(T )} .

2.2. The integral equation. Over Γ we consider a boundary integral operator A of
order r = 0 or r = −1 mappingHr/2 intoH−r/2. We suppose thatA takes the formA = K
for r = −1 andA = aI +K for r = 0, where aI stands for the operator of multiplication by
a function a which may be zero, and the integral operatorK is defined by

Ku(P ) :=

∫

Γ

k(P,Q, nQ)
p(P −Q)

|P −Q|α
u(Q) dQΓ.(2.3)

The function p stands for a homogeneous polynomial of degree deg(p), the real number α
is equal to r + 2 + deg(p), and the kernel function k depends on the points P,Q ∈ Γ.
This function need not be a restriction to Γ × Γ of a function defined on the space R

3 ×
R

3. It may depend for instance on the unit normals nP and nQ pointing into the exterior
or on any different kind of differentiable vector field over Γ. To simplify the notation, we
assume a special dependence and take k(P,Q) = k(P,Q, nQ) with k defined on at least a
neighbourhood of {(P,Q, n) : P,Q ∈ Γ, n = nQ} ⊂ Γ × Γ × R

3. If r = 0, then the
integrand in (2.3) can be strongly singular and the integral is to be understood in the sense
of a Cauchy principal value. To ensure the existence of this principal value, we assume that
p is odd, i.e., p(Q − P ) = −p(P − Q). Note that in applications we often have a finite
sum of integrals of the above type and additional terms of lower order. Only for simplicity of
notation we restrict ourselves to the one term of (2.3).

For the operatorA including the just defined integral operatorK, we assume the continu-
ity of the mappingA : Hs+r(Γ) −→ Hs(Γ) with s = 0 and s = 1.1 (or s = 1.1 replaced by
a different s with 1 < s < 1.5) and the invertibility of A : Hr(Γ) −→ H0(Γ). Furthermore,
we suppose a finite degree of smoothness, i.e., the function a and the kernel k are supposed
to be dk times continuously differentiable. More precisely, for any dk-th order derivative ∂dk

P

taken with respect to the variable P ∈ Γ and for any dk-th order derivative ∂dk

Q,n taken with

respect to the variables Q ∈ Γ and n ∈ R
3, we require that ∂dk

P ∂dk

Q,nk(P,Q, nQ) be contin-
uous. The degree of smoothness dk is supposed to be greater than or equal to two for r = 0
and to three for r = −1. For an operator A which satisfies all these assumptions, we shall
solve the operator equation Au = v with known right-hand side v and unknown u. To get
error estimates with optimal order 2− r, we assume u ∈ H2(Γ).

Finally, we note that single and double layer operators and other boundary integral oper-
ators (cf., e.g., [30]) are examples of integral operators fulfilling all the assumptions of this
section.

2.3. Grid and collocation points. Let us introduce a hierarchy of uniform grids over
the standard triangle T . For the step sizes 2−l, l = 0, . . . , L, we set 4T

l := 14T
l ∪

24T
l , where

14T
l :=

{

(i2−l, j2−l) : 0 ≤ i ≤ 2l, 0 ≤ j ≤ min{2l − i, i}
}

,
24T
l :=

{

(2−l−1, 2−l−1) + (i2−l, j2−l) : 0 ≤ i < 2l, 0 ≤ j < min{2l − i, i+ 1}
}

,

and we denote the grid points by τ = (s, t) ∈ 4T
l . The grid 4T

l is the restriction of the grid
(cf. Figure 2.1)

4R
2

l :=
{

(i2−l, j2−l) : i, j ∈ Z
2
}

∪
{

(2−l−1, 2−l−1) + (i2−l, j2−l) : i, j ∈ Z
2
}
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FIG. 2.1. Grid4R
2

0 .

to the triangle T . Using the parametrizations, we arrive at a grid hierarchy on Γ:

4Γ
l :=

{

κm(τ) : m = 1, . . . ,mΓ, τ ∈ 4
T
l

}

.

Clearly, a grid point P = κm(τ) may have more than one representation. If P is in the
interior of a side of the triangular patch Γm which is a common side with Γm′ , then there are
exactly two representations P = κm(τ) and P = κm′(τ ′). If P is a corner point of a patch,
then there exist k > 2 representations P = κm1(τ1) = κm2(τ2) = . . . = κmk

(τk). We
introduce i4Γ

l as the set of those P ∈ 4Γ
l whose representation P = κm(τ) with the smallest

m satisfies τ ∈ i4T
l , and arrive at 4Γ

l = 14Γ
l ∪

24Γ
l . The points of 4Γ

l will be denoted by
capital letters like P and Q.

To each grid 4Γ
l there corresponds a partition of Γ into triangular pieces. Indeed, to get

an index set for the partition triangles, let us introduce the sets of centroids

utR
2

0 :=

{(

1

2
,
1

6

)

+ k,

(

1

2
,
5

6

)

+ k,

(

1

6
,
1

2

)

+ k,

(

5

6
,
1

2

)

+ k : k ∈ Z
2

}

,

utR
2

l :=
{

2−lτ : τ ∈utR
2

0

}

, utTl := T ∩ utR
2

l ,

utΓ
l :=

{

κm(τ) : τ ∈utTl , m = 1, 2, . . . ,mΓ

}

.

For each point τ ∈ utTl , there exist three uniquely defined neighbour points τ1, τ2, and τ3
such that τ1, τ2, τ3 ∈ 4T

l , that the triangle Tτ spanned by the three corners τ1, τ2, and τ3
is of square measure 2−2l/4, and that τ is the centroid of Tτ . We arrive at the triangulation
{Tτ : τ ∈ utTl } of T . Note that, for l′ > l, the centroids in utTl are located at the boundaries
of the smaller triangles Tτ ′ with τ ′ ∈ utTl′ . Hence there is a one to one correspondence
between the triangles Tτ over several levels and the centroids in ∪Ll=0ut

T
l . Similarly to the

triangulation over T , we define the triangulation {Tτ : τ ∈ utR
2

l } of R
2. For Γ and a

point Q = κm(τ) ∈ utΓ
l , we set ΓQ := {κm(σ) : σ ∈ Tτ} and arrive at the triangulation

{ΓQ : Q ∈ utΓ
l }. Further, we denote the level l of the points Q ∈ utΓ

l by l(Q). Notice that
each partition triangle ΓQ, Q ∈ utΓ

l , of the generation l splits into four subtriangles of the
generation l + 1. We call ΓQ the father of the four subtriangles and, for Q ∈ utΓ

l , l > 0, we
denote the father of ΓQ by ΓQF .

Beside the grids 4Γ
l we introduce the difference grids ∇Γ

l := 4Γ
l+1 \ 4

Γ
l for l =

0, . . . , L − 1 and ∇Γ
l := 4Γ

0 for l = −1, and obtain 4Γ
L =

⋃L−1
l=−1∇

Γ
l . For P ∈ 4Γ

L,
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we denote the unique level l for which P ∈ ∇Γ
l by l(P ). Analogously to ∇Γ

l , we define
the difference grids and the point levels over T and R

2 and get 4T
L =

⋃L−1
l=−1∇

T
l as well as

4R
2

L =
⋃L−1
l=−1 ∇

R
2

l . Finally, in accordance with the splitting 4T
l = 14T

l ∪
24T
l , we intro-

duce i∇T
l = ∇T

l ∩
i4T
l+1 for i = 1, 2 and get ∇T

l = 1∇T
l ∪

2∇T
l as well as 2∇T

l = 24T
l+1.

Similarly, we define i∇R
2

l and i∇Γ
l .

Now the set of collocation points will be the grid 4Γ
L, i.e., the test functionals of the

collocation scheme are the Dirac delta functionals δP with P ∈ 4Γ
L. The test space DirΓL is

the span of all these δP .

2.4. The trial functions. To prepare for the introduction of linear spaces, we first define
two-dimensional hat functions for the grid 4R

2

0 .

1ϕ (s, t) := max
{

0, 1−max{|s− t|, |s+ t|}
}

, 2ϕ (s, t) := max
{

0, 1−2 max{|s|, |t|}
}

.

Clearly, the function 2ϕ shifted to the point (0.5, 0.5) and the function 1ϕ are piecewise linear
hat functions subordinate to the triangulation {Tτ : τ ∈ utR

2

0 }. Now, we get piecewise linear
basis functions by dilating and shifting 1ϕ and 2ϕ to each grid point. More precisely, for each
grid point τ ∈ i4T

l , we set ϕlτ (σ) := iϕ
(

2l(σ − τ)
)

. With the help of the parametrizations
we introduce the piecewise linear (with respect to the parametrization) hat functions over Γ.
For each grid point P ∈ 4Γ

l , we set

ϕlP (Q) :=

{

ϕlτ (σ) if there exist m, τ, σ s.t. Q = κm(σ), P = κm(τ),
0 otherwise.

(2.4)

Due to the assumptions on the parametrizations (cf. (2.2)) the basis functions are well defined.
We denote the span of the functions ϕlP , P ∈ 4Γ

l by LinΓ
l . Obviously, this is the space of all

continuous and piecewise linear functions defined over the triangulation {ΓQ : Q ∈ utΓ
l } cor-

responding to the grid 4Γ
l , where linearity is understood with respect to the parametrization.

The space LinΓ
L will be the set of trial functions for the collocation.

2.5. The collocation scheme. Now the collocation method seeks an approximate solu-
tion uL for the exact solution u of Au = v. This is sought in the trial space LinΓ

L by solving
the system of collocation equations AuL(P ) = v(P ), P ∈ 4Γ

L. Using the representation
uL =

∑

P∈4Γ
L
ξPϕ

L
P , the collocation equations can be written in the form of a matrix equa-

tion ALξ = η, where we set ξ := (ξP )P∈4Γ
L

, η := (ηP )P∈4Γ
L

, and ηP := v(P ). The
matrix of the linear system is the so called stiffness matrix given by AL := (aP ′,P )P ′,P∈4Γ

L

and aP ′,P := (AϕLP )(P ′). Moreover, using the interpolation projection RL defined by
RLf :=

∑

P∈4Γ
L
f(P )ϕLP , the collocation can be treated as a projection equation of the

form RLAuL = RLv.
Throughout this paper we shall assume that the collocation method applied to the oper-

ator equation Au = v is stable. For the exact definition of stability and some remarks we
refer the reader to §5.3. If the collocation is stable, if the exact solution u is in H2(Γ), and if
h ∼ 2−L denotes the step size of the discretization, then the approximate solution uL satisfies
the well-known optimal convergence estimates

‖u− uL‖Hr(Γ) ≤ Ch2−r‖u‖H2(Γ), r = 0,−1.(2.5)

3. The wavelet algorithm.
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FIG. 3.1. Neighbours τ1 and τ2.

3.1. The wavelet basis of the trial space. Now we introduce the three-point hierarchi-
cal basis of [43] for the space of piecewise linear functions. Similar functions have been
considered in [26, 49, 29] and are called three-point hierarchical basis functions. More pre-
cisely, for the plane and for any point τ ∈ 4R

2

L , we set

ψτ :=











ϕ0
τ if τ ∈ ∇R

2

−1,

ϕl+1
τ − 1

2

{

ϕl+1
τ1 + ϕl+1

τ2

}

if τ ∈ 1∇R
2

l with l = l(τ) ∈ {0, . . . , L− 1},

ϕl+1
τ − 1

4

{

ϕl+1
τ1 + ϕl+1

τ2

}

if τ ∈ 2∇R
2

l with l = l(τ) ∈ {0, . . . , L− 1}.

(3.1)

Here τ1 and τ2 denote the uniquely defined neighbours of τ on 4R
2

l+1 (cf. Figure 3.1). Indeed

any difference grid point τ ∈ 2∇R
2

l ⊂ 4R
2

l+1 has exactly two neighbour points τ1 and τ2 at

minimal distance which belong to 4R
2

l ⊂ 4R
2

l+1. Any difference grid point τ ′ ∈ 1∇R
2

l ⊂

4R
2

l+1 has exactly two neighbour points τ ′1 and τ ′2 at minimal distance which belong to 14R
2

l ⊂

4R
2

l+1.

The wavelet functions ψτ on the manifold Γ are slight modifications of (3.1). For the
details and the properties of the basis we refer the reader to [43]. The final definition of the
three-point hierarchical wavelet functions over the manifold Γ is

ψP :=























ϕ0
P if P ∈ ∇Γ

−1,

ϕl+1
P − 1

2

{

εP,P1ϕl+1
P1

+ εP,P2ϕl+1
P2

}

if P ∈ 1∇Γ
l

with l ∈ {0, . . . , L− 1},
ϕl+1
P − 1

4

{

εP,P1ϕl+1
P1

+ εP,P2ϕl+1
P2

}

if P ∈ 2∇Γ
l

with l ∈ {0, . . . , L− 1},

(3.2)
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εP,P
′

:=























































































































1 if there is a parametrization patch Γm such that P and P ′

belong to the interior of the triangle Γm or there exists
a side Γm ∩ Γm′ of a parametrization patch such that
P and P ′belong to the interior of the side Γm ∩ Γm′ ,

2 if there exists a side Γm ∩ Γm′ of a parametrization patch
such that m < m′, that P is an interior point of Γm,
and that P ′ belongs to the interior of the side Γm ∩ Γm′

or P ′ = ∩ki=1Γmi
is a corner of a parametrization patch,

P ′ ∈ 24Γ
0 , the point P is an interior point of a side

Γm1 ∩ Γm2 , and m1 < mi, i = 2, . . . , k,
4 if P ′ = ∩ki=1Γmi

is a corner of a parametrization patch,
P ′ ∈ 14Γ

0 , the point P is an interior point of a side
Γm1 ∩ Γm2 , and m1 < mi, i = 2, . . . , k orP ′ = ∩ki=1Γmi

is a corner of a parametrization patch, P ′ ∈ 24Γ
0 ,

the point P is an interior point of the face Γm1 , and
m1 < mi, i = 2, . . . , k,

0 otherwise,

(3.3)

where P1 and P2 are the uniquely defined neighbours on4Γ
l+1 of P ∈ ∇Γ

l , i.e., P1 = κm(τ1)
and P2 = κm(τ2) if P = κm(τ) is the representation with the minimalm ∈ {1, . . . ,mΓ} and
if τ1, τ2 are the neighbours of τ . The coefficients εP,P

′

are equal to one in almost all cases.
Only if the point P ′ = P1, P2 is at the boundary of a parametrization patch, then a value of
εP,P

′

different from one is needed. The basis {ψP : P ∈ 4Γ
L} spans the trial space LinΓ

L.
The function ψP with P ∈ ∇Γ

l , l = 0, . . . , L− 1 and with suppψP contained in the interior
of a single parametrization patch has two vanishing moments, i.e., it is orthogonal to the set
of all functions that are constant or linear with respect to the parametrization. Orthogonality
means here orthogonality with respect to the L2 scalar product in the parameter domain.

3.2. The wavelet basis of the test space. Let us retain the definition of neighbour points
P1, P2 ∈ 4Γ

l of P ∈ ∇Γ
l , l = 0, . . . , L−1 from the last subsection, and recall that δP stands

for the Dirac delta functional at point P . With this notation, we introduce the functionals

ϑP :=

{

δP if P ∈ ∇Γ
−1,

δP −
1
2 {δP1 + δP2} if P ∈ ∇Γ

l with l = l(P ) ∈ {0, . . . , L− 1}.
(3.4)

The set {ϑP : P ∈ 4Γ
L} is a hierarchical basis of the test spaceDirΓL (cf. §2.3 and §5.2 ). For

any P ∈ ∇Γ
l , l = 0, . . . , L−1, the functional ϑP has two vanishing moments, i.e., it vanishes

over the set of all functions that are constant or linear with respect to the parametrization. To
simplify the notation, some times we shall write f(ϑP ) for ϑP (f).

The basis {ϑP } will be suitable for the collocation applied to operators of order r = 0.
For r = −1, a basis with more vanishing moments is needed (cf. [15, 47]). Following a
general technique of Harten and Yad-Shalom, this wavelet basis {ϑ+

P : P ∈ 4Γ
L} is given by

ϑ+
P :=























δP if P ∈ ∇Γ
−1 ∪ ∇

Γ
0 ,

δP + 1
8δP̃1

+ 1
8δP̃2

− 1
4δP̃3

− 1
2δP̃4

− 1
2δP̃5

if P ∈ ∇Γ
l ∩ int ΓQ s.t. l ≥ 1

and Q ∈ utΓ
l−1,

δP −
3
4δP̃1

− 3
8δP̃2

+ 1
8δP̃3

if P ∈ ∇Γ
l ∩ ∂ΓQ s.t. l ≥ 1

and Q ∈ utΓ
l−1.

