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SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS
TO 3D POISSON AND SIGNORINI PROBLEMS ∗
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Abstract. In this paper we establish several nonstandard finite element estimates involving fractional order
Sobolev spaces, with applications to bubble stabilized mixed methods for the three-dimensional Poisson and Sig-
norini problems.
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1. Introduction. It is well-known that interpolation error estimates play an important
role in the analysis of finite element methods. The simplest interpolation error estimates
appear in the following form:

m
∑

j=0

hj |u−Πhu|Hj(Ω) ≤ Chm|u|Hm(Ω),(1.1)

where Ω is a bounded polyhedral domain in R
d (d = 1, 2, 3), m is an integer and Πh is an

interpolation operator from Hm(Ω) to the finite element space Vh associated with a regular
triangulation Th of Ω of mesh-size h, and the seminorm | · |Hk(Ω) for a nonnegative integer is
defined by

|v|2Hk(Ω) =
∑

|α|=k

‖∂αv‖2
L2(Ω).

In the case where Πh is defined locally on each element, since all the seminorms in (1.1) are
also local, the estimate (1.1) can be established by a purely local analysis (cf. [12], [8]).

For applications to problems whose solutions are not regular, it is important to have
estimates for (u − Πhu) in fractional order Sobolev seminorms. Let k be a nonnegative
integer and 0 < λ < 1. The seminorm | · |Hk+λ(Ω) is defined by (cf. [1], [22])

|v|2Hk+λ(Ω) =
∑

|α|=k

∫

Ω

∫

Ω

[∂αv(x)− ∂αv(y)]2

|x− y|d+2λ
dxdy,(1.2)

and the norm ‖ · ‖Hk+λ(Ω) is given by

‖v‖2
Hk+λ(Ω) = ‖v‖2

Hk(Ω) + |v|2Hk+λ(Ω) =
k

∑

j=0

|v|2Hj (Ω) + |v|2Hk+λ(Ω).
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Sometimes such estimates follow easily from the basic estimate (1.1) and the interpola-
tion theory of Sobolev spaces (cf. [22]). For example, let Π = Π1

h be the nodal interpolation
operator for the P1 finite element space and 0 < λ < 1, then (1.1) with m = 2 implies that

‖u−Π1
hu‖L2(Ω) ≤ Ch2‖u‖H2(Ω) ∀u ∈ H2(Ω),

‖u−Π1
hu‖H1(Ω) ≤ Ch‖u‖H2(Ω) ∀u ∈ H2(Ω),

and hence

‖u−Π1
hu‖Hλ(Ω) ≤ Cλh

2−λ‖u‖H2(Ω) ∀u ∈ H2(Ω).

Replacing u with (u− p) for an appropriate first order polynomial p so that
∫

Ω

∂α(u− p) dx = 0 for |α| ≤ 1,

we can then deduce from the preceding estimate and the Friedrichs inequality (cf. [19]) that

|u−Π1
hu|Hλ(Ω) ≤ Cλh

2−λ|u|H2(Ω).

Note that throughout this paper we use the symbolC (with or without subscripts) to represent
generic positive constants which can take different values at different places.

On the other hand, in the case where Π = Π0
h is the piecewise L2-orthogonal projection

operator from L2(Ω) to the P0 finite element space, the standard estimate (1.1) with m = 1
only gives

‖u−Π0
hu‖L2(Ω) ≤ Ch|u|H1(Ω).

For 0 < λ < 1
2 , the estimate

|u−Π0
hu|Hλ(Ω) ≤ Cλh

1−λ|u|H1(Ω)(1.3)

does not follow from the interpolation theory of Sobolev spaces.
Similarly, for 0 < λ < 1

2 , the estimate

|u−Π1
hu|H1+λ(Ω) ≤ Cλh

1−λ|u|H2(Ω)(1.4)

does not follow from (1.1) and interpolation.
Inverse estimates are also important in the analysis of finite element methods. A standard

inverse estimate for a Lagrange finite element space Vh(Ω) ⊂ H1(Ω) takes the form

|v|H1(Ω) ≤ Ch−1‖v‖L2(Ω) ∀ v ∈ Vh(Ω),(1.5)

and it can be obtained by a purely local analysis (cf. [12], [8]).
Let λ ∈ (0, 1). From (1.5) and the trivial estimate

‖v‖L2(Ω) ≤ ‖v‖L2(Ω) ∀ v ∈ Vh(Ω),

we can obtain by interpolation the following inverse estimate for the seminorm | · |Hλ(Ω):

|v|Hλ(Ω) ≤ Cλh
−λ‖v‖L2(Ω) ∀ v ∈ Vh(Ω).

However, for 0 < λ < 1
2 , the inverse estimate

|v|H1+λ(Ω) ≤ Cλh
−λ|v|H1(Ω) ∀ v ∈ Vh(Ω)(1.6)
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does not follow from (1.5) and interpolation.
In this paper we will establish certain finite element estimates in fractional order Sobolev

seminorms which include in particular (1.3), (1.4) and (1.6), with applications to some three
dimensional mixed finite element methods.

The main difficulty in dealing with estimates in fractional order Sobolev seminorms is
due to the non-local nature of the definition (1.2). Our key observation is that the analysis of
such estimates can be reduced to a purely local one by combining the ideas from [7] and the
estimate

∫

Ω\T

1

|x− y|d+2λ
dy ≤

Cλ

ρ(x, ∂T )2λ
∀x ∈ T,(1.7)

where T is an element in Th and ρ(x, ∂T ) = infy∈∂T |x − y| is the distance from x to the
boundary of T . Furthermore, the local analysis can be handled by the following estimate on
a reference domain T̂ :

∫

T̂

u2(x)

ρ(x, ∂T̂ )2λ
dx ≤ C

T̂ ,λ
‖u‖2

Hλ(T̂ )
∀u ∈ Hλ(T̂ ) and 0 < λ <

1

2
.(1.8)

The estimate (1.7) can be obtained easily by using the regularity of Th and a direct calcula-
tion. The estimate (1.8), which follows from the Hardy inequalities, comes from the theory
of Sobolev spaces. A proof of it can be found in either [18] or [15].

The rest of the paper is organized as follows. The nonstandard finite element estimates
in fractional order Sobolev norms are proved in Section 2. Applications to three-dimensional
mixed finite element methods for the Poisson problem and the Signorini contact problem are
then given in Section 3.

2. Nonstandard finite element estimates in fractional order Sobolev norms. Let Ω
be a bounded polyhedral domain in R

d for d = 1, 2, 3. Let Th be a regular triangulation (cf.
[12], [8]) of Ω, where h = maxT∈Th

diamT . We will first show how certain estimates for
the globally defined fractional order Sobolev seminorms can be reduced to local estimates.

LEMMA 2.1. Let λ ∈ (0, 1) and w ∈ Hk+λ(Ω). Then the following error estimate
holds:

|w|2Hk+λ(Ω) ≤ Cλ
∑

|α|=k

∑

T∈Th

[

|∂αw|2Hλ(T ) +

∫

T

[∂αw(x)]2

ρ(x, ∂T )2λ
dx

]

.

Proof. By the definition (1.2), we have

|w|2Hk+λ(Ω) =
∑

|α|=k

∫

Ω

∫

Ω

[∂αw(x) − ∂αw(y)]2

|x− y|d+2λ
dxdy

=
∑

|α|=k

[

∑

T∈Th

∫

T

∫

T

[∂αw(x) − ∂αw(y)]2

|x− y|d+2λ
dxdy(2.1)

+
∑

T,T ′∈Th

T 6=T ′

∫

T

∫

T ′

[∂αw(x) − ∂αw(y)]2

|x− y|d+2λ
dxdy

]

.