(3.5)

Here the points P̃i, i = 1, . . . , 5 are defined by their parameter values σi := κ−1
m (P̃i) as

follows. If P = κm(τ) ∈ ∇Γ
l is at the boundary ∂ΓQ of a triangle ΓQ with Q ∈ utΓ

l−1, then τ
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is located at a side S of the triangle Tσ = κ−1
m (ΓQ) with σ = κ−1

m (Q) ∈ utR
2

l−1, the parameter
point σ1 is the mid-point of this side S, the point σ2 is the end point of S closest to τ , and
σ2 is the other endpoint of S. If P is in the interior int ΓQ, then there is a unique straight line
segment containing τ and connecting a corner point of Tσ with the mid-point of the opposite
side S. In this case, σ3 is the mid-point of S, the other mid-points of the sides of Tσ are σ4

and σ5, and σ1 and σ2 are the endpoints of the side S (cf. Figure 3.2).

τσ σ σ

σ

σ

σ

σ

σ

τ

12 3

1

2

34

5

FIG. 3.2. Points for ϑ+

P
.

3.3. Wavelet transforms. For the trial space LinΓ
L we have two different systems of

basis functions {ϕLP } and {ψP } at our disposal. We denote the basis transform by TA (lower
index A stands for ansatz), i.e. the matrix TA maps the coefficient vector ξL := (ξLP )P∈4Γ

L

of the representation uL =
∑

P∈4Γ
L
ξLPϕ

L
P into the coefficient vector β := (βP )P∈4Γ

L
of

the representation uL =
∑

P∈4Γ
L
βPψP . This transform can be determined by a pyramid

type algorithm which is called fast wavelet transform (cf., e.g., [20]). Similarly, the inverse
transform T −1

A can also be realized by a pyramid type algorithm. Moreover, analogous to the
trial space, we have two different bases in the test space. By TT (lower index T stands for test
space) we denote the linear transform mapping the vector γ = (γP )P∈4Γ

L
:= (ϑP (f))P∈4Γ

L

of functionals applied to a function f into the vector of function values η = (ηP )P∈4Γ
L

:=

(δP (f))P∈4Γ
L

= (f(P ))P∈4Γ
L

. Again, the transform can be realized by a fast wavelet algo-

rithm. Due to (3.4) and (3.5), the inverse T −1
T is simply a multiplication by a sparse matrix.

3.4. Wavelet algorithm. Analogous to the stiffness matrix AL in §2.5 we can set up a
matrix with respect to the wavelet basis. We introduce AwL by AwL := (awP ′,P )P ′,P∈4Γ

L
and

awP ′,P := ϑP ′(AψP ). Note thatAL = TTAwLTA. It will turn out that most of the entries awP ′,P

are so small that they can be neglected. Thus in the next subsection we will give an a priori
matrix pattern P ⊂ 4Γ

L ×4Γ
L with no more than O(22LL2) elements. We will replace AwL

by the sparse matrix obtained by the compression

Aw,cL :=
(

aw,cP ′,P

)

P ′,P∈4Γ
L

, aw,cP ′,P := ϑP ′(aψP ) +

{

ϑP ′(KψP ) if (P ′, P ) ∈ P ,
0 otherwise.

(3.6)

In the numerical computation the entries have to be computed by approximating the
parametrization and by quadrature. We denote the approximate value for aw,cP ′,P by aw,c,qP ′,P

and set

Aw,c,qL :=
(

aw,c,qP ′,P

)

P ′,P∈4Γ
L

, AcL := TTA
w,c
L TA, Ac,qL := TTA

w,c,q
L TA.(3.7)
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With this notation we can describe two variants of the wavelet algorithm which differ in the
iterative solution of the discretized linear systems. The first is designed for integral operators
of arbitrary order r, the second for operators of order r = 0.

First wavelet algorithm

i) compute the right-hand side γ := (ϑP (v))P = T −1
T (v(P ))P

ii) compute the sparsity pattern P
iii) assemble Aw,c,qL by a quadrature algorithm
iv) solve Aw,c,qL β = γ iteratively, e.g., by the diagonally preconditioned

GMRes method
v) compute ξ = T −1

A β
vi) post processing of the values u(P ) ≈ ξP , e.g., computation

of linear functionals of the solution u

(3.8)

Second wavelet algorithm

i) compute the right-hand side η := (v(P ))P
ii) compute the sparsity pattern P
iii) assemble Aw,c,qL by a quadrature algorithm
iv) solve ALξ = η iteratively, e.g., by the GMRes method,

whenever a multiplication by matrix AL is required, then
multiply by TA, by Aw,c,qL , and by TT

v) post processing of the values u(P ) ≈ ξP , e.g., computation
of linear functionals of the solution u

(3.9)

The GMRes algorithm is described in [45], and the diagonal preconditioner for the algorithm
(3.8) will be derived in §5.3 (cf. (5.10)).

3.5. The compression algorithm. In order to introduce the compression pattern P
which is convenient for the quadrature algorithm, we need some notation. Let us retain the
definition of ∇Γ

l and 4Γ
L from §2.3. For P ∈ 4Γ

L, recall that l(P ) is the level of P (cf. the
end of §2.3). By ΨP we denote the support of the function ψP and by ΘP the convex hull of
the support of the test functional ϑP , i.e., ΘP := κm(conv(κ−1

m (suppϑP ))). Now we take
a constant d ≥ 1 and define the set P as the set of all (P ′, P ) ∈ 4Γ

L ×4Γ
L such that ΨP is

completely contained in the interior of a single parameter patch Γm and

dist (ΨP ,ΘP ′) ≤ d2L−l(P
′)−l(P ),(3.10)

or such that ΨP contains points of at least two parameter patches and

dist (ΨP ,ΘP ′) ≤ d21.5[L−l(P ′)]−l(P ).(3.11)

In numerical computations the compression parameter d ≥ 1 should be determined by exper-
iments. The well-known proof techniques of [15, 34, 47, 40] yield

THEOREM 3.1. For the pattern P , the number of nonzero entries NP is less than the
number CL222L ∼ N [logN ]2, where N ∼ 22L is the number of degrees of freedom. If the
piecewise linear collocation is stable and if d is sufficiently large, then the collocation method
with compression is also stable. Moreover, the asymptotic error estimates (2.5) become

‖u− uL‖Hr(Γ) ≤ Ch2−r logh−1‖u‖H2(Γ), r = 0,−1.(3.12)
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Clearly, the number of necessary arithmetic operations of all steps in the algorithms
(3.8) and (3.9) except the steps iii) and iv) is less than C NP . Step iv) requires C NP logN
operations. However, if we solve the systems successively over the grids 4Γ

l , l = 0, . . . , L
and if the initial solution for the grid4Γ

l+1 is the final solution from the coarser grid4Γ
l , then

the number of necessary iterations is uniformly bounded. This cascading iteration method
requires no more than C NP operations. The key point for a fast algorithm, however, is the
implementation of step iii). Usually, this is the most time consuming part of the numerical
computation. For its realization and complexity, we refer to the results in §4 and the proofs in
§6. Further details for the implementation of the wavelet algorithm can be found in [28, 39].

4. Approximation of the parametrization mappings and quadrature.

4.1. Parametrization and quadrature for the far field. Now we consider the compu-
tation of the matrix entries aw,c,qP ′,P (cf. §3.4). Obviously, the terms ϑP ′(aψP ) (cf. (3.6)) can be
computed without difficulty, and the corresponding number of arithmetic operations is less
than O(N logN). Therefore, we only have to deal with the computation of ϑP ′(KψP ) cor-
responding to the integral operator K. First we shall indicate the assembling of those entries
for which dist(ΨP ,ΘP ′) is large in a certain sense. We shall fix P ′ and define a quadrature
partition in dependence on P ′ in order to apply a composite quadrature rule of low order.
Clearly, if a trial functionψP has discontinuous first order derivatives over a subdomain, then
the standard low order quadrature rules are not very accurate. Therefore, the quadrature par-
tition will be finer than the partition into the patches of linearity, i.e., all trial functions ψP
with (P ′, P ) in the sparsity pattern P (cf. §3.5) will not only be piecewise linear but linear
with respect to the parametrization κm on each quadrature subdomain. In the class of all
partitions, we shall choose the coarsest partition with the just mentioned property. Over the
subdomains of this partition we shall approximate the parametrizations κm by a low order
polynomial interpolation and apply a composite quadrature rule.

Let us give the precise definition of the partition. For l = 0, . . . , L, we introduce the set
QuaΓ

l as the set of all Q ∈utΓ
l such that:

i) There is a P ∈ ∇Γ
l−1 such that (P ′, P ) ∈ P and that the support ΨP intersects

the father ΓQF of ΓQ.
ii) If l < L, then we suppose that, for any P ∈ ∇Γ

l with (P ′, P ) ∈ P , ΓQ ∩ΨP = ∅.

The quadrature partition is {ΓQ : Q ∈ ∪Ll=0Qua
Γ
l }. Clearly, condition i) means that in

the partition of Γ the subset ΓQ cannot be substituted by a larger ΓQ′ without violating the
linearity property, and condition ii) means that it is not necessary to divide ΓQ further into
smaller subdomains since already all the trial basis function ψP with (P ′, P ) ∈ P are linear
over ΓQ. Indeed, if i) holds and if ΓQ would be replaced by ΓQ′ , then ΓQF ⊆ ΓQ′ and
the function ψP with (P ′, P ) ∈ P and with supp ψP ∩ ΓQF 6= ∅ (cf. condition i)) has a
discontinuous first derivative over ΓQ′ . On the other hand, due to ii) the wavelet functions of
level l with (P ′, P ) ∈ P vanish over ΓQ, and, due to the definition of P in (3.10), (3.11),
the higher level wavelet functions with (P ′, P ) ∈ P also vanish over ΓQ. The lower level
wavelets, however, are linear on ΓQ.

LEMMA 4.1. The set {ΓQ : Q ∈ ∪Ll=0Qua
Γ
l } is a partition of Γ. For all P with

(P ′, P ) ∈ P and for all Q ∈ ∪Ll=0Qua
Γ
l , the restriction of ψP to ΓQ is linear with respect to

the parametrization. Moreover, the partition {ΓQ : Q ∈ ∪Ll=0Qua
Γ
l } is the coarsest partition

with this linearity property and with {ΓQ : Q ∈ ∪Ll=0Qua
Γ
l } ⊆ {ΓQ : Q ∈ ∪Ll=0ut

Γ
l }.

Proof. The proof is obvious from the following construction of the partition.
The partition {ΓQ : Q ∈ ∪Ll=0Qua

Γ
l } can be determined as follows. For each P ′, we

have to determine the sets QuaΓ
l with l = 0, . . . , L. We do this for each level l separately.

First we set up QuaΓ
0 . Then, if the subsets QuaΓ

l′ , l
′ = 0, . . . , l − 1 are determined, the
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search for the Q ∈ utΓ
l satisfying the conditions i) and ii) can be restricted to all Q ∈ utΓ

l

with ΓQ contained in the difference set Γ minus the union ∪l−1
l′=0 ∪R∈QuaΓ

l′
ΓR. Doing this for

all l = 1, . . . , L and for all P ′ ∈ 4Γ
L, only O(NP) of the O(N2) domains ΓQ have to be

checked to see whether or not they satisfy conditions i) and ii).
LEMMA 4.2. There are constants co > 0 and C0 > 1 such that, for all ΓQ ∈ QuaΓ

l of
level l(Q) = l which are contained in a single parametrization patch Γm and the distance of
which to the boundary ∂Γm is greater than c02−l,

d2L−l(P
′)−l(Q) ≤ dist (ΓQ,ΘP ′) ≤ C0d2

L−l(P ′)−l(Q).(4.1)

If (4.1) does not hold, then the distance of ΓQ to ∂Γm is less than c02−l, and we at least get
the estimate

d21.5[L−l(P ′)]−l(Q) ≤ dist (ΓQ,ΘP ′) ≤ C0d2
1.5[L−l(P ′)]−l(Q).(4.2)

Proof. In view of (3.10) and (3.11), condition i) is equivalent to the existence of
a P ∈ ∇Γ

l−1 such that ΨP ∩ ΓQF 6= ∅ and that dist (ΨP ,ΘP ′) is either less than

d2L−l(P
′)−(l−1) for ΨP contained in the interior of a single parametrization patch Γm or

less than d21.5[L−l(P ′)]−(l−1) for ΨP not contained in the interior of a single parametrization
patch. On the other hand, for an appropriate constant cL > 0 depending on the Lipschitz
constants of the inverse parametrization mappings, the diameter of ΨP , P ∈ ∇Γ

l−1 is less
than cL2−(l−1). Hence, the bounds for dist (ΨP ,ΘP ′) imply the upper estimates in (4.1) and
(4.2).

Condition ii) is satisfied, if and only if, for any P ∈ ∇Γ
l with ΓQ ∩ ΨP 6= ∅ and with

ΨP contained in the interior of a single parametrization patch Γm, the distance dist(ΨP ,ΘP ′)
is greater than d2L−l(P

′)−l, and if, for any P ∈ ∇Γ
l with ΓQ ∩ ΨP 6= ∅ and with ΨP not

contained in the interior of a single parametrization patch Γm, the distance dist(ΨP ,ΘP ′) is
greater than d21.5[L−l(P ′)]−l. However, ΓQ is covered by the ΨP with ΨP ∩ ΓQ 6= ∅. Hence,
the lower estimates for dist(ΨP ,ΘP ′) ensure the lower bounds in (4.1) and (4.2).

Having in mind the estimates (4.1) and (4.2), we shall call the quadrature subdomains of
∪L−1
l=0 {ΓQ : Q ∈ QuaΓ

l } the far field subdomains corresponding to the functional ϑP ′ . The
domains {ΓQ : Q ∈ QuaΓ

L} will be referred to as near field subdomains. In accordance with
(3.6) and (2.3), we shall introduce quadrature approximations aw,c,qP ′,P,Q for

ϑP ′

(

∫

ΓQ

k(·, R, nR)
p(· −R)

| · −R|α
ψP (R) dRΓ

)

.(4.3)

Here the functional ϑP ′ is applied to the function in brackets depending on the variable indi-
cated by a dot. Using these aw,c,qP ′,P,Q, we define the entries aw,c,qP ′,P by

aw,c,qP ′,P := ϑP ′(aψP ) +

{

0 if (P ′, P ) 6∈ P ,
∑L

l=0

∑

Q∈QuaΓ
l
: ΓQ⊂suppψP

aw,c,qP ′,P,Q if (P ′, P ) ∈ P .
(4.4)

We shall defer the definition of the near field terms aw,c,qP ′,P,Q, Q ∈ QuaΓ
L to §4.2 and §4.3. In

this subsection we introduce the far field terms aw,c,qP ′,P,Q with Q ∈ QuaΓ
l and l running from 0

to L− 1.
Let us fix a far field subdomain ΓQ with Q = κm(τ) ∈ QuaΓ

l . Using the parametrisation
κm over Tτ = κ−1

m (ΓQ), we write the integral of (4.3) in the form

ϑP ′





∫

Tτ

k(·, κm(σ), nκm(σ))
p
(

· −κm(σ)
)

| · −κm(σ)|α
ψ̃P (σ)Jm(σ) dσ



 ,(4.5)
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where Jm(σ) := |∂σ1κm(σ)× ∂σ2κm(σ)| is the Jacobian determinant of the transformation
κm at σ = (σ1, σ2) ∈ Tτ and where ψ̃P (σ) stands for the factor ψP (R) = ψP (κm(σ)) which
is independent of the parametrization κm (cf. (3.2) and (2.4)). We derive the approximation
aw,c,qP ′,P,Q for (4.5) in three steps.

In the first step, we replace the parametrization κm over Tτ by a polynomial interpo-
lation κ′m of degree m := 2 − r, i.e., we use a cubic interpolation with ten interpolation
knots for r = −1 and a quadratic interpolation with six knots for r = 0. For instance,
to get the quadratic interpolation, we denote by τi, i = 1, 2, 3 the three corner points and
by τi, i = 4, 5, 6 the mid-points of the three sides of the triangle Tτ = κ−1

m (ΓQ). We set
κ′m(σ) =

∑6
i=1 κm(τi)Li(σ), where Li is the quadratic Lagrange polynomial defined by

Li(τj) = δj,i, i, j = 1, . . . , 6. For explicit formulas see, e.g., (5.1.18) of [2]. Hence, we
approximate (4.5) by

ϑP ′





∫

Tτ

k(·, κm(σ), n′κ′m(σ))
p
(

· −κ′m(σ)
)

| · −κ′m(σ)|α
ψ̃P (σ)J ′m(σ) dσ



 ,(4.6)

where J ′m(σ) := |∂σ1κ
′
m(σ)× ∂σ2κ

′
m(σ)| is the Jacobian determinant of the transformation

κ′m at σ = (σ1, σ2) ∈ Tτ . The symbol n′κ′m(σ) in the last formula stands for the unit vector at
the point κ′m(σ) which is normal to the approximating surface κ′m(Tτ ).

In the second step, we split the integrand of (4.6) into the product f(σ)%̃(σ)

f(σ) := k(·, κm(σ), nκ′m(σ))J
′
m(σ), %̃(σ) := %

(

κ′m(σ)
)

=
p
(

· −κ′m(σ)
)

| · −κ′m(σ)|α
ψ̃P (σ).

Note that f is globally m times differentiable by assumption whereas % is singular at the
points of suppϑP ′ . We apply a product quadrature with weight %̃ and of order m to the
integral in (4.6). If r = −1, then we choose the six point rule based upon the quadratic
interpolation which has been used before. In case r = 0 we take the three point rule. To
simplify the notation, however, we write all the following formulae explicitly for the three
point rule. The modifications for the corresponding formulae including the six point rule
are straightforward. In the estimates and the convergence results, we always suppose that a
quadrature of order m is in use. The product quadrature rule takes the form

∫

Tτ

f(σ)%̃(σ) dσ ≈
3
∑

υ=1

f(τυ)

∫

Tτ

φ̃Q, υ(σ)%̃(σ) dσ,(4.7)

where φ̃Q, υ is the linear function on Tτ defined by φ̃Q, υ(τυ′) = δυ,υ′ . In other words, the
integral (4.6) is approximated by

ϑP ′

(

3
∑

υ=1

k(·, Qυ, n
′
Q′

υ
)J ′m(τυ)b

w,c,q
P,Q,υ(·)

)

,(4.8)

bw,c,qP,Q,υ(R) :=

∫

Tτ

φ̃Q, υ(σ)
p
(

R− κ′m(σ)
)

|R− κ′m(σ)|α
ψ̃P (σ) dσ,(4.9)

where Qυ := κm(τυ) and Q′υ := κ′m(τυ) denote the corner points of the triangles ΓQ =
κm(Tτ ) and κ′m(Tτ ), respectively. The symbol n′Q′

υ
in the last formula stands for the unit

vector at the point Q′υ = κ′m(τυ) which is normal to the approximating surface κ′m(Tτ ).

In the third and last step we have to compute the quadrature weights bw,c,qP,Q,υ of the prod-

uct rule, i.e., the integrals over Tτ of g(σ) := φ̃Q, υ(σ)%(κ′m(σ)). In some applications these
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integrals can be computed analytically. For the general case, we have to compute them by
quadrature. Note that the weight % is a smooth function on ΓQ with singularities sufficiently
far from ΓQ. Under these circumstances, the integral of g can be approximated, e.g., by panel
clustering or multipole techniques (cf. [44, 23]). We, however, describe a third alternative fol-
lowing [22, 25, 34, 47]. To get a quadrature rule over Tτ , we start from the Gauß-Legendre
rule over [0, 1], i.e., from the interpolatory rule including the zeros σkG, k = 1, . . . , nG of the
Legendre polynomial as quadrature knots,

∫ 1

0

F ≈
nG
∑

k=1

F (σkG)ωkG.(4.10)

The order nG will be specified later. Introducing Duffy’s coordinates and applying the Gauß
type tensor product rule to the resulting double integral, we arrive at

∫

Tτ

g(σ) dσ =

∫ 1

0

∫ 1

0

g
(

τ3 + σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3)

)

σD1 dσD2 dσD1 · 2 |Tτ |

≈
nG
∑

k1=1

nG
∑

k2=1

g
(

τ3 + σk1G (τ1 − τ3) + σk1G σ
k2
G (τ2 − τ3)

)

σk1G ω
k1
G ω

k2
G · 2 |Tτ |

=:

n2
G
∑

k=1

g(σkτ )ω
k
τ .(4.11)

Note that, for the numerical implementation, one could try to replace the rule (4.11) by trian-
gular rules of high order or, e.g., by Stroud’s conical product rule (cf.[51]), which is a slight
modification of (4.11).

Thus the formulae (4.8), (4.9), and (4.11) together yield

aw,c,qP ′,P,Q := ϑP ′

(

3
∑

υ=1

k(·, Qυ, n
′
Q′

υ
)J ′m(τυ)(4.12)

·

n2
G
∑

k=1

φ̃Q, υ(σ
k
τ )





p
(

· −κ′m(σkτ )
)

| · −κ′m(σkτ )|
α
ψ̃P (σkτ )



ωkτ



.

For Q ∈ QuaΓ
l , we choose the quadrature order nG in the last formula by

nG := nA + nB









l

1 + 2log

(

dist (ΘP ′ ,ΓQ)

2−l

)









,(4.13)

where the integers nA > 0 and nB > 0 have to be determined by numerical experiments.
In §6.1 we shall prove the existence of positive integers nA and nB such that the additional
error due to the far field quadrature is, roughly speaking, less than the error of the exact
collocation. Analogous error estimates are true also for the approximation of the near field
and the singular integrals in the §4.2 and §4.3. More precisely, we get

THEOREM 4.1. Suppose we use the compression pattern P of Theorem 3.1. If the
exact collocation described in §2.5 is stable, if the compression parameter d (cf. (3.10) and
(3.11)) and the quadrature parameters nA, nB , nC , nD, nE , and nF for the determination
of the Gauß order nG (cf. (4.12), (4.16), (4.21), and (4.28)) are sufficiently large, then the
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compressed collocation together with approximation of the boundary and with the quadrature
of §§4.1 - 4.3 is also stable. The error for the collocation solution uL, including compression,
approximation of the parameter mappings, and quadrature, satisfies

‖u− uL‖Hr(Γ) ≤ C h2−r

{

[logh−1]2 if r = 0
[logh−1]1.5 if r = −1.

(4.14)

The number of quadrature knots and the number of necessary arithmetic operations for the
computation of the stiffness matrix Aw,c,qL is less than C N [logN ]4.

Proof. Stability and error estimates will be a consequence of Remark 5.1 and Lemmata
6.1, 6.3, and 6.5. The complexity bound will be shown in Lemmata 6.2, 6.4, and 6.6.

REMARK 4.1. A fast code for the computation of aw,c,qP ′,P,Q computes first, for fixed ϑP ′

and Q, the quadratures in (4.12) with ψP ◦ κm replaced by the three linear basis functions
φQ, ι, ι = 1, 2, 3 over Tτ . Then, in a loop over all P with ΓQ ⊂ suppψP , the values aw,c,qP ′,P,Q

are evaluated as a linear combination of the three quadratures over the basis functions, and
aw,c,qP ′,P,Q is updated to the actual value of the sum (4.4).

4.2. Parametrization and quadrature for the nonsingular near field. Let us fix a test
functional ϑP ′ and a Q ∈ QuaΓ

L, and let us consider the integral (4.3) for which we seek the
quadrature aw,c,qP ′,P,Q. Recall from §3.2 that the test functional ϑP ′ is a linear combination of
point evaluation functionals. Thus there are points Pλ and uniformly bounded coefficients
µλ = µP

′

λ such that ϑP ′(f) =
∑λP ′

λ=1 µλf(Pλ). In correspondence with this, we can split the
unknown quadrature expression aw,c,qP ′,P,Q into

aw,c,qP ′,P,Q =

λP ′
∑

λ=1

µλ a
w,c,q
P ′,λ,P,Q,(4.15)

aw,c,qP ′,λ,P,Q ≈

∫

ΓQ

k(Pλ, R, nR)
p(Pλ −R)

|Pλ −R|α
ψP (R) dRΓ.

We distinguish two cases. If Pλ is in ΓQ, then the integral (4.15) is singular, and we defer
the definition of the singular quadrature aw,c,qP ′,λ,P,Q to §4.3. For Pλ 6∈ ΓQ, the integral (4.15)
is not singular and the corresponding nonsingular near field quadrature aw,c,qP ′,λ,P,Q is treated
now. We apply the technique of the previous subsection (cf. the quadrature rule of (4.12)) to
(4.15) and get

aw,c,qP ′,λ,P,Q :=
3
∑

υ=1

k(Pλ, Qυ, n
′
Q′

υ
)J ′m(τυ)(4.16)

·

n2
G
∑

k=1

φ̃Q, υ(σ
k
τ )





p
(

Pλ − κ′m(σkτ )
)

|Pλ − κ′m(σkτ )|
α
ψ̃P (σkτ )



ωkτ ,

where this time the order nG is chosen to be nG := nC + LnD. In practical computations
the integers nC > 0 and nD > 0 have to be determined by experiments.

4.3. Parametrization and quadrature for the singular near field.
4.3.1. What is left from §4.1 and §4.2 is to derive quadrature approximations aw,c,qP ′,λ,P,Q

for the integral (4.15) with Q ∈ utΓ
L and Pλ ∈ ΓQ. For this quadrature standard techniques

can be used (cf., e.g., [27, 22, 46]). We present some of the well-known techniques here.
First, we consider the case of weakly singular integrals. This occurs if r = −1 or if r = 0
and the kernel function depending on the variables P and R contains a factor nP · (P − R)
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or nR · (P − R). For definiteness, we restrict our consideration to the case of an additional
factor nR · (P −R). More precisely, we suppose that the kernel takes the form (cf. the double
layer kernel in, e.g., [30])

k(P,R, nR)
p(P −R)

|P − R|α
= k̃(P,R, nR)

p̃(P −R)[nR · (P −R)]1+r

|P −R|α
.(4.17)

For r = 0, we assume that k̃ fulfills all the assumptions made for k in §2.2 and that p̃ is a
homogeneous polynomial of degree deg(p̃) = deg(p) − 1 , i.e., deg(p̃) − α = −3. Hence,
for a suitable constant C > 0, we get |nR · (P −R)| ≤ C|P −R|2 and

∣

∣

∣

∣

k̃(P,R, nR)
p̃(P − R)[nR · (P −R)]1+r

|P −R|α

∣

∣

∣

∣

≤ C |P −R|−1
,

and our kernel (4.17) is indeed weakly singular.
Now, we fix the test functional ϑP ′ , a point Pλ ∈ suppϑP ′ , and a triangle ΓQ = κm(Tτ )

with Q = κm(τ) ∈ utΓ
L and Pλ ∈ ΓQ. Clearly, the grid point Pλ is one of the corner points

of ΓQ. We denote the three corners of Tτ by τι, ι = 1, 2, 3 and suppose κm(τ3) = Pλ. In the
triangles Tτ and ΓQ we introduce Duffy’s coordinates

δ
(

σD
)

:= δ
(

σD1 , σ
D
2

)

:= τ3 + σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3) ,(4.18)

and set κ̃m(σD) := κm(δ(σD)). The Jacobian determinant corresponding to Duffy’s coor-
dinate in Tτ is given by Jδ(σD) = |(τ1 − τ3) × (τ2 − τ3)|σD1 = 2 |Tτ |σD1 and the Jaco-
bian J̃m(σD) of κ̃m is equal to the product Jm(δ(σD))Jδ(σD). We seek an approximation
aw,c,qP ′,λ,P,Q for the integral

∫

ΓQ

k̃(Pλ, R, nR)
p̃(Pλ −R)[nR · (Pλ −R)]1+r

|Pλ −R|α
ψP (R) dRΓ(4.19)

=

∫ 1

0

∫ 1

0

{

k̃(Pλ, κ̃m(σD), nκ̃m(σD))

·
p̃
(

Pλ − κ̃m(σD)
)[

nκ̃m(σD) ·
(

Pλ − κ̃m(σD)
)]1+r

|Pλ − κ̃m(σD)|α
·

·Jm
(

δ(σD)
)

Jδ(σ
D)ψ̃DP (σD)

}

dσD2 dσD1 ,

where ψ̃DP (σD) := ψP (κ̃m(σD)). Due to the additional factor σD1 in Jδ(σD), the weak
singularity of the kernel function cancels.

We proceed in three steps. First, we replace the parametrization κ̃m by the approximate
parametrization in Duffy coordinates κ̃′m := κ′m◦δ, where κ′m is the polynomial interpolation
to κm of polynomial degree m = 2−r. We suppose that Pλ is one of the interpolation knots.
Second, we apply a product rule of order m. To this end the integrand in (4.19) with κ̃m
replaced by κ̃′m is split into the product f · % with

f(σD) := k̃(Pλ, κ̃m(σD), n′κ̃′m(σD))J
′
m

(

δ(σD)
)

,

%(σD) :=
p̃
(

Pλ − κ̃′m(σD)
)[

n′κ̃′m(σD) ·
(

Pλ − κ̃m(σD)
)]1+r

|Pλ − κ̃m(σD)|α
Jδ(σ

D)ψ̃DP (σD).
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For r = −1, the quadrature rule could be the tensor product variant of a quadratic interpola-
tory rule and, for r = 0, we simply take the tensor product linear interpolatory rule.

∫ 1

0

∫ 1

0

f(σD)%(σD) dσD2 dσD1 ≈
4
∑

υ=1

f(τDυ )

∫ 1

0

∫ 1

0

φ̃Dυ (σD)%(σD) dσD2 dσD1 ,

where τDυ , υ = 1, . . . , 4 denote the four corners of [0, 1] × [0, 1] and φ̃Dυ is the bilinear
basis function defined by φ̃Dυ (τDυ′ ) = δυ,υ′ . Again, to simplify the notation we shall write
the subsequent formulae with the linear interpolatory rule. The modifications for the tensor
product of the quadratic interpolatory rule are straightforward. In the third and last step we
apply the tensor product variant of the Gauß-Legendre rule of order nG

∫ 1

0

∫ 1

0

g(σD) dσD2 dσD1 ≈
nG
∑

k1=1

nG
∑

k2=1

g
(

σk1G , σ
k2
G

)

ωk1G ω
k2
G =:

n2
G
∑

k=1

g(σ̃k)ω̃k,(4.20)

with order nG = nE + LnF to compute an approximation to the integral of the function
g(σD) = φ̃Dυ (σD)%(σD). Finally, we arrive at

aw,c,qP ′,λ,P,Q :=

4
∑

υ=1

k̃(Pλ, Q
D
υ , n

′
RD

υ
)J ′m

(

δ
(

τDυ
))

·(4.21)

n2
G
∑

k=1

φ̃Dυ (σ̃k)
p̃
(

Pλ − κ̃′m(σ̃k)
)[

n′κ̃′m(σ̃k) ·
(

Pλ − κ̃′m(σ̃k)
)]1+r

|Pλ − κ̃′m(σ̃k)|α
Jδ(σ̃

k)ψ̃DP (σ̃k)ω̃k.

Here we have set QDυ := κ̃m(τDυ ) and RDυ := κ̃′m(τDυ ), and n′Q′′ denotes the unit nor-
mal to the approximate surface at Q′′. Note that the Jacobian of κ̃′m takes the form
J ′m(δ(σD))Jδ(σ

D). The numbers nE and nF in the definition of nG are to be determined
by numerical experiments.