Note that the first sum inside the bracket on the right-hand side of (2.1) equals
∑

T∈Th
|∂αw|2

Hλ(T ). The second sum can be estimated following the ideas in [7]:

∑

T,T ′∈Th

T 6=T ′

∫

T

∫

T ′

[∂αw(x) − ∂αw(y)]2

|x− y|d+2λ
dxdy ≤ 2

[

∑

T,T ′∈Th

T 6=T ′

∫

T

∫

T ′

[∂αw(x)]2

|x− y|d+2λ
dxdy(2.2)
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+
∑

T,T ′∈Th

T 6=T ′

∫

T

∫

T ′

[∂αw(y)]2

|x− y|d+2λ
dxdy

]

.

Let us focus on the first term on the right-hand side of (2.2), since the second one can be
worked out in exactly the same way. We have, by (1.7),

∑

T,T ′∈Th

T 6=T ′

∫

T

∫

T ′

[∂αw(x)]2

|x− y|d+2λ
dxdy =

∑

T∈Th

∫

T

[∂αw(x)]2
(

∫

Ω\T

1

|x− y|d+2λ
dy

)

dx(2.3)

≤ Cλ
∑

T∈Th

∫

T

[∂αw(x)]2

ρ(x, ∂T )2λ
dx.

The lemma follows from (2.1)–(2.3).
REMARK 2.2. Note that the right-hand side of the estimate in Lemma 2.1 is in general

infinite when λ ∈ [ 12 , 1). Therefore Lemma 2.1 is of interest mainly for λ ∈ (0, 1
2 ).

Let us now consider estimates for the piecewise constant interpolation operator Π0
h. Let

P0(T ) stand for the set of constant functions defined on T ∈ Th. The P0 finite element
subspace Mh(Ω) is defined by

Mh(Ω) =
{

vh ∈ L
2(Ω) : vh

∣

∣

T
∈ P0(T ) ∀T ∈ Th

}

.

The piecewise constant interpolation operator Π0
h is the orthogonal projection from L2(Ω)

into Mh(Ω) and is defined as follows:
∫

Ω

(v −Π0
hv)ψh dx = 0 ∀ v ∈ L2(Ω), ψh ∈Mh(Ω).(2.4)

THEOREM 2.3. For any λ ∈ (0, 1
2 ) and µ ∈ [λ, 1], the following error estimate holds :

|v −Π0
hv|Hλ(Ω) ≤ Cλh

µ−λ|v|Hµ(Ω) ∀ v ∈ Hµ(Ω).(2.5)

Proof. Set vh = Π0
hv. From Lemma 2.1 we have

|v − vh|
2
Hλ(Ω) ≤ Cλ

∑

T∈Th

[

|v − vh|
2
Hλ(T ) +

∫

T

[(v − vh)(x)]
2

ρ(x, ∂T )2λ
dx

]

.(2.6)

Hence the proof of (2.5) is reduced to a local estimate which can be handled by (1.8) and
the usual scaling argument as follows.

Let K̂ be the reference element and consider the transformation x̂ 7→ x = BT x̂ + b,
where BT is an invertible matrix. By (1.2), (1.8), Friedrichs’ inequality and the regularity of
Th, we obtain

|v − vh|
2
Hλ(T ) +

∫

T

[(v − vh)(x)]
2

ρ(x, ∂T )2λ
dx

≤ ‖B−1
T ‖d+2λ| detBT |

2|v̂ − v̂h|
2
Hλ(T̂ )

+‖B−1
T ‖2λ | detBT |

∫

T̂

[(v̂ − v̂h)(x̂)]
2

ρ(x̂, ∂T̂ )2λ
dx̂
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≤ Cλ‖B
−1
T ‖2λ| detBT | ‖v̂ − v̂h‖

2
Hλ(T̂ )

≤ Cλ‖B
−1
T ‖2λ| detBT | |v̂|

2
Hλ(T̂ )

≤ Cλ‖B
−1
T ‖2λ| detBT | |v̂|

2
Hµ(T̂ )

≤ Cλ‖B
−1
T ‖2λ| detBT |‖BT‖

d+2µ| detB−1
T |2|v|2Hµ(T )

≤ Cλh
2(µ−λ)|v|2Hµ(T ).