4.3.2. Now let us consider r = 0 and suppose the integral operator is strongly singular. If
the value ψP (Pλ) vanishes, then this additional zero turns the strongly singular integral into a
weakly singular, and we may apply the same procedure as for the weakly singular case treated
before. For ψP (Pλ) 6= 0 or φQ, ι(Pλ) 6= 0 (cf. Remark 4.1), we substitute ψP = ψP (Pλ) +
(ψP−ψP (Pλ)), respectivelyφQ, ι = φQ, ι(Pλ)+(φQ, ι−φQ, ι(Pλ)), into the singular integral.
This way the integral splits into two parts, where the integral containing the functions (ψP −
ψP (Pλ)), respectively (φQ, ι−φQ, ι(Pλ)), can be approximated like in the case ψP (Pλ) = 0.
The only strongly singular case occurs if ψP (Pλ) 6= 0, respectively φQ, ι(Pλ) 6= 0, and if the
functionψP , respectively φQ, ι, are replaced by the constants ψP (Pλ), respectively φQ, ι(Pλ).
Without loss of generality we set these constants to one.

4.3.3. For the computation of the corresponding singular integrals, there exist several
techniques (cf., e.g., [27, 46]). Here we shall present a quadrature algorithm similar to that in
[9, 48] since this seems to require less assumptions on the smoothness. We consider a fixed
singularity point Pλ. Since the singular integral is to be understood in the sense of Cauchy’s
principal value, we have to treat the quadrature for all ΓQ with Pλ ∈ ΓQ simultaneously. Let
m0 stand for the smallest positive integer such that Pλ ∈ Γm0 . Beside m0 we consider an
arbitrary m and an arbitrary ΓQ such that Pλ ∈ ΓQ ⊆ Γm, i.e., Pλ = κm(τ3) for a corner
τ3 of Tτ = κ−1

m (ΓQ). Note that the parameter value τ3 in Pλ = κm(τ3) depends, of course,
on the parametrization κm and on the triangle ΓQ. However, to simplify the notation, we do
not indicate this dependence. By the assumption of §2.1 the parametrization κm0 mapping T
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onto Γm0 extends to a neighbourhood of T . Hence, we can define

T (Pλ,m, ε) :=
{

σ :
∣

∣∇
(

κ−1
m0

◦ κm
)

(τ3) · (σ − τ3)
∣

∣ ≤ ε
}

,

Γ(Pλ, ε) :=
⋃

m=1,...,mΓ:Pλ∈Γm

κm

(

T (Pλ,m, ε)
)

≈ {κm0(σ) : |σ − τ3| ≤ ε} .

By assumption the polynomial part p of the kernel function is odd. For such kernels, it is not
hard to see that (cf. [31], Chapter XI, §1)

∣

∣

∣

∣

∣

∫

Γ(Pλ, ε)

k(Pλ, R, nR)
p(Pλ −R)

|Pλ −R|α
dRΓ

∣

∣

∣

∣

∣

≤ C ε.(4.22)

We seek a quadrature with error less than C 2−2L. Therefore, the integral over Γ can be
replaced by that over Γ \ Γ(Pλ, 2

−2L), and it remains to approximate the integral
∫

ΓQ\Γ(Pλ,2−2L)

k(Pλ, R, nR)
p(Pλ −R)

|Pλ −R|α
dRΓ =(4.23)

∑

m

∫

Tτ\T (Pλ,m,2−2L)

k
(

κm(τ3), κm(σ), nκm(σ)

)

p
(

κm(τ3)− κm(σ)
)

|κm(τ3)− κm(σ)|α
Jm(σ) dσ,

for each ΓQ with P ∈ ΓQ. We replace the parametrization κm over Tτ \ T (Pλ,m, 2
−2L) by

the quadratic interpolation κ′m defined over Tτ , and it remains to compute

∫

Tτ\T ′(Pλ,m,2−2L)

k
(

κm(τ3), κm(σ), n′κ′m(σ)

) p
(

κ′m(τ3)− κ′m(σ)
)

|κ′m(τ3)− κ′m(σ)|α
J ′m(σ) dσ,(4.24)

T ′(Pλ,m, ε) :=
{

σ :
∣

∣∇
(

[κ′m0
]−1 ◦ κ′m

)

(τ3) · (σ − τ3)
∣

∣ ≤ ε
}

.(4.25)

Similar to the product rule in §4.1 and §4.3.1, we approximate the last integral over the domain
Tτ \ T ′(Pλ,m, 2−2L) by a product rule with the integrand f and the product weight %̃ given
by

f(σ) := k(κm(τ3), κm(σ), nκ′m(σ))J
′
m(σ), %̃(σ) :=

p
(

κ′m(τ3)− κ′m(σ)
)

|κ′m(τ3)− κ′m(σ)|α
.

This way we get

aw,c,qP ′,λ,P,Q :=

3
∑

υ=1

k
(

κm(τ3), κm(τυ), n
′
κ′m(τυ)

)

J ′m(τυ) b
w,c,q
P ′,λ,Q,υ,(4.26)

bw,c,qP ′,λ,Q,υ ≈

∫

Tτ\T ′(Pλ,m,2−2L)

φ̃Q, υ(σ)
p
(

κ′m(τ3)− κ′m(σ)
)

|κ′m(τ3)− κ′m(σ)|α
dσ.

In contrast to the far field integrals where bw,c,qP ′,λ,Q,υ can be computed by simple analytic
formulae, the quadrature weight bw,c,qP ′,λ,Q,υ of the present situation will be computed by intro-
ducing a geometric mesh and by applying high order quadrature rules over each subdomain.
Fixing a grading parameter 0 < q < 1, we denote the largest ι such that (for δ cf. (4.18))

T ′(Pλ,m, 2
−2L) ⊆

{

δ(σD) ∈ Tτ : 0 ≤ σD1 ≤ qι−1, 0 ≤ σD2 ≤ 1
}
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by ι0. Clearly, ι0 ∼ L. We divide the domain of integration Tτ \ T ′(Pλ,m, 2−2L) into the
union of the subdomains Tτ,ι, ι = 1, . . . , ι0

Tτ,ι :=
{

δ(σD) ∈ Tτ : qι < σD1 ≤ qι−1, 0 ≤ σD2 ≤ 1
}

,(4.27)

Tτ,ι0 :=
{

δ(σD) ∈ Tτ : 0 ≤ σD1 ≤ qι0−1, 0 ≤ σD2 ≤ 1
}

\ T ′(Pλ,m, 2
−2L).

The optimal grading parameter q should be determined by numerical experiments. Note that
for a different kind of integrals the choice q = 0.15 is optimal (cf., e.g., [48]). For fixed ι
with 1 ≤ ι ≤ ι0, we observe that Tτ,ι = {δ(σD) : 0 ≤ σD2 ≤ 1, Sa(σ

D
2 ) ≤ σD1 ≤ Sb},

where Sb is equal to qι−1 and Sa(σD2 ) := qι for ι < ι0. The bound Sa(σD2 ) for ι = ι0 is the
solution σD1 of the equation |∇([κ′m0

]−1 ◦κ′m)(τ3) · (δ(σD)−τ3)| = 2−2L, i.e., the boundary
curve σD2 7→ δ(Sa(σ

D
2 ), σD2 ) of the domain T ′(Pλ,m, 2−2L) is an ellipse. We may write the

integral restricted to Tτ,ι in the form

∫

Tτ,ι

φ̃Q, υ(σ)
p
(

κ′m(τ3)− κ′m(σ)
)

|κ′m(τ3)− κ′m(σ)|α
dσ =

∫ 1

0

∫ Sb

Sa(σD
2 )

φ̃Q, υ
(

δ(σD)
) p
(

κ′m(τ3)− κ̃′m(σD)
)

|κ′m(τ3)− κ̃′m(σD)|
α Jδ(σ

D) dσD1 dσD2 .

Applying the tensor product variant of the Gauß-Legendre rule (4.20) to the last integral, we
complete the formula (4.26) by the quadrature

bw,c,qP ′,λ,Q,υ :=

ι0
∑

ι=1

nG
∑

k2=1

nG
∑

k1=1

φ̃Q, υ
(

δ(σDk1,k2)
)

p
(

κ′m(τ3)− κ̃′m(σDk1,k2)
)

∣

∣

∣κ′m(τ3)− κ̃′m(σDk1 ,k2)
∣

∣

∣

α ·(4.28)

Jδ(σ
D
k1 ,k2)

∣

∣

∣Sb − Sa(σ
k2
G )
∣

∣

∣ωGk1ω
G
k2 ,

σDk1,k2 :=
(

Sa(σ
k2
G ) + σk1G

[

Sb − Sa(σ
k2
G )
]

, σk2G

)

.(4.29)

The order nG in (4.29) is again chosen to be nG := nE + LnF . Finally, the quadrature
approximation is given by (4.15), (4.26), and (4.28).

5. Preliminary results from the compression estimates.

5.1. The properties of the three-point hierarchical basis. Retain the notation of the
basis from 3.1. From now on C stands for a generic constant the value of which varies from
instance to instance. For two expressionsE1 and E2, we write E1 ∼ E2 if there is a constant
independent of the parameters involved in E1 and E2 such that E1/C ≤ E2 ≤ C E1. Under
some additional technical assumptions, we infer the following lemma from [43].

LEMMA 5.1.
(i) For −0.5 < s < 1.5, the basis {ψP : P ∈ ∪∞L=04

Γ
L} is a Riesz basis, i.e., for any

L and for any vector of real numbers (ξP )P , we get
∥

∥

∥

∥

∥

∥

∑

P∈4Γ
L

ξPψP

∥

∥

∥

∥

∥

∥

Hs(Γ)

∼
√

∑

P∈4Γ
L

22l(P )(s−1)|ξP |2.(5.1)

(ii) For the interpolation projection RL defined in §2.5, for u ∈ Ht(Γ), and for the
Sobolev space orders 0 ≤ s ≤ t ≤ 2, s < 1.5, t > 1, we get

‖u−RLu‖Hs(Γ) ≤ C2−L(t−s)‖u‖⊕mΓ
m=1H

t(Γm).(5.2)
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(iii) For the L2(Γ) orthogonal projection PL and for the Sobolev space orders −2 ≤
s ≤ t ≤ 2, s < 1.5, t > −1.5, we get

‖u− PLu‖Hs(Γ) ≤ C2−L(t−s)‖u‖Ht(Γ).(5.3)

(iv) For the Sobolev space orders s ≤ t < 1.5, the functions uL from LinΓ
L fulfill the

inverse property (Bernstein inequality)

‖uL‖Ht(Γ) ≤ C2L(t−s)‖uL‖Hs(Γ).(5.4)

5.2. The properties of the wavelet basis in the test space. The properties of the basis
of test wavelets introduced in §3.2 can be described using the predual basis. We simply
define the classical hierarchical basis by χP := ϕl+1

P for P ∈ ∇Γ
l and observe the duality

property 〈ϑP , χP ′〉 := ϑP (χP ′) = δP,P ′ as well as span{χP : P ∈ 4Γ
L} = LinΓ

L. The
interpolation projection can be represented as

RLu =
∑

P∈4Γ
L

u(P )ϕLP =
∑

P∈4Γ
L

〈ϑP , u〉χP .

The approximation and inverse properties for the space predual to the test functionals are
formulated in Lemma5.1 ii)-iv). The following properties are well-known.

LEMMA 5.2.
(i) For 1 < s < 1.5, the basis {χP : P ∈ ∪∞L=04

Γ
L} is a Riesz basis, i.e., for any L

and for any vector of real numbers (ξP )P , we get
∥

∥

∥

∥

∥

∥

∑

P∈4Γ
L

ξPχP

∥

∥

∥

∥

∥

∥

Hs(Γ)

∼
√

∑

P∈4Γ
L

22l(P )(s−1)|ξP |2.(5.5)

(ii) The finite element basis ϕLP , P ∈ 4Γ
L satisfies the discrete norm equivalence

∥

∥

∥

∥

∥

∥

∑

P̃∈4Γ
L

ξP̃ϕ
L
P̃

∥

∥

∥

∥

∥

∥

L2(Γ)

∼
1

2L

√

∑

P̃∈4Γ
L

|ξP̃ |
2.

In particular, we get
∥

∥

∥

∥

∥

∥

∑

P∈4Γ
L

ξPχP

∥

∥

∥

∥

∥

∥

L2(Γ)

∼
1

2L

√

∑

P̃∈4Γ
L

|
∑

P∈4Γ
L

ξPχP (P̃ )|2.(5.6)

(iii) Standard estimates yield the upper bound

∥

∥

∥

∥

∥

∥

∑

P∈4Γ
L

ξPχP

∥

∥

∥

∥

∥

∥

L2(Γ)

≤ C

√

√

√

√

√

L

L−1
∑

l=−1

2−2l
∑

P̃∈∇Γ
l

|ξP |
2 ≤ C L sup

P∈4Γ
L

|ξP | .(5.7)

Similar results hold for the basis predual to the functionals {ϑ+
P }. We only have to

replace LinΓ
L by the space of continuous and piecewise quadratic functions over the partition

{ΓQ : Q ∈ utΓ
L} and to substitute the hat functions χP := ϕ

l(P )+1
P by the piecewise quadratic

interpolants.
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5.3. General error estimates for the numerical solution and preconditioning. In this
subsection we recall well-known error estimates for stable numerical methods. We discuss
the assumptions on the stability and necessary conditions which ensure that the numerical
methods, perturbed by compression and by boundary approximation and quadrature, admit
the same asymptotic orders of convergence as the unperturbed methods. Moreover, we give
necessary conditions which ensure the existence of diagonal preconditioners for the matrix
Aw,c,q of the compressed and approximated collocation method.

The collocation method for the equation Au = v defines an approximate solution uL ∈
LinΓ

L by RLAuL = RLv (cf. §2.5). This method is called stable in the space Hs(Γ) if the
approximate operators RLA : LinΓ

L −→ LinΓ
L are invertible for sufficiently large L and if

their inverses are bounded, i.e.,
∥

∥

∥

∥

(

RLA|LinΓ
L

)−1

wL

∥

∥

∥

∥

Hs+r(Γ)

≤ C ‖wL‖Hs(Γ) , wL ∈ Lin
Γ
L.

We suppose that the collocation method is stable for s = 0. Additionally, we suppose stability
also for s = 1.1 (or for an arbitrary s with 1 < s < 1.5 instead of 1.1). Note that stability
is well-known for second kind integral operators including compact integral operators. In
particular this is true for double layer operators over smooth boundaries (cf., e.g., [2]). For
first kind operators and operators involving strongly singular integral operators, the question
of stability is not yet solved. A first step toward the solution is done in [36, 37, 11, 14]. Note
that, since our trial space LinΓ

L is generated by two scaling functions, the stability is needed
for a multiwavelet space (cf. the univariate multiwavelet paper [38]). Though a rigorous
proof of stability is missing, collocation methods are frequently used without observing any
instability.

To simplify the notation, let us denote the operator RLA|LinΓ
L

by AL, i.e., by the same

symbol as for its matrix with respect to the basis {ϕLP : P ∈ 4Γ
L} (cf. §2.5). Similarly, we

denote byAcL andAc,qL the operators in LinΓ
L the matrix of which with respect to {ϕLP : P ∈

4Γ
L} is AcL and Ac,qL , respectively (cf. (3.7)). Using the L2 orthogonal projection PL, we

represent the error u− uL of the fully discretized and compressed methodAc,qL uL = RLv as

u− uL

= u− PLu− (Ac,qL )
−1
{

RLAu−Ac,qL PLu
}

= u− PLu− (Ac,qL )
−1
{

[AL −Ac,qL ]PLu+A(I − PL)u− (I −RL)A(I − PL)u
}

.

We apply the boundedness assumption on A (cf. §2.2), assume the stability of Ac,qL for
Sobolev index s = 0, and use Lemma5.1 to get

‖u− uL‖Hr(Γ) ≤ ‖u− PLu‖Hr(Γ) + C
{

‖[AL −Ac,qL ]PLu‖H0(Γ) +

‖(I − PL)u‖Hr(Γ) + 2−1.1L ‖A(I − PL)u‖H1.1(Γ)

}

≤ C2−(2−r)L ‖u‖H2(Γ) + C ‖[AL −Ac,qL ]PLu‖H0(Γ) .

In other words, to ensure the optimal convergence order 2− r, we need the estimate ‖[AL −
Ac,qL ]PLu‖H0(Γ) ≤ Cu2

−(2−r)L and the stability of Ac,qL . Since AL is stable by assumption
and since Ac,qL = AL{I + A−1

L [Ac,qL − AL]}, for the stability of Ac,qL , it will be sufficient to
require

∥

∥

∥

∥

AL −Ac,qL

∥

∥

∥

∥

Hs(Γ)←Hs+r(Γ)

≤
1

2

[

sup
L′=L0,L0+1,...

‖A−1
L′ ‖Hs+r(Γ)←Hs(Γ)

]−1

(5.8)
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for s = 0. In view of the inverse property iv) of Lemma5.1 the last condition is a consequence
of

∥

∥

∥

∥

[AL −Ac,qL ]PLu

∥

∥

∥

∥

H0(Γ)

≤ C2−(s−r)L‖u‖Hs(Γ)(5.9)

with the choice s = 1.1 if we show that the constant C in (5.9) can be made smaller than
any prescribed positive number. The usual compression estimates prove the error estimates
in (5.9) for s = 2 and s = 1.1 but with the difference AL − Ac,qL replaced by AL −AcL. We
refer the reader to [15, 34, 47, 40] for the details. In the present paper it will be our task to
prove the estimates (5.9) for s = 2 and s = 1.1 with AL −Ac,qL replaced by AcL −Ac,qL .

The issue of wavelet preconditioners has been addressed by many authors (cf., e.g., [13,
15, 29, 52]) and we will follow the same ideas. In the case r = 0 the stability of Ac,qL
implies that the matrixAc,qL has a condition number which is already uniformly bounded with
respect to L. Thus, for the algorithm (3.9), no preconditioning is needed, and we can restrict
our consideration to algorithm (3.8). Unfortunately, the wavelet transform T −1

T (cf. §3.3)
does not have a uniformly bounded condition number with respect to Euclidean matrix norm.
Therefore, preconditioning is needed even for r = 0, and the preconditioner is to be derived
from the stability for a different Sobolev index. We choose, e.g., s = 1.1. Let us consider an
operatorA of order r = 0,−1 and suppose the stability of AL in the Sobolev space H1.1(Γ).
If we could prove (5.8) for s = 1.1, thenAc,qL is also stable inH1.1(Γ). From §3.1 and 5.2, we
recall thatAw,c,qL is the matrix of the operatorAc,qL with respect to the bases {ψP : P ∈ 4Γ

L}
and {χP : P ∈ 4Γ

L}. Under assumption (5.8), the assertions i) of Lemmata 5.2 and 5.1
imply that the matrices

(

δP,P ′2l(P
′)(1.1−1)

)

P,P ′∈4Γ
L

Aw,c,qL

(

δP,P ′2−l(P )(r+1.1−1)
)

P,P ′∈4Γ
L

(5.10)

have condition numbers which are uniformly bounded with respect to L, i.e., the matrix
Aw,c,qL admits a diagonal preconditioning. The boundedness of the condition number en-
sures the fast convergence of the iterative solver in the wavelet algorithm (3.8). In other
words, for the fast iterative solution of the linear systems Aw,c,qL β = γ (cf. part iv) of (3.8))
using preconditioning, we only have to prove (5.8). This, however, follows from the inverse
property iv) in Lemma 5.1 and from (5.9) with s = 1.1 and with a sufficiently small constant
C. Again, (5.9) is well-known for the difference AL − Ac,qL replaced by AL − AcL (cf.
[15, 34, 47, 40]). The estimate (5.8) with AL − Ac,qL replaced by AcL − Ac,qL will be treated
in the next section. All together, we get

REMARK 5.1. For almost optimal rates of convergence, for stability, and for precondi-
tioning, we only have to find an appropriate nonnegative constant κ and to prove

∥

∥

∥

∥

[AcL −Ac,wL ]PLu

∥

∥

∥

∥

H0(Γ)

≤ C Lκ2−(2−r)L ‖u‖H1.1(Γ) , u ∈ H1.1(Γ).(5.11)

To derive an estimate like (5.11), we shall use the following Schur lemma and the following
estimate by the l∞ matrix norm.

LEMMA 5.3. Denote the entries of the compressed matrix of quadrature errors [AcL −
Ac,qL ] with respect to the wavelet bases {χP ′} and {ψP } by aP ′,P := aw,cP ′,P −a

w,c,q
P ′,P . Choose

an arbitrary real number x. Then the left hand side of (5.11) can be estimated as
∥

∥

∥

∥

[AcL −Ac,qL ]PLu

∥

∥

∥

∥

L2(Γ)

≤ C‖u‖H1.1(Γ)

√

Σ1 Σ2,(5.12)
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Σ1 := sup
P ′∈4Γ

L

2−xl(P
′)
∑

P∈4Γ
L

|aP ′,P |

2[1.1−x]l(P )
, Σ2 :=

L−1
∑

l=−1

2[0.9−x]l sup
P∈∇Γ

l

∑

P ′∈4Γ
L

|aP ′,P |

2[2−x]l(P ′)
.

Proof. In view of (5.6), we get, for PLu =
∑

ξPψP ,

∥

∥

∥

∥

[AcL −Ac,qL ]PLu

∥

∥

∥

∥

2

L2(Γ)

=

∥

∥

∥

∥

∥

∥

∑

P ′,P∈4Γ
L

aP ′,P ξPχP ′

∥

∥

∥

∥

∥

∥

2

L2(Γ)

≤ C 2−2L
∑

P̃∈4Γ
L

∣

∣

∣

∣

∣

∣

∑

P ′∈4Γ
L

∑

P∈4Γ
L

aP ′,P ξPχP ′(P̃ )

∣

∣

∣

∣

∣

∣

2

.

Clearly, the function values χP ′(P̃ ) are nonnegative and less than one. We apply the Cauchy-
Schwarz inequality and some easy calculations to arrive at

∥

∥

∥

∥

[AcL −Ac,qL ]PLu

∥

∥

∥

∥

2

L2(Γ)

≤ C 2−2L
∑

P̃∈4Γ
L

[

∑

P ′∈4Γ
L

∑

P∈4Γ
L

|aP ′,P |2
[x−1.1]l(P )

×
∑

P∈4Γ
L

|aP ′,P |2
[1.1−x]l(P )|ξP |

2 |χP ′(P̃ )|2

]

≤ C 2−2LΣ1

∑

P̃∈4Γ
L

∑

P ′∈4Γ
L

2xl(P
′)
∑

P∈4Γ
L

|aP ′,P |2
[1.1−x]l(P )|ξP |

2|χP ′(P̃ )|2.

Now we observe that, for a fixed P ′, the number of P̃ ∈ 4Γ
L such that χP ′(P̃ ) > 0 is less

than C22[L−l(P ′)]. Using this as well as (5.1) valid for the wavelet expansion of PLu, we
continue
∥

∥

∥

∥

[AcL −Ac,qL ]PLu

∥

∥

∥

∥

2

L2(Γ)

≤ C Σ1

∑

P∈4Γ
L

∑

P ′∈4Γ
L

2[x−2]l(P ′)|aP ′,P |2
[1.1−x]l(P )|ξP |

2,

≤ C Σ1

L−1
∑

l=−1

2[0.9−x]l sup
P∈∇Γ

l





∑

P ′∈4Γ
L

2[x−2]l(P ′)|aP ′,P |





×
∑

P∈∇Γ
l

22[1.1−1]l(P )|ξP |
2 ≤ C‖u‖2

H1.1(Γ) Σ1 Σ2.

LEMMA 5.4. Using the notation of Lemma 5.3, we get the l∞ matrix norm bound
∥

∥

∥

∥

[AcL −Ac,qL ]PLu

∥

∥

∥

∥

L2(Γ)

≤ C L‖u‖H1.1(Γ) sup
P ′∈4Γ

L

∑

P∈4Γ
L

2−0.05 l(P )|aP ′,P |.(5.13)

Proof. Using the estimate supP∈4Γ
L
|20.05 l(P )ξP | ≤ C ‖

∑

P∈4Γ
L
ξPψP ‖H1.1(Γ), which

is a simple consequence of (5.1), and the upper bound (5.7), the assertion follows easily.
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6. The estimation of the errors due to the approximate parametrization and due to
the quadrature.

6.1. The far field estimate. In this subsection we suppose that the near field and the
singular integrations are performed exactly and derive the convergence estimates for the far
field case. The error estimate for the near field and for the singular integrals will be considered
in §6.2 and §6.3, respectively. In view of Remark 5.1, it remains to prove

LEMMA 6.1. Suppose AcL ∈ L(LinΓ
L) is the approximate operator of the compressed

collocation method including the sparsity pattern P (cf. §3.5). If Ac,qL is the operator of the
compressed collocation method including the approximation of the parameter mappings and
the quadrature of the far field (cf. §4.1), then we get (5.11) with κ = 1.5.

Proof. i) It remains to estimate Σ1 and Σ2 (cf. Lemma 5.3). For the interpolation and
quadrature, we shall prove the error estimate

|aP ′,P | = |aw,cP ′,P − aw,c,qP ′,P | ≤ a1
P ′,P ,(6.1)

a1
P ′,P := Cd−m2−mL

∫

{R∈suppψP : dist(R,ΘP ′ )>2d2−l(P ′)}

dist(R,ΘP ′)−2 dRΓ,

if the support of ψP is contained in the interior of a single parametrization patch Γm and

|aP ′,P | = |aw,cP ′,P − aw,c,qP ′,P | ≤ a1
P ′,P + a2

P ′,P ,(6.2)

a2
P ′,P := Cd−1−m2−mL

∫

{R∈suppψP∩Γm∩Γm′ :

dist(R,ΘP ′ )>2d20.5L−1.5l(P ′)}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)
,

if the support of ψP intersects at least two parametrization patches. We introduce the num-
bers dist := dist(ΘP ′ ,ΨP ), M1 := d2L−l(P )−l(P ′), and M2 := d21.5[L−l(P ′)]−l(P ) (cf. the
formulae (3.10) and (3.11)). Substituting the estimate (6.1) into the definition of Σ1 and
choosing x = 0, we get

Σ1 ≤ sup
P ′∈4Γ

L

L−1
∑

l(P )=−1

2−1.1 l(P )
∑

P∈∇Γ
l(P ):

dist≤M1

Cd−m2−mL

∫

{...}

dist(R,ΘP ′)−2 dRΓ

≤ Cd−m2−mL sup
P ′∈4Γ

L

L−1
∑

l(P )=−1

2−1.1 l(P )

∫

{R: 2d2−l(P ′)<dist(R,ΘP ′ )<M1}

dRΓ

dist(R,ΘP ′)2

≤ Cd−mL2−mL.

Similarly, we estimate Σ2 including (6.1).

Σ2 ≤
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

L−1
∑

l′=−1

2−2l′
∑

P ′∈∇Γ
l′

:

dist≤M1

Cd−m2−mL

∫

{...}

dist(R,ΘP ′)−2 dRΓ

≤ Cd−m2−mL
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

L−1
∑

l′=−1

∫

{...}

{

2−2l′
∑

P ′∈∇Γ
l′

:

dist≤M1

dist(R,ΘP ′)−2

}

dRΓ

≤ Cd−m2−mL
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

{

L−1
∑

l′=−1



ETNA
Kent State University 
etna@mcs.kent.edu

S. Ehrich and A. Rathsfeld 173

∫

suppψP

∫

{P ′: 2d2−l(P ′)<dist(P ′,R)<M1}

dP ′Γ dRΓ

dist(R,P ′)2

}

≤ Cd−m2−mL
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

L−1
∑

l′=−1

L

∫

suppψP

dRΓ ≤ Cd−mL22−mL.

If we substitute the estimate a2
P ′,P of (6.2) into the definition of Σ1 and if we choose x = 0,

we get

Σ1 ≤ sup
P ′∈4Γ

L

L−1
∑

l=−1

2−1.1 l
∑

P∈∇Γ
l :

dist≤M2

{

Cd−1−m2−mL ·

∫

{R∈suppψP∩Γm∩Γm′ :

dist(R,ΘP ′ )>2d20.5L−1.5l(P ′)}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)

}

≤ Cd−1−m2−mL sup
l(P ′)=−1,...,L−1

L−1
∑

l=−1

{

2−1.1 l ·

∫

{R∈Γm∩Γm′ : 2d20.5L·

2−1.5l(P ′)<dist(R,ΘP ′ )<M2}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)

}

≤ Cd−1−mL2−mL.

Similarly, we estimate Σ2 including a2
P ′,P of (6.2).

Σ2 ≤
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

L−1
∑

l′=−1

2−2l′
∑

P ′∈∇Γ
l′

:

dist≤M2

Cd−1−m2−mL

∫

{...}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)

≤ Cd−1−m2−mL
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

{

L−1
∑

l′=−1

∫

{...}

{

2−2l′
∑

P ′∈∇Γ
l′

:

dist≤M2

dist(R,ΘP ′)−1

}

dR[Γm ∩ Γm′ ]

}

≤ Cd−1−m2−mL
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

{

L−1
∑

l′=−1

∫

suppψP

∫

{P ′: 2d20.5L−1.5l(P ′)

<dist(R,P ′)≤M2}

dP ′Γ dR[Γm ∩ Γm′ ]

dist(R,P ′)

}

≤ Cd−1−m2−mL
L−1
∑

l=−1

20.9 l sup
P∈4Γ

l

L−1
∑

l′=−1

∫

suppψP

dR[Γm ∩ Γm′ ] ≤ Cd−1−mL2−mL.

ii) Let us prove (6.1) and (6.2). We shall prove that the quadrature error over a small
triangle ΓQ from the quadrature partition of ΨP is less than

C2−ml(P ′)2−[4−r]l(Q)dist (ΓQ,ΘP ′)
−2−m

.(6.3)
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Now observe that the number of triangles ΓQ contained in ΨP with distance to the boundary
∂Γm greater than co2−l(Q) is less than (cf. (4.1))

L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

1 ≤
L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

2−2l(Q)

[

2−l(Q)

]−2

≤ C
L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

2−2l(Q)

[

d−12−L+l(P ′)dist(ΓQ,ΘP ′)

]−2

≤ Cd222L−2l(P ′)

∫

{R∈suppψP : dist(R,ΘP ′ )>2d2−l(P ′)}

dist(R,ΘP ′)−2 dRΓ.

Consequently, the quadrature error |aP ′,P | over the corresponding part ∪ΓQ of ΨP contained
completely in a single parametrization patch Γm is the sum of the terms in (6.3) and can be
estimated by

|aP ′,P | ≤ C

L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

2−ml(P ′)2−[4−r]l(Q)

[

d2L−l(Q)−l(P ′)
]2+m

≤ C
2−ml(P ′)

[

d2L−l(P ′)
]2+m

d222L−2l(P ′)

∫

{...}

dist(R,ΘP ′)−2 dRΓ

≤ Cd−m2−mL

∫

{R∈suppψP : dist(R,ΘP ′ )>2d2−l(P ′)}

dist(R,ΘP ′)−2 dRΓ.

Analogously, we observe that the number of triangles ΓQ contained in ΨP with distance to
the boundary ∂Γm = Γm ∩ Γm′ less than co2−l(Q) is less than (cf. (4.2))

L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

1 ≤
L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

2−l(Q)

[

2−l(Q)

]−1

≤ C

L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

2−l(Q)

[

d−12−1.5[L−l(P ′)]dist(ΓQ,ΘP ′)

]−1

≤ Cd21.5[L−l(P ′)]

∫

{R∈suppψP∩Γm∩Γm′ :

dist(R,ΘP ′ )>2d20.5L−1.5l(P ′)}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)
.

Consequently, the quadrature error |aP ′,P | over the corresponding part ∪ΓQ of ΨP intersect-
ing at least two parametrization patches Γm and Γm′ is the sum of the terms in (6.3) and can
be estimated by

|aP ′,P | ≤ C

L−1
∑

l(Q)=l(P )

∑

ΓQ∈Qua
Γ
l(Q)

ΓQ⊆suppψP

2−ml(P ′)2−[4−r]l(Q)

[

d21.5[L−l(P ′)]−l(Q)
]2+m
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≤ C
2−ml(P ′)

[

d21.5[L−l(P ′)]
]2+m

Cd21.5[L−l(P ′)] ·

∫

{R∈suppψP∩Γm∩Γm′ :

dist(R,ΘP ′ )>2d20.5L−1.5l(P ′)}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)

≤ Cd−1−m2−mL

∫

{R∈suppψP∩Γm∩Γm′ :

dist(R,ΘP ′ )>2d20.5L−1.5l(P ′)}

dR[Γm ∩ Γm′ ]

dist(R,ΘP ′)
.