In view of (2.6), we deduce that

|v − vh|
2
Hλ(Ω) ≤ Cλh

2(µ−λ)
∑

T∈Th

|v|2Hµ(T ) ≤ Cλh
2(µ−λ)|v|2Hµ(Ω),

and the lemma follows.
By a straight-forward argument (or cf. [13]), we also have

‖v −Π0
hv‖L2(Ω) ≤ Cλh

µ|v|Hµ(Ω) ∀ v ∈ Hµ(Ω), λ ≤ µ ≤ 1,

which together with Theorem 2.3 imply

‖v −Π0
hv‖Hλ(Ω) ≤ Cλh

µ−λ|v|Hµ(Ω) ∀ v ∈ Hµ(Ω), λ ≤ µ ≤ 1.(2.7)

For the applications in Section 3 we will need interpolation error estimates in the dual
spaces of the Sobolev spaces. The operator Π0

h can be extended to the dual space Hλ(Ω)′ for
λ ∈ (0, 1

2 ) as follows:

〈v −Π0
hv, ψh〉λ,Ω = 0, ∀ v ∈ Hλ(Ω)′, ψh ∈Mh(Γ),(2.8)

where 〈·, ·〉λ,Ω is the duality pairing between Hλ(Ω)′ and Hλ(Ω) that generalizes the inner
product (·, ·)L2(Ω).

THEOREM 2.4. For any λ ∈ (0, 1
2 ) and µ ∈ [λ, 1], the following error estimate holds :

‖v − Π0
hv‖Hµ(Ω)′ ≤ Cλh

µ−λ‖v‖Hλ(Ω)′ ∀ v ∈ Hλ(Ω)′.

Proof. Let v ∈ Hλ(Ω)′ be arbitrary. By duality and the definitions (2.4) and (2.8), we
can write

‖v −Π0
hv‖Hµ(Ω)′ = sup

w∈Hµ(Ω)

〈v −Π0
hv, w〉µ,Ω

‖w‖Hµ(Ω)
= sup

w∈Hµ(Ω)

〈v, w −Π0
hw〉λ,Ω

‖w‖Hµ(Ω)
.(2.9)

From (2.7), we have

〈v, w −Π0
hw〉λ,Ω ≤ ‖v‖Hλ(Ω)′‖w −Π0

hw‖Hλ(Ω) ≤ Cλh
µ−λ‖v‖Hλ(Ω)′‖w‖Hµ(Ω),

and the theorem follows from (2.9).
REMARK 2.5. Theorem 2.3 and Theorem 2.4 remain valid on a d-dimensional (d = 1, 2)

polyhedral surface Γ, with essentially identical proofs. Note that the space Hλ(Γ)′ can also
be written as H−λ(Γ).

Next, we consider the nodal interpolation operator Π1
h from C (Ω̄) to a C 0 Lagrange (or

tensorial) finite element space Vh associated with Th (cf. [12], [8]).
THEOREM 2.6. Let λ ∈ (0, 1

2 ). Then we have, for d = 1, 2,

|v −Π1
hv|H1+λ(Ω) ≤ Cλh

µ−λ|v|H1+µ(Ω) ∀ v ∈ H1+µ(Ω), λ ≤ µ ≤ 1,(2.10)
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and for d = 3,

|v −Π1
hv|H1+λ(Ω) ≤ Cλ,µh

µ−λ|v|H1+µ(Ω) ∀ v ∈ H1+µ(Ω),
1

2
< µ ≤ 1.(2.11)