In other words (6.1) and (6.2) are proved if we can show (6.3).
iii) Let us prove (6.3). This, however, is a consequence of dist (ΘP ′ ,ΓQ) < C and of the

stronger (respectively, equivalent) estimate

ãP ′, (Q, ι) ≤ C2−ml(P ′)2−(4−r)l(Q)dist (ΘP ′ ,ΓQ)
−r−2−m

,(6.4)

where ãP ′, (Q, ι) is the absolute value of the approximation error to

ϑP ′

(∫

Γ

k(·, R, nR)
p(· −R)

| · −R|α
φQ, ι(R) dRΓ

)

,(6.5)

and where φQ, ι(κm(σ)) = φ̃Q, ι(σ) is the Lagrange basis function used in (4.7). It re-
mains to derive (6.4). The approximation to (6.5) (cf. (4.12)) is obtained by interpolating the
parametrization κm, by applying a 2 − r order product rule to the integral over Tτ of the
integrand σ 7→ k(·, κm(σ), n′κ′m(σ))J

′
m(σ), and by applying an nG order quadrature to the

integrals of the weight functions σ 7→ φ̃Q, υ(σ)p(· − κ′m(σ)) | · −κ′m(σ)|−α φQ, ι(κm(σ))
(cf. Remark 4.1). Let us make this more precise. It is not hard to see that the test func-
tional ϑP ′ is a scaled version of a difference formula and that it satisfies a certain Leibniz
rule of the form ϑP ′(fg) =

∑iP ′

i=1 ϑP ′,1,i(f)ϑP ′,2,i(g), where the ϑP ′,j,i are, just like the
ϑP ′ , finite linear combination of Dirac delta functionals with bounded coefficients and with
suppϑP ′,j,i ⊆ suppϑP ′ . Moreover, the sum mP ′,1,i + mP ′,2,i of the vanishing moments
mP ′,j,i for ϑP ′,j,i is equal to the number m := 2− r of vanishing moments for ϑP ′ . Apply-
ing the Leibniz rule to (6.5), we get the integrand

iP ′
∑

i=1

∫

ΓQ

k(ϑP ′,1,i , R, nR)ϑP ′,2,i

(

p(· −R)

| · −R|α

)

φQ, ι(R) dRΓ.

Consequently, the term ãP ′,(Q, ι) is the sum over i of errors due to replacing the parameter
mapping κm by its interpolation κ′m, due to applying a 2−r order product rule to the integral
over Tτ of the integrand σ 7→ k(ϑP ′,1,i , κm(σ), n′κ′m(σ))J

′
m(σ), and due to applying a tensor

product variant of Gauß quadrature of order nG to the integrals of the corresponding weight
functions σ 7→ φ̃Q, υ(σ)ϑP ′ ,2,i(p(·−κ′m(σ)) | ·−κ′m(σ)|−α) φ̃Q, ι(σ) for υ = 1, 2, 3. Indeed,
this splitting according to the Leibniz rule into a sum over i = 1, . . . , iP ′ has to be included
into the derivation of formula (4.12). We have not mentioned this since the splitting is not
seen explicitly in the final formula and since we did not want to overload the presentation in
§4.1 by these technical details.

Clearly, concerning the replacement of κm, we get

|κm(σ)− κ′m(σ)| ≤ C 2−(m+1)l(Q),

for σ ∈ Tτ = κ−1
m (ΓQ) and |∇σκm(σ)−∇σκ′m(σ)| ≤ C 2−ml(Q), if ∇σ is the gradient with

respect to σ. From the smoothness assumptions on κm in §2.1 and on the integral kernel in
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§2.2, we conclude

|Jm(σ)−J ′m(σ)| ≤ C2−ml(Q), |Jm(σ)| ≤ C, |J ′m(σ)| ≤ C,

∣

∣

∣k
(

ϑP ′,1,i, κm(σ), nκm(σ)

)

− k
(

ϑP ′,1,i, κm(σ), n′κ′m(σ)

)∣

∣

∣ ≤ C2−ml(Q)2−mP ′,1,i l(P
′),

∣

∣k
(

ϑP ′,1,i, κm(σ), nκm(σ)

)∣

∣ ≤ C2−mP ′,1,i l(P
′),

∣

∣

∣k
(

ϑP ′,1,i, κm(σ), n′κ′m(σ)

)∣

∣

∣ ≤ C2−mP ′,1,i l(P
′),

(6.6)
∣

∣

∣

∣

∣

∣

ϑP ′,2,i





p
(

· −κm(σ)
)

| · −κm(σ)|α



− ϑP ′,2,i





p
(

· −κ′m(σ)
)

| · −κ′m(σ)|α





∣

∣

∣

∣

∣

∣

≤ C
2−(m+1)l(Q) 2−mP ′,2,i l(P

′)

dist2+r+mP ′,2,i +1

≤ C
2−ml(Q) 2−mP ′,2,il(P

′)

dist2+r+mP ′,2,i
,

∣

∣

∣

∣

∣

∣

ϑP ′,2,i





p
(

· −κm(σ)
)

| · −κm(σ)|α





∣

∣

∣

∣

∣

∣

≤ C
2−mP ′,2,i l(P

′)

dist2+r+mP ′,2,i
,

∣

∣

∣

∣

∣

∣

ϑP ′,2,i





p
(

· −κ′m(σ)
)

| · −κ′m(σ)|α





∣

∣

∣

∣

∣

∣

≤ C
2−mP ′,2,i l(P

′)

dist2+r+mP ′,2,i
,

where we have used the notation dist := dist(ΘP ′ ,ΓQ) and the estimate dist > 2−l(Q) (cf.
(4.1) and (4.2)). Hence, we arrive at

∣

∣

∣

∣

∣

∣

k
(

ϑP ′,1,i, κm(σ), nκm(σ)

)

ϑP ′,2,i





p
(

· −κm(σ)
)

| · −κm(σ)|α



Jm(σ)φτ, ι(σ)−

k
(

ϑP ′,1,i, κm(σ), n′κ′m(σ)

)

ϑP ′,2,i





p
(

· −κ′m(σ)
)

| · −κ′m(σ)|α



J ′m(σ)φτ, ι(σ)

∣

∣

∣

∣

∣

∣

≤ C
2−ml(Q) 2−ml(P ′)

dist2+r+m
,

and the integral over Tτ of this difference is less than the right-hand side of (6.4).
On the other hand, the error of the product rule can be estimated by the supremum norm

interpolation error of the integrand multiplied by the weighted measure of the integration
domain. Using the smoothness assumptions on κm from §2.1 and on the kernel function k
from §2.2 as well as the definition of κ′m as an m + 1 = 3 − r order interpolation to κm,
we observe that the interpolation error due to the product integration is less than 2−(2−r)l(Q).
Note that, again, from the rate of convergence O(2−(3−r)l(Q)) for the approximation of the
geometry a factor 2−l(Q) is lost since the integrand contains first order derivatives. Estimating
the integrals over the weight functions of the product rule with the help of (6.6), we get
an upper estimate C2−mP ′,2,il(P

′)2−2l(Q)dist−r−2−mP ′,2,i for them, and the error of the
product rule is less or equal to the right-hand side of (6.4).

iv) Let us turn to the quadrature error of the nG-th order quadrature applied to the integral
over the weight function and show that this is also less than the right-hand side of (6.4). To
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deduce an error estimate for (4.11), we start from a univariate estimate for the Gauß rule. Let
σkG, ωkG denote the nodes and the weights of the Gauß-Legendre quadrature rule on [0, 1], and
define

RnG
[F ] =

∫ 1

0

F (x) dx−
nG
∑

k=1

ωkGF (σkG).

It is well-known that the error bound (see, e.g., [5, p.149]; in this reference, the interval of
integration is [−1, 1]),

∣

∣

∣RnG
[F ]
∣

∣

∣ ≤
πnG

24nG+1(2nG)!

∥

∥

∥F (2nG)
∥

∥

∥

C[0,1]
, πnG

:=
24nG+1 nG!4

(2nG + 1) (2nG)!2
≤ π,

is best possible for every nG ∈ NN , and limnG→∞ πnG
= π. For any bivariate function

(σD1 , σ
D
2 ) → f̃(σD1 , σ

D
2 ), we conclude (cf. Chapter 5 of [50])

∣

∣

∣

∣

∣

∫ 1

0

∫ 1

0

f̃(σD1 , σ
D
2 )dσD1 dσD2 −

nG
∑

k1=1

nG
∑

k2=1

ωk1G ω
k2
G f̃(σk1G , σ

k2
G )

∣

∣

∣

∣

∣

(6.7)

≤

∣

∣

∣

∣

∣

∫ 1

0

(

∫ 1

0

f̃(σD1 , σ
D
2 )σD2 −

nG
∑

k2=1

ωk2G f̃(σD1 , σ
k2
G )

)

dσD1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

nG
∑

k2=1

ωk2G

(

∫ 1

0

f̃(σD1 , σ
k2
G )dσD1 −

nG
∑

k1=1

ωk1G f̃(σk1G , σ
k2
G )

)∣

∣

∣

∣

∣

≤ sup
σD
1 ∈[0,1]

∣

∣

∣RnG
[f̃(σD1 , ·)]

∣

∣

∣ + sup
σD
2 ∈[0,1]

∣

∣

∣RnG
[f̃(·, σD2 )]

∣

∣

∣

≤
π

24nG+1(2nG)!

{

sup
[0,1]2

∣

∣

∣∂2nG

σD
1
f̃
∣

∣

∣+ sup
[0,1]2

∣

∣

∣∂2nG

σD
2
f̃
∣

∣

∣

}

.

In particular, setting f̃(σD1 , σ
D
2 ) := 2|Tτ |f(τ3 +σD1 (τ1− τ3)+σD1 σ

D
2 (τ2− τ3))σD1 , the rule

(4.11) applied to function f is the tensor product Gauß rule applied to f̃ , and we get
∣

∣

∣

∣

∣

∣

∫

Tτ

f −

n2
G
∑

k=1

f(σkτ )ω
k
τ

∣

∣

∣

∣

∣

∣

≤
π

24nG+1(2nG)!

{

sup
∣

∣

∣∂2nG

σD
1
f̃
∣

∣

∣+ sup
∣

∣

∣∂2nG

σD
2
f̃
∣

∣

∣

}

,

∂2nG

σD
2
f̃(σD) = 2|Tτ | ∂

2nG

σ+ f
(

τ3 + σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3)

)

σD1
[

σD1 (τ2 − τ3)
]2nG

,

∂2nG

σD
1

f̃(σD) = 2|Tτ | ∂
2nG

σ†
f
(

τ3 + σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3)

)

σD1 ·

[

(τ1 − τ3) + σD2 (τ2 − τ3)
]2nG

+2nG · 2|Tτ | ∂
2nG−1
σ†

f
(

τ3 + σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3)

)

·
[

(τ1 − τ3) + σD2 (τ2 − τ3)
]2nG−1

,

where ∂σ+ and ∂σ† stand for the derivatives in the directions of (τ2 − τ3)/|τ2 − τ3| and

(τ1 − τ3) + σD2 (τ2 − τ3)
∣

∣(τ1 − τ3) + σD2 (τ2 − τ3)
∣

∣

,
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respectively. Hence, using the relations |τ2 − τ3| ∼ 2−l(Q) and |(τ1 − τ3) + σD2 (τ2 − τ3)| ∼
2−l(Q), we conclude

∣

∣

∣

∣

∣

∣

∫

Tτ

f −

n2
G
∑

k=1

f(σkτ )ω
k
τ

∣

∣

∣

∣

∣

∣

≤ C
π

24nG+1(2nG)!
2nG 2|Tτ | sup

n=2nG−1,2nG
σ̃=σ+,σ†

[

sup
Tτ

|∂nσ̃f | 2−nl(Q)

]

.

Now, consider the weight function to which we apply the tensor product Gauß rule, i.e., we
consider (cf. Remark 4.1)

f(σ) := φ̃Q, υ(σ)ϑP ′ ,2,i





p
(

· −κ′m(σ)
)

| · −κ′m(σ)|α



 φ̃Q, ι(σ).(6.8)

We shall show next that the directional derivative of order n to f is less than the expression
C2−mP ′,2,il(P

′)22l(Q)[εdist]−r−mP ′,2,i−n including a small fixed constant ε > 0. Using
2−l(Q) ≤ dist (cf. (4.1) and (4.2)), we arrive at a quadrature error of at most

C

24nG+1(2nG)!
2nG 2−2l(Q) 2−mP ′,2,il(P

′)22l(Q)[εdist]−r−mP ′,2,i−(2nG−1) 2−(2nG−1)l(Q).

The last expression multiplied by the bound C2−mP ′,1,il(P
′) resulting from the integrand

factor k(ϑP ′,1,i, κm(σ), n′κ′m(σ)) is less than the right-hand side of (6.4) if

24nG(2nG − 1)!

[

εdist

2−l(Q)

]2nG−3

≥ C2(2−r)l(Q).

Passing to the logarithms and using Stirling’s formula for the logarithm of (2nG−1)!, we get
the sufficient condition

log 2 · 4nG +

(

2nG−
1

2

)

log(2nG− 1)− (2nG− 1) + (2nG− 3) log ε(6.9)

+(2nG− 3) log

[

dist

2−l(Q)

]

≥ log 2

{

C + (2− r)l(Q)

}

.

Choosing nA sufficiently large in (4.13), the Gauß order nG is large and we can replace the
first part

log 2 · 4nG +

(

2nG−
1

2

)

log(2nG− 1)− (2nG− 1) + (2nG− 3) log ε

on the left-hand side of (6.9) by the smaller term (2nG − 3) log 2. This leads to the sufficient
condition

(2nG − 3)

{

1 + 2log

[

dist

2−l(Q)

]}

≥ C + (2− r)l(Q).(6.10)

In other words, choosing nA sufficiently large and setting nB = 1−r/2 in (4.13), the number
nG fulfills (6.10), and the estimate (6.4) is proved if only the upper estimate for the derivative
to the function in (6.8) holds.
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v) Let us show the estimate C2−mP ′,2,il(P
′)22l(Q)[εdist]−r−mP ′,2,i−n for the n-th order

derivative of the function in (6.8). To simplify the notation we prove the estimate for the
directional derivatives only for the partial derivative with respect to the coordinate t1 of σ =
(t1, t2) ∈ Tτ . Clearly, due to the linearity, the absolute value of a j-th order derivative of
φ̃Q, ι with Q ∈ QuaΓ

l is bounded by C2lj for j = 0, 1, and is zero for j > 1. To show the
uniform boundedness of the derivatives to σ 7→ ϑP ′,2,i(p(· −κ′m(σ)) | · −κ′m(σ)|−α), we fix
a t2 and consider the function

I 3 t1 7→
p (Pλ − κ′m(t1, t2))

|Pλ − κ′m(t1, t2)|
α =:

p
(

p2(t1)
)

|p2(t1)|α
, I := {t1 : (t1, t2) ∈ Tτ}(6.11)

and its extension to the complex plane. We fix a point tI ∈ I . For the polynomial p2 of degree
deg(p2) less than or equal to the degree 2− r of the interpolation, the standard estimates for
interpolation imply

(

∂

∂t1

)k
(

Pλ − κ′m(tI , t2)
)

∼

(

∂

∂t1

)k
(

Pλ − κm(tI , t2)
)

, k = 0, 1, . . . , deg(p2),

∣

∣

∣

∣

∣

(

∂

∂t1

)k

p2(tI)

∣

∣

∣

∣

∣

∼











|Pλ − κm(tI , t2)| if k = 0
∣

∣

∣

∣

(

∂
∂t1

)k

κm(tI , t2)

∣

∣

∣

∣

if k = 1, . . . , deg(p2)

∼

{

dist if k = 0
C if k = 1, . . . , deg(p2).