Proof. We will follow the notation introduced in Theorem 2.3. First we consider the
cases of d = 1 and d = 2. Let Π1

hv = vh. From Lemma 2.1 we have

|v − vh|
2
H1+λ(Ω) ≤ C

∑

T∈Th

[

|v − vh|
2
H1+λ(T ) +

∫

T

|∇v(x) −∇vh(x)|2

ρ(x, ∂T )2λ
dx

]

.(2.12)

Using scaling, (1.2), (1.8) and the regularity of Th, we have

|v − vh|
2
H1+λ(T ) +

∫

T

|∇v(x) −∇vh(x)|2

ρ(x, ∂T )2λ
dx

≤ ‖B−1
T ‖d+2λ‖BT ‖

2| detBT |
2|v̂ − v̂h|

2
H1+λ(T̂ )

+‖B−1
T ‖2λ‖BT ‖

2| detBT |

∫

T̂

|∇v̂(x)−∇v̂h(x)|2

ρ(x̂, ∂T̂ )2λ
dx̂(2.13)

≤ Cλ‖B
−1
T ‖2λ‖BT ‖

2| detBT |
[

|v̂ − v̂h|
2
H1(T̂ )

+ |v̂ − v̂h|
2
H1+λ(T̂ )

]

.

From the equivalence of norms on finite dimensional vector spaces and Sobolev’s in-
equality (cf. [1], [19], [22]), it is easy to see that

|v̂ − v̂h|
2
H1(T̂ )

+ |v̂ − v̂h|
2
H1+λ(T̂ )

≤ C
[

|v̂|2
H1(T̂ )

+ |v̂|2
H1+λ(T̂ )

+ ‖v̂h‖
2
L∞(T̂ )

]

≤ C
[

|v̂|2
H1(T̂ )

+ |v̂|2
H1+λ(T̂ )

+ ‖v̂‖2
L∞(T̂ )

]

(2.14)

≤ Cλ‖v̂‖
2
H1+λ(T̂ )

.

Combining (1.2), (2.13), (2.14), the Bramble-Hilbert lemma (cf. [6], [13]) and scaling,
we have

|v − vh|
2
H1+λ(T ) +

∫

T

|∇v(x)−∇vh(x)|2

ρ(x, ∂T )2λ
dx

≤ Cλ‖B
−1
T ‖2λ‖BT ‖

2| detBT |

× inf
p∈P1(T̂ )

[

|(v̂ − p)− (v̂ − p)h|
2
H1(T̂ )

+ |(v̂ − p)− (v̂ − p)h|
2
H1+λ(T̂ )

]

≤ Cλ‖B
−1
T ‖2λ‖BT ‖

2| detBT | inf
p∈P1(T̂ )

‖v̂ − p‖2
H1+λ(T̂ )

(2.15)

≤ Cλ‖B
−1
T ‖2λ‖BT ‖

2| detBT ||v̂|
2
H1+λ(T̂ )

≤ Cλ‖B
−1
T ‖2λ‖BT ‖

2| detBT ||v̂|
2
H1+µ(T̂ )

≤ Cλ‖B
−1
T ‖2λ‖BT ‖

2| detBT |‖BT ‖
2d+2µ‖B−1

T ‖2| detB−1
T |2|v|2Hµ(T )

≤ Cλh
2(µ−λ)|v|2Hµ(T ).

The estimate (2.10) follows from (2.12) and (2.15).
The proof of (2.11) is similar, except that (2.14) must be replaced by

|v̂ − v̂h|
2
H1(T̂ )

+ |v̂ − v̂h|
2
H1+λ(T̂ )

≤ Cµ‖v̂‖
2
H1+µ(T̂ )

.
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The theorem now follows.
REMARK 2.7. The results of [7] can be recovered from (2.10) by taking µ = λ.
Finally, we turn to inverse estimates involving fractional order Sobolev norms. For this

purpose we will assume that the triangulation Th is quasi-uniform (cf. [12], [8]).
THEOREM 2.8. Let λ ∈ (0, 1

2 ) and θ ∈ [0, λ]. Then the following estimate holds :

|v|Hλ(Ω) ≤ Cλh
θ−λ|v|Hθ(Ω) ∀ v ∈Mh(Ω).

Proof. We will follow the notation in Theorem 2.3. Let v ∈ Mh(Ω) be arbitrary. From
Lemma 2.1 we have

|v|2Hλ(Ω) ≤ C
∑

T∈Th

[

|v|2Hλ(T ) +

∫

T

[v(x)]2

ρ(x, ∂T )2λ
dx

]

.(2.16)

Using the equivalence of norms on a finite dimensional vector space, we obtain, by scaling,
(1.2), (1.8) and the quasi-uniformity of Th,

|v|2Hλ(T ) +

∫

T

[v(x)]2

ρ(x, ∂T )2λ
dx ≤ ‖B−1

T ‖d+2λ| detBT |
2|v̂|2

Hλ(T̂ )

+‖B−1
T ‖2λ| detBT |

∫

T̂

[v̂(x̂)]2

ρ(x̂, ∂T̂ )2λ
dx̂

≤ Cλ‖B
−1
T ‖2λ| detBT |‖v̂‖

2
L2(T̂ )

≤ Cλ‖B
−1
T ‖2λ| detBT || detB−1

T |‖v‖2
L2(T )

≤ Cλh
−2λ‖v‖2

L2(T ).

Combining the preceding estimate and (2.16) we have

|v|Hλ(Ω) ≤ Cλh
−λ‖v‖L2(Ω) ∀ v ∈Mh(Ω).(2.17)

In other words the theorem holds for θ = 0.
The proof for θ ∈ (0, λ] is more complicated. For T ∈ Th, we denote by σT the

collection of elements in Th which share at least one vertex with T , i.e.,

σT = {T ′ ∈ Th : T ∩ T ′ 6= ∅}.

The domain ST is defined by

ST =
⋃

T ′∈σT

T
′
.(2.18)

We have

|v|2Hλ(Ω) =
∑

T,T ′∈Th

∫

T

∫

T ′

[v(x)− v(y)]2

|x− y|d+2λ
dxdy

=
∑

T,T ′∈Th

T ′∈σT

∫

T

∫

T ′

[v(x)− v(y)]2

|x− y|d+2λ
dxdy(2.19)

+
∑

T,T ′∈Th

T ′ 6∈σT

∫

T

∫

T ′

[v(x) − v(y)]2

|x− y|d+2λ
dxdy.
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There is an easy estimate for the second sum on the right-hand side of (2.19):

∑

T,T ′∈Th

T ′ 6∈σT

∫

T

∫

T ′

[v(x) − v(y)]2

|x− y|d+2λ
dxdy

≤ Ch2(θ−λ)
∑

T,T ′∈Th

T ′ 6∈σT

∫

T

∫

T ′

[v(x)− v(y)]2

|x− y|d+2θ
dxdy(2.20)

≤ Ch2(θ−λ)|v|2Hθ(Ω).

In view of (1.2) and (2.18), we can bound the first sum on the right-hand side of (2.19)
by

∑

T,T ′∈Th

T ′∈σT

∫

T

∫

T ′

[v(x) − v(y)]2

|x− y|d+2λ
dxdy ≤

∑

T∈Th

|v|2Hλ(ST ).(2.21)

Let ŜT be a reference domain with unit diameter which is similar to ST , F be the affine
transformation that maps ŜT to ST , and v̂ = v ◦ F be the pull-back of v to ŜT . We obtain,
by applying (2.17) to ŜT and using the Bramble-Hilbert lemma (cf. [13]),

|v̂|Hλ(ŜT ) = inf
p∈P0(ŜT )

|v̂ − p|Hλ(ŜT )(2.22)

≤ Cλ inf
p∈P0(ŜT )

‖v̂ − p‖L2(ŜT ) ≤ Cλ|v̂|Hθ(ŜT ).