Consequently, for any complex t1 with dist(t1, I) ≤ εdist and with a constant ε > 0 suffi-
ciently small, we get

p2(t1) =

deg(p2)
∑

k=0

∂kt1p2(tI )

k!
(t1 − tI)

k,

|p2(t1)| ≥ |p2(tI)| −

deg(p2)
∑

k=1

∣

∣∂kt1p2(tI)
∣

∣

k!
|t1 − tI |

k ≥
1

C
dist−O(εdist) ≥

1

2C
dist,

as well as |p2(t1)| ≤ Cdist. In other words, the function p(p2(t1))|p2(t1)|−α is analytic for
t1 with dist(t1, I) < εdist, and, using the estimate p(p2(t1)) ≤ distdeg(p), we conclude

∣

∣

∣

∣

∣

∣

p
(

p2(t1)
)

|p2(t1)|α

∣

∣

∣

∣

∣

∣

≤ C dist−2−r.(6.12)

If we apply the functional ϑP ′,2,i to p(· − κ′m(σ)) | · −κ′m(σ)|−α, then we apply a differ-
ence formula with a scaling factor of order ∼ 2−l(P

′)mP ′,2,i . Since the difference scheme
can be represented as a derivative taken at an intermediate point, we can write the function
ϑP ′,2,i(p(·−κ′m(σ)) | ·−κ′m(σ)|−α) as a sum of functions similar to that in (6.11). Analogous
to (6.12), we arrive at the estimate

∣

∣

∣

∣

∣

∣

ϑP ′,2,i





p
(

· −κ′m(t1, t2)
)

| · − κ′m(t1, t2)|
α





∣

∣

∣

∣

∣

∣

≤ C 2−l(P
′)mP ′,2,i dist−2−r−mP ′,2,i(6.13)
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valid for the complex extension to all t1 with dist(t1, I) < εdist. Now, we represent the
analytic function by Cauchy’s integral over a closed contour C around I with distance εdist
to I , i.e., by

ϑP ′,2,i

(

p (· − κ′m(t1, t2))

| · − κ′m(t1, t2)|
α

)

=
1

2πi

∫

C

{

ϑP ′,2,i

(

p (· − κ′m(t, t2))

| · − κ′m(t, t2)|

)}

1

t− t1
dt .

Differentiating this equation with respect to t1, restricting t1 to I , and using (6.13), we get
∣

∣

∣

∣

∂k

∂tk1
ϑP ′,2,i

(

p (· − κ′m(t1, t2))

| · − κ′m(t1, t2)|
α

)∣

∣

∣

∣

≤ C 2−l(P
′)mP ′,2,i [εdist]−2−r−mP ′,2,i−k, (t1, t2) ∈ Tτ .

This together with the estimate C 2l(Q)j for the j-th derivatives of the functions φQ, ι and
φQ, υ, and with dist−1 ≤ 2l(Q) (cf. (4.1) and (4.2)) proves that the n-th order derivatives of
the function f in (6.8) are indeed less than

C2−mP ′,2,il(P
′)22l(Q)[εdist]−r−mP ′,2,i−n.

LEMMA 6.2. The number of necessary arithmetic operations for setting up the far field
part of the stiffness matrix Aw,c,qL , including the sparsity pattern P , is less than CL422L.

Proof. Clearly, if the test functional ϑP ′ and the domain of integration ΓQ is fixed, then
the number of operations is less than a constant multiple of the number of quadrature knots
plus the number of trial functions ψP with ΓQ ⊆ ΨP . Thus, for fixed ϑP ′ and ΓQ, no more
than C L2 operations are needed. The number of all arithmetic operations for the quadrature
is less than C L2 times

∑

P ′

∑

l #Qua
Γ
l , where #QuaΓ

l is the number of domains ΓQ in
QuaΓ

l . We only have to count the number of domains ΓQ in QuaΓ
l . The estimates (4.1) (cf.

(3.10)) and (4.2) (cf. (3.11)) together with the proof of the complexity bound in Theorem
3.1 (cf. [15, 34, 47, 40]) lead to the bound Cd2L222L for

∑

P ′

∑

l #Qua
Γ
l . This implies our

assertion.

6.2. The estimates for the first part of the nonsingular near field. In this subsection
we suppose that the far field integration and the integration of the singular integrals are per-
formed exactly and derive the convergence estimates for the nonsingular near field case. In
view of Remark 5.1 it remains to prove

LEMMA 6.3. Suppose that AcL ∈ L(LinΓ
L) is the approximate operator of the com-

pressed collocation method including the sparsity pattern P and that Ac,qL is the operator of
the compressed collocation method including the approximation of the parameter mappings
and the quadrature of §4.2. Then we get the estimate (5.11) with κ = 1 + r.

Proof. i) For the interpolation and quadrature, we shall prove the error estimate

|aP ′,P | = |aw,cP ′,P − aw,c,qP ′,P |

≤ C2−mL

∫

suppψP

[

2−L + dist (suppϑP ′ , R)

]−r−2

dRΓ.(6.14)

Substituting the estimate (6.14) into the l∞ matrix norm in (5.13), we get

sup
P ′∈4Γ

L

∑

P∈4Γ
L

|aP ′,P |

20.05 l(P )
≤ sup

P ′∈4Γ
L

L−1
∑

l(P )=−1

2−0.05 l(P )
∑

P∈∇Γ
l(P )

C2−mL ×

∫

suppψP

[

2−L + dist (suppϑP ′ , R)

]−r−2

dRΓ.
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≤ C2−mL sup
P ′∈4Γ

L

L−1
∑

l(P )=−1

2−0.05 l(P ) ·

∫

Γ

[

2−L + dist (suppϑP ′ , R)

]−r−2

dRΓ

≤ CLδr,02−mL.

It remains to prove the basic estimate (6.14).
ii) Clearly, for the ΓQ which are disjoint to ΘP ′ , we get the estimate (6.4). In the general

case including the case ΓQ ∩ΘP ′ 6= ∅ but with ΓQ disjoint to the finite set of points suppϑP ′ ,
we only have

ãP ′, (Q, ι) ≤ C2−(4−r)l(Q)

[

2−L + dist (suppϑP ′ ,ΓQ)

]−r−2

.(6.15)

Here we have l(Q) = L for the near field. Hence, we arrive at

|aP ′,P | ≤ C
∑

ΓQ⊆suppψP : ΓQ∩suppϑP ′ 6=∅

2−(4−r)L

[

2−L + dist (suppϑP ′ ,ΓQ)

]−r−2

≤ C2−mL

∫

suppψP

[

2−L + dist (suppϑP ′ , R)

]−r−2

dRΓ.

LEMMA 6.4. The number of necessary arithmetic operations for setting up the near field
part of the stiffness matrix Aw,c,qL treated in §4.2 is less than CL422L.

Proof. Similar to §6.1, the number of operations is less than C L2 times the number of
domains ΓQ in QuaΓ

L. Thus, we only have to count the number of domains ΓQ in QuaΓ
L. In

view of (4.1) and (4.2), the proof of Theorem 3.1 (cf. [15, 34, 47, 40]) implies our assertion.

6.3. The estimates for the singular near field. In this subsection we suppose that the
far field integration and the integration of the nonsingular near field integrals are performed
exactly and derive the convergence estimates for the singular near field case. In view of
Remark5.1, it remains to prove

LEMMA 6.5. Suppose AcL ∈ L(LinΓ
L) is the approximate operator of the compressed

collocation method including the sparsity pattern P (cf. §3.5). If Ac,qL is the operator of the
compressed collocation method including the approximation of the parameter mappings and
the quadrature of §4.3, then, for r = −1 and for the case of r = 0 with weakly singular
kernels of the form (4.17), the estimates (5.11) hold with κ = 1. For the strongly singular
case, (5.11) holds with κ = 2.

Proof. i) Without loss of generality we suppose τ3 = 0 and Pλ = κm(0) in the formulae
of §4.3. We derive the analogue to (6.15) which takes the form ãP ′, (Q, ι) ≤ 2−[2−2r]L. First,
we consider the case of weakly singular integrals and consider the error for fixed ϑP ′ , fixed
Pλ ∈ suppϑP ′ , and fixed (Q, ι) with Pλ ∈ ΓQ andQ ∈ utΓ

L, i.e., we consider the error for the
integral in (4.19) with ψ̃DP replaced by Φ̃Q, ι := φQ, ι ◦ κ̃m (cf. Remark 4.1). We shall show
that the error of approximation is less than O(2−mL). To this end we consider the errors due
to the approximation of κm, due to the product integration, and due to the approximation of
the quadrature weights separately.

ii) To estimate the error due to the replacement of κm by κ′m in this integral, we need a
few technical inequalities (cf. the subsequent formulae (6.16)-(6.26)). We observe

κ̃m(σD)− κ̃m(0)(6.16)
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=

∫ 1

0

∇κ̃m(λσD) dλ · σD

=

∫ 1

0

{

∇κm

(

λσD1 (τ1 − τ3) + λ2σD1 σ
D
2 (τ2 − τ3)

)

·

(

(τ1 − τ3) + λσD2 (τ2 − τ3) , λσ
D
1 (τ2 − τ3)

)

}

dλ ·

(

σD1
σD2

)

=

∫ 1

0

{

∇κm

(

λσD1 (τ1 − τ3) + λ2σD1 σ
D
2 (τ2 − τ3)

)

·

(

(τ1 − τ3) + 2λσD2 (τ2 − τ3)

)

}

dλσD1 .

This and the corresponding relation for κ̃m replaced by κ̃′m imply
∣

∣ κ̃m(σD)− κ̃m(0)
∣

∣ ∼ 2−LσD1 ,
∣

∣ κ̃′m(σD)− κ̃′m(0)
∣

∣ ∼ 2−LσD1 ,(6.17)
∣

∣ p̃
(

κ̃m(0)− κ̃m(σD)
) ∣

∣ ∼
[

2−LσD1
]deg(p̃)

,
∣

∣ p̃
(

κ̃′m(0)− κ̃′m(σD)
) ∣

∣ ∼
[

2−LσD1
]deg(p̃)

.
(6.18)

By assumption, we get that Jm ◦ δ and k are bounded. Since κ′m approximates κm over
Tτ with order m + 1 and since the gradient ∇κ′m approximates ∇κm over Tτ with order
m = 2− r, formula (6.16) leads us to

∣

∣ κ̃m(σD)− κ̃′m(σD)
∣

∣ ≤ C 2−(3−r)LσD1 ,
∣

∣

∣Jm
(

δ(σD)
)

−J ′m

(

δ(σD)
) ∣

∣

∣(6.19)

≤ C 2−(2−r)L,
∣

∣

∣ k(Pλ, κ̃m(σD), nκ̃m(σD))− k(Pλ, κ̃m(σD), n′κ̃′m(σD))
∣

∣

∣ ≤ C 2−(2−r)L.(6.20)

Moreover, from (6.17) and (6.19) it is not hard to conclude that

∣

∣ p̃
(

κ̃m(0)− κ̃m(σD)
)

− p̃
(

κ̃′m(0)− κ̃′m(σD)
) ∣

∣ ≤ C 2−(3−r)LσD1
[

2−LσD1
]deg(p̃)−1

≤ C 2−(2−r)L
[

2−LσD1
]deg(p̃)

,(6.21)
∣

∣

∣

∣

∣κ̃m(0)− κ̃m(σD)
∣

∣

−α
−
∣

∣κ̃′m(0)− κ̃′m(σD)
∣

∣

−α
∣

∣

∣ ≤ C 2−(3−r)LσD1
[

2−LσD1
]−α−1

≤ C 2−(2−r)L
[

2−LσD1
]−α

.(6.22)

To estimate nκ̃m(σD) · (κ̃m(0)− κ̃m(σD)), we observe that nκ̃m(σD) ·∇κm(δ(σD)) = 0, and
that equation (6.16) leads us to

nκ̃m(σD) ·
(

κ̃m(σD)− κ̃m(0)
)

= nκ̃m(σD) ·

∫ 1

0

{

[

∇κm

(

λσD1 (τ1 − τ3) + λ2σD1 σ
D
2 (τ2 − τ3)

)

(6.23)

−∇κm

(

σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3)

)]

·

(

(τ1 − τ3) + 2λσD2 (τ2 − τ3)

)

}

dλσD1 .
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Analogous to (6.16), we write

∇κm

(

λσD1 (τ1 − τ3) + λ2σD1 σ
D
2 (τ2 − τ3)

)

−∇κm

(

σD1 (τ1 − τ3) + σD1 σ
D
2 (τ2 − τ3)

)

=

∫ 1

0

∇2κm

(

[1 + µ(λ − 1)]σD1 (τ1 − τ3) + [1 + µ(λ2 − 1)]σD1 σ
D
2 (τ2 − τ3)

)

dµ(6.24)

·
[

(λ− 1)(τ1 − τ3) + (λ2 − 1)σD2 (τ2 − τ3)
]

· σD1 ,

and, from inserting this into the representation of nκ̃m(σD) · (κ̃m(0) − κ̃m(σD)) as well as
from the analogous formula for the expression n′κ̃′m(σD) · (κ̃

′
m(0)− κ̃′m(σD)), we obtain

∣

∣

∣nκ̃m(σD) ·
(

κ̃m(0)− κ̃m(σD)
) ∣

∣

∣≤C
[

2−LσD1
]2
,(6.25)

∣

∣

∣
nκ̃m(σD) ·

(

κ̃m(0)− κ̃m(σD)
)

− n′κ̃′m(σD) ·
(

κ̃′m(0)− κ̃′m(σD)
) ∣

∣

∣
(6.26)

≤ C 2−(1−r)L
[

2−LσD1
]2
.

Now, using (6.16)-(6.26), the error due to the replacement of κm by κ′m can be represented as
the sum of the errors corresponding to the replacements in the several factors of the integrand
in (4.19). These factors are k̃(Pλ, κ̃m(σD), nκ̃m(σD)), p̃(κ̃m(0) − κ̃m(σD)), |κ̃m(0) −

κ̃m(σD)|−α, [nκ̃m(σD) · (κ̃m(0) − κ̃m(σD))]1+r, and Jm(δ(σD)), respectively. The last

factor Jδ(σD)Φ̃Q, ι(σ
D) needs no replacement of κm. We arrive at the estimate

C

∫ 1

0

∫ 1

0

{

[

2−(2−r)L [2−LσD1 ]deg(p̃) [2−LσD1 ]−α [2−LσD1 ]2(1+r) C

]

+

[

C 2−(2−r)L[2−LσD1 ]deg(p̃) [2−LσD1 ]−α [2−LσD1 ]2(1+r) C

]

+

[

C [2−LσD1 ]deg(p̃) 2−(2−r)L[2−LσD1 ]−α [2−LσD1 ]2(1+r) C

]

+

[

C [2−LσD1 ]deg(p̃) [2−LσD1 ]−α [2−(1−r)L]1+r[2−LσD1 ]2(1+r) C

]

· δr,0

+

[

C [2−LσD1 ]deg(p̃) [2−LσD1 ]−α [2−LσD1 ]2(1+r) 2−(2−r)L

]

}

2−2L σD1 dσD2 dσD1

≤ C

{

2−4L if r = −1
2−2L if r = 0.

(6.27)

This completes the estimate for the first step in approximating the integral.
iii) The second step is the product integration of order m = 2 − r. Analogous to the

derivation of (6.27) from (6.16)-(6.26), we conclude that the integral over the weight function
φ̃Dr p̃ | . . . |

−α[. . .]1+rJδφ̃Q, ι is less than 2−L. Hence, it remains to estimate the interpolation
error for the m-th order interpolation which defines the product rule. Clearly, the interpolation
error is less than a constant times the supremum of the derivatives to the integrand function
k̃(Pλ, κ̃m(σD), n′κ̃′m(σD)) J

′
m(σD) if the derivatives are taken with respect to σD1 or σD2 up

to the m-th order. Since our product rule relies upon tensor product interpolation, mixed
derivatives need not to be considered. The integrand is a composite function of the outer
functions k̃, κ′m, and J ′m and of the inner function δ. By assumption (cf. §2.1 and §2.2)
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the corresponding derivatives of κ′m, J ′m, and k̃ do exist and they are uniformly bounded.
For the inner function δ, each order of derivative with respect to σD1 and σD2 brings a factor
(τ1 − τ3) + σD2 (τ2 − τ3) and σD1 (τ2 − τ3), respectively. Thus the derivatives of order m are
less than 2−mL, and the estimate on the right-hand side of (6.27) is an upper bound also for
the error of product integration in the second step of approximation. We even get the better
bound 2−3L for r = 0.

iv) To analyze the third step, we introduce the notation

H(λ, µ) := λ(τ1 − τ3) + µ(τ2 − τ3), H̃(λ, µ) := λ
τ1 − τ3
|τ1 − τ3|

+ µ
τ2 − τ3
|τ1 − τ3|

.