Combining (2.22) with a scaling argument, we have

|v|Hλ(ST ) ≤ Cλh
θ−λ|v|Hθ(ST ),

which together with (2.21) imply

∑

T,T ′∈Th

T ′∈σT

∫

T

∫

T ′

[v(x) − v(y)]2

|x− y|d+2λ
dxdy ≤ Cλh

2(θ−λ)
∑

T∈Th

|v|2Hθ(ST )(2.23)

≤ Cλh
2(θ−λ)|v|2Hθ(Ω).

The case for θ ∈ (0, λ] now follows from (2.19), (2.20) and (2.23).
In exactly the same way one can prove the following theorem for a C 0 Lagrange (or

tensorial) finite element space Vh(Ω).
THEOREM 2.9. Let λ ∈ (0, 1

2 ) and θ ∈ [0, λ]. Then the following estimate holds :

|v|H1+λ(Ω) ≤ Cλh
θ−λ|v|H1+θ(Ω) ∀ v ∈ Vh(Ω).

3. Bubble stabilization of three-dimensional mixed finite element methods. In this
section we apply Theorem 2.4 to establish optimal error estimates for the numerical solution
of some second order elliptic partial differential equations by the bubble stabilized finite el-
ement method, when the exact solution is not regular. First, we present the discretization of
the 3D Poisson problem, where the Dirichlet condition is dualized à la Babuška. The second
application deals with the approximation of the 3D unilateral contact problem known as the
Signorini problem.
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3.1. The Poisson problem with Lagrange multipliers. Let Ω be a bounded polyhedral
domain in R

3 with boundary Γ = ∂Ω. Given f ∈ L2(Ω) and g ∈ H
1
2 (Γ), the problem of

interest is the Poisson equation:

−∆u = f in Ω,(3.1)

u = g on Γ.(3.2)

By using Lagrange multipliers to enforce the Dirichlet condition (cf. [2]), we can formu-
late (3.1)–(3.2) as the following saddle point problem:

Find (u, ϕ) ∈ H1(Ω)×H
1
2 (Γ)′ such that

∫

Ω

∇u · ∇v dx+ 〈ϕ, v〉 1
2
,Γ =

∫

Ω

fv dx ∀ v ∈ H1(Ω),(3.3)

〈ψ, u〉 1
2
,Γ = 〈ψ, g〉 1

2
,Γ ∀ψ ∈ H

1
2 (Γ)′.(3.4)

Let T Ω
h be a regular triangulation made of elements that are tetrahedra with a maximum

size h (the extension to the hexahedra does not create any technical difficulty). The trace of
T Ω
h on the boundary Γ results in a regular (2D) triangulation T Γ

h made of triangular elements
which are the faces of tetrahedral elements in T Ω

h . Let Yh(Ω) be the space defined by

Yh(Ω) =
{

vh ∈ C
0(Ω) : vh

∣

∣

κ
∈ P1(κ) ∀κ ∈ T

Ω)
h

}

,

where P1(κ) is the set of all affine functions over κ. In the stabilized finite element approach,
the discrete space Yh(Ω) is enriched by cubic bubble functions defined on the boundary Γ.
Let {x1, x2, x3} be the vertices of the triangle T ∈ T Γ

h which is a face of the tetrahedral
element κ

T
in T Ω

h . The vertices of κ
T

are (xi)1≤i≤4 and λi (1 ≤ i ≤ 4) is the barycentric
coordinate associated with xi. The bubble function we need to use is defined to be

ϕ
T
(x) =

60

|T |
λ1(x)λ2(x)λ3(x) ∀x ∈ κ

T
,

and extended by zero elsewhere. Then the locally stabilized finite element space is given by

Xh(Ω) = Yh(Ω)⊕
(

⊕

T∈T
Γ

h

RϕT

)

.