In this last step an nG-th order rule is applied to the integral of the weight function from the
previous step, i.e., to

∫ 1

0

∫ 1

0

{

φ̃DQ, υ(σ
D)
p̃
(

κ̃′m(0)− κ̃′m(σD)
)

|κ̃′m(0)− κ̃′m(σD)|
α

[

nκ̃′m(σD) ·
(

κ̃′m(0)− κ̃′m(σD)
)

]1+r

·

Jδ(σ
D)Φ̃Q, ι(σ

D)

}

dσD1 dσD2

=

∫ 1

0

∫ 1

0

{

φ̃DQ,υ(σ
D)

p̃

(

∫ 1

0 ∇κ
′
m

(

H(λσD1 , λ
2σD1 σ

D
2 )
)

·H(1, 2λσD2 ) dλ

)

∣

∣

∣

∫ 1

0 ∇κ
′
m

(

H(λσD1 , λ
2σD1 σ

D
2 )
)

·H(1, 2λσD2 ) dλ
∣

∣

∣

α ·

[

nκ̃′m(σD) ·
∫ 1

0

{

∫ 1

0
∇2κ′m

(

H
(

[1 + µ(λ− 1)]σD1 , [1 + µ(λ2 − 1)]σD1 σ
D
2

)

)

dµ

H
(

λ− 1, (λ2 − 1)σD2
)

H
(

1, 2λσD2
)

}

dλ

]1+r

2|Tτ |Φ̃Q, ι(σ
D)

}

dσD1 dσD2

=
2|Tτ |

|τ1 − τ3|

∫ 1

0

∫ 1

0

{

φ̃DQ, υ(σ
D)

p̃

(

∫ 1

0
∇κ′m

(

H(λσD1 , λ
2σD1 σ

D
2 )
)

· H̃(1, 2λσD2 ) dλ

)

∣

∣

∣

∫ 1

0
∇κ′m

(

H(λσD1 , λ
2σD1 σ

D
2 )
)

· H̃(1, 2λσD2 ) dλ
∣

∣

∣

α ·

[

nκ̃′m(σD) ·
∫ 1

0

{

∫ 1

0 ∇
2κ′m

(

H
(

[1 + µ(λ− 1)]σD1 , [1 + µ(λ2 − 1)]σD1 σ
D
2

)

)

dµ

H̃
(

λ− 1, (λ2 − 1)σD2
)

H̃
(

1, 2λσD2
)

}

dλ

]1+r

Φ̃Q, ι(σ
D)

}

dσD1 dσD2 ,(6.28)

where the equalities Jδ(σD) = 2|Tτ |σD1 , (6.16), (6.23), and (6.24) have been substituted into
the first integral. The last integrand is a function which can be treated as the integrand in part
v) of the proof to Lemma 6.1. Indeed, to apply (6.7), we need an estimate for the derivatives.
Without loss of generality, we consider the derivative with respect to σD1 . For the k-th order
derivatives of φ̃DQ,υ and Φ̃Q,ι, we get the boundC2kL if k = 0, 1 and the bound zero if k ≥ 2.
Similar to (6.11), we fix σD2 and set

p2(σ
D
1 ) :=

∫ 1

0

∇κ′m
(

H(λσD1 , λ
2σD1 σ

D
2 )
)

· H̃(1, 2λσD2 ) dλ,

p3(σ
D
1 ) :=

[

nκ̃′m(σD) ·
∫ 1

0

{

∫ 1

0 ∇
2κ′m

(

H
(

[1 + µ(λ− 1)]σD1 , [1 + µ(λ2 − 1)]σD1 σ
D
2

)

)

dµ
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H̃
(

λ− 1, (λ2 − 1)σD2
)

H̃
(

1, 2λσD2
)

}

dλ

]1+r

,

and consider

[0, 1] 3 σD1 7→
p̃(p2(σ

D
1 ))

|p2(σD1 )|α
p3(σ

D
1 )(6.29)

together with its extension to the complex plane. Since the parametrizations κm are injective
mappings, we get ‖κm(σ)ξ‖ ≥ ‖ξ‖, ∀ξ ∈ R

2 and

p2(σ̃
D
1 ) ∼

∫ 1

0

∇κm
(

H(λσ̃D1 , λ
2σ̃D1 σ

D
2 )
)

· H̃(1, 2λσD2 ) dλ

∼ ∇κm
(

H(0, 0)
)

∫ 1

0

H̃(1, 2λσD2 ) dλ,

as well as |p2(σ̃
D
1 )| ≥ 1/C for a σ̃D1 such that 0 ≤ σ̃D1 ≤ 1. On the other hand, the k-th order

derivative of the interpolation κ′m to κm is bounded by C2kL if k is less than or equal to the
total degree of the polynomial κ′m, and the k-th order derivative ofH(·, ·) is less thanC2−kL.
Consequently, the k-th order derivative of p2 at σD1 with k ≤ deg(p2) and 0 ≤ σD1 ≤ 1 is
less than a constant. We obtain

p2(σ
D
1 ) =

deg(p2)
∑

k=0

∂k
σD
1
p2(σ̃

D
1 )

k!
(σD1 − σ̃D1 )k,

∣

∣p2(σ
D
1 )
∣

∣ ≥
∣

∣p2(σ̃
D
1 )
∣

∣−

deg(p2)
∑

k=1

∣

∣

∣∂kσD
1
p2(σ̃

D
1 )
∣

∣

∣

k!

∣

∣σD1 − σ̃D1
∣

∣

k

≥ 1/C −

deg(p2)
∑

k=1

C
∣

∣σD1 − σ̃D1
∣

∣

k
,

where σ̃D1 with 0 ≤ σ̃D1 ≤ 1 can be chosen such that |σD1 −σ̃
D
1 | ≤ dist(σD1 , [0, 1]). Hence, we

can take a sufficiently small ε > 0 and observe that |p2(σ
D
1 )| ≥ 1/(2C) for any complex σD1

with dist(σD1 , [0, 1]) ≤ ε. Similarly, we obtain |p2(σ
D
1 )| ≤ C and |p3(σ

D
1 )| ≤ C. Analogous

to part v) of the proof to Lemma 6.1, we arrive at the estimate Cε−(k+1) for the k-th order
derivative of (6.29) and at the bound C22Lε−(2nG−1) for the 2nG-th order derivative of the
integrand in (6.28). The estimate C2−L for the factor 2|Tτ | |τ1−τ3|−1 and the error estimate
(6.7) applied to the quadrature approximation of (6.28) yield the bound

C
π

24nG(2nG)!
2−L22Lε−(2nG−1) ≤ C2L−

2log ε [2nG−1]−4nG+2log e [−(2nG+ 1
2 ) log 2nG +2nG].

The last bound is less than 2−(3−r)L if we set nF := 2 − r/2 and choose nE sufficiently
large in nG = nE +LnF . Hence, we get the estimate on the right-hand side of (6.27) for the
quadrature error of the Gauß rules. We even get the better bound 2−3L for r = 0.

v) Now let us estimate the entries in the case of strongly singular integral operators.
We assume r = 0 and distinguish the two cases φQ, ι(Pλ) = 0 and φQ, ι(Pλ) 6= 0. If
φQ, ι(Pλ) = Φ̃Q, ι(0, 0) = 0, then we can repeat the estimate from above. Indeed, the
obvious estimate |φQ, ι(R)| ≤ C 2L |R − Pλ| provides us with a factor |R − Pλ| which
cancels one factor |R− Pλ| from the denominator |R− Pλ|α. Though we have r = 0, there
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is no factor nR · (R− Pλ) this time. Hence, we get the estimate C2−3L in (6.27) which is to
be multiplied by the factor 2L from the estimate |φQ, ι(R)| ≤ C 2L |R−Pλ|. In other words,
the final estimate for the matrix entries is again C 2−2L.

Finally, we turn to the case φQ, ι(Pλ) 6= 0 and consider the error of the approximation
(4.26) and (4.28). The first part of the error is due to restricting the domain of integration
from Tτ to Tτ \ T ′(Pλ,m, 2−2L). This is less than C2−2L by (4.22). The second part of the
error is caused by the replacement of the parametrization in the kernel function. Writing the
difference of (4.23) and (4.24) in Duffy’s coordinates and using the equations (6.19)-(6.22)
with the polynomial p̃ replaced by p, we obtain the bound

C 2−2L

∫

δ−1[T\T (Pλ,m,2−2L)]

|σD1 |
−1 dσD ≤ C 2−2L

∫ 1

2−2L

|σD1 |
−1 dσD1(6.30)

≤ C L 2−2L.

By simple estimates analogous to those in [31], Chapter XI, §1, the third part of the error due
to the change of the parametrization in the integration domain Tτ \ T ′(Pλ,m, 2−2L) is less
than C2−2L. The error bound (6.30) for the fourth part due to product integration follows as
in the case r = −1. Finally, it remains to estimate the error of the tensor product Gauß rule in
(4.28). This however can be treated as in parts iv) and v) of the proof to Lemma 6.1 and as in
part iv) of the present proof since the ratio of the diameter of Tτ,ι to the distance of Tτ,ι to the
singularity point τ3 is bounded from below and since the variable integration bound Sa(σD2 )
for the inner integration is analytic. Indeed, the function Sa(σD2 ) for ι = ι0 depending on the
parameter ε = 2−2L (cf. (4.25)) is of the form Sa(σ

D
2 ) = 2−2LS(22LσD2 ) with an S such

that σ 7→ δ(S(σ), σ) describes the boundary curve of an ellipse. The summation over all ι
from one to ι0 = O(L) leads to an additional factor C L.

vi) In other words, for the algorithms (3.8) and (3.9), we have the estimate (6.15) with
dist(suppϑP ′ ,ΓQ) replaced by 2−L, i.e., the same estimate like for the almost singular entries
with dist(suppϑP ′ ,ΓQ) ∼ 2−L. Only for the strong singular case we have an additional
factor L. Hence, the proof to Lemma6.3 completes the proof of the corresponding assertions
of Lemma6.5.

LEMMA 6.6. If r = −1 or if r = 0 and the operator has a kernel function of the form
(4.17), then the number of necessary arithmetic operations for setting up the singular near
field part of the stiffness matrix Aw,c,qL including P is less than CL222L. If r = 0 and if
the kernel function is strongly singular, then no more than CL322L arithmetic operations are
required.

Proof. First, we consider the case where the kernel function is weakly singular and is of
the form (4.17). Then the number of all Pλ is less than C 22L, and for each point there is only
a bounded number of Q with Pλ ∈ ΓQ and l(Q) = L. For each ΓQ, there are no more than
C L2 quadrature knots in ΓQ and no more than C L functions ψP such that ΓQ ⊆ suppψP .
Thus the number of operations is less than C L222L. In the case where the operator has a
strongly singular kernel, ΓQ is divided in ι0 ∼ L subdomains, and the number of quadrature
knots is bounded by C L2 for each subdomain. Thus the whole number of knots is bounded
by C L322L.

7. Application to a boundary integral equation of geodesy. In [43] the numerical
performance of our algorithm was reported for the case of the double layer equation. Now we
apply it to the computation of the gravity field of the earth from data measured at the surface
of the earth. Thus we have to solve the boundary value problem

4w(P ) = 2ω2, P ∈ Ωa, |∇w(P )| = g(P ), P ∈ Γ,
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FIG. 7.1. Resolution of surface of the earth.

where Ωa is the domain exterior to the earth, Γ the surface of the earth, ω the rotational ve-
locity, w the yet unknown potential of gravity. Introducing the well approximating reference
potential w0 ≈ w corresponding to the mass concentrated at the center of the earth and ne-
glecting higher order terms, the problem turns into the following oblique derivative boundary
value problem for the unknown difference potential δw = w − w0.

4[δw](P ) = 0, P ∈ Ωa, ∂l(P )[δw](P ) = δg(P ), P ∈ Γ.(7.1)

Here we have set δg = (g2−g2
0)/2|g0|, g0 = ∇w0, and the direction of the oblique derivative

is l = g0/|g0|. We seek δw in the form of a single layer potential with unknown layer function
u defined over Γ, namely,

δw(Q) =
1

4π

∫

Γ

u(P )

|Q− P |
dPΓ.(7.2)

Substituting this representation into the boundary value condition (7.1) and using the jump
relation, we arrive at the singular boundary integral equation

− 2π · cos[n(Q), l(Q)] · u(Q) + p.v.

∫

Γ

cos[l(Q), P −Q]

|P −Q|2
· u(P ) · dPΓ = v(Q),(7.3)

where n denotes the outward pointing normal at the surface of the earth. We have to solve
this equation numerically for u. Substituting the approximation of u into (7.2), we get the
unknown difference potential.

We approximate our surface by a piecewise quadratic interpolation over a triangulation
which is obtained from the uniform partition of four initial triangles into 2L, L = 8 sub-
triangles (to get an impression of the resolution, cf. Figure 7.1, where the distance of the
surface points to the center of the earth is plotted depending on the latitude and longitude).
The z-component (z-direction from south pole to north pole) of the gradient appearing in the
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FIG. 7.2. Right-hand side δg.

right-hand δg of the equation (7.3) and the potential solution δw at the surface of the earth
corresponding to data simulated from a realistic model are presented in the Figures 7.2 and
7.3. As expected, the degree of smoothness is not very high.

The approximate solution obtained by the numerical algorithm of the present paper looks
the same as the solution in Figure 7.3. The corresponding numerical error is presented in
Figure 7.4. It turns out that the relative error of the potential w is about 0.8 · 10−7. Table
7.1 contains the errors and compression rates for several levels. Here L denotes the level and
DOF the degrees of freedom. The L2 error for the layer solution u is denoted by LE =
LEL, and DE = DEL stands for the supremum error of the potential solution computed at
some points of the exterior Ωa close to the surface Γ. By LO and DO we have denoted the
approximate convergence orders LE ∼ hLO and DE ∼ hDO given by

LOL :=
logLEL+1 − logLEL

loghL+1 − log hL
, DOL :=

logDEL+1 − logDEL
loghL+1 − loghL

.

The number IT is the number of GMRes iteration necessary to get a solution of the linear sys-
tem of equations with an estimated accuracy less than 10−14. Finally, RA is the compression
ratio, i.e., the quotient of the number of all matrix entries divided by the number of entries in
the compressed matrix. For our computations, we have used the compression criteria

dist (ΨP ,ΘP ′) ≤ max
{

0.25L0.1252L−l(P
′)−l(P ), 2 · 2l(P

′), 2 · 2l(P )
}

and

dist (ΨP ,ΘP ′) ≤ max
{

0.25L0.2521.66 [L−l(P ′)]−1.666 l(P ), 2 · 2l(P
′), 2 · 2l(P )

}
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FIG. 7.3. Potential solution δw.

L DOF LE LO DE DO IT RA

4 514 1.9·10−4 0.33 3.2·102 0.54 33 3.73
5 2 050 1.0·10−4 0.89 1.0·102 1.61 35 10.97
6 8 194 3.7·10−5 1.42 5.3·101 0.98 36 36.02
7 32 770 1.7·10−5 1.16 1.5·101 1.78 37 124.39
8 131 074 5.1·100 1.58 45 440.76

TABLE 7.1
Errors and compression rates.

instead of (3.10) and (3.11), respectively. Note that the high compression rates makes it
possible to solve such large systems with a dense matrix on a work station with 0.5 Gb main
memory.

The constants in the quadrature computation have been chosen as nA = nC := 1,
nB = nD := 1.5, and q := 2 (cf. §4). The Gauß order nG has been set to ten for the
singular integral in §4.3. For the computation of the potential (cf. (7.2)), we have used the
same quadrature technique but with nA := 2 and nB := 1.5. With this choice, the quadrature
error is less then the error due to the linear collocation scheme. In fact, the application of
higher order Gauß rules and additional uniform partitioning of the quadrature subdomains did
not change the results significantly. The main part of the computation time is spent for the
assembling of the stiffness matrix and only about five per cent for the iterative solution. We
did not take much time to optimize our code. For the nonoptimized code, however, we have
observed that halving the step size leads to a factor between five and six for the computing
time. Note that, for a conventional boundary element code, halving the step size results in a
factor sixteen for the computing time.
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FIG. 7.4. Error of potential solution δw.
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