The approximate Lagrange multipliers are piecewise constant functions with respect to the
mesh T Γ

h , i.e.,

Mh(Γ) =
{

ψh ∈ L
2(Γ) : ψh

∣

∣

T
∈ P0(T ) ∀T ∈ T

Γ
h

}

,

and the discrete problem for (3.3)–(3.4) is:
Find (uh, ϕh) ∈ Xh(Ω)×Mh(Γ) such that

∫

Ω

∇uh · ∇vh dx+ 〈ϕh, vh〉 1
2
,Γ =

∫

Ω

fvh dx ∀ vh ∈ Xh(Ω),(3.5)

〈ψh, uh〉 1
2
,Γ = 〈ψh, g〉 1

2
,Γ ∀ψh ∈Mh(Γ).(3.6)

The properties that allow for existence and uniqueness results are the coercivity of the
form (uh, vh) 7→ (∇(·),∇(·))L2(Ω) on a subspace of Xh(Ω) and the so-called inf-sup con-
dition of the form (vh, ψh) 7→ 〈ψh, vh〉 1

2
,Γ on the spaces Xh(Ω) × Mh(Γ). There is no
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particular difficulty in checking that the seminorm | · |H1(Ω) is equivalent to the H1-norm in
the space

{

vh ∈ Xh(Ω) : 〈ψh, vh〉 1
2
,Γ = 0 ∀ψh ∈Mh(Γ)

}

.

This proves the coercivity of the first form on this space. Moreover, following the lines of
[3], the spaces Xh(Ω) and Mh(Γ) satisfy the Babuška-Brezzi condition (also known as the
inf-sup condition):

inf
ψh∈Mh(Γ)

sup
vh∈Xh(Ω)

〈ψh, vh〉 1
2
,Γ

‖vh‖H1(Ω)‖ψh‖
H

1
2 (Γ)′

> γ,

where the constant γ does not depend on h. Therefore, using the saddle point theory (cf. [9]),
one can prove that problem (3.5)–(3.6) has a unique solution (uh, ϕh) ∈ Xh(Ω) ×Mh(Γ)
which satisfies the following abstract error estimate:

‖u− uh‖H1(Ω) + ‖ϕ− ϕh‖
H

1
2 (Γ)′

≤(3.7)

C
(

inf
vh∈Xh(Ω)

‖u− vh‖H1(Ω) + inf
ψh∈Mh(Γ)

‖ϕ− ψh‖
H

1
2 (Γ)′

)

.

In the following theorem we apply Theorem 2.4 to derive from (3.7) the convergence rate
of our mixed finite element solution of (3.5)–(3.6).

THEOREM 3.1. Assume that the exact solution u of Poisson’s problem belongs to
H1+λ(Ω) (0 < λ < 1

2 ). Then the following error estimate holds :

‖u− uh‖H1(Ω) + ‖ϕ− ϕh‖
H

1
2 (Γ)′

≤ Chλ(‖u‖H1+λ(Ω) + ‖f‖L2(Ω)).

Proof. It is sufficient to observe that, since u ∈ H1+λ(Ω) and ∆u ∈ L2(Ω), ϕ = ∂u
∂n

∈

H
1
2
−λ(Γ)′ with

‖ϕ‖
H

1
2
−λ(Γ)′

≤ C(‖u‖H1+λ(Ω) + ‖f‖L2(Ω)).

We can then use Theorem 2.4 to obtain

inf
ψh∈Mh(Γ)

‖ϕ− ψh‖
H

1
2 (Γ)′

≤ Chλ‖ϕ‖
H

1
2
−λ(Γ)′

≤ Chλ(‖u‖H1+λ(Ω) + ‖f‖L2(Ω)).

The bound

inf
vh∈Xh(Ω)

‖u− vh‖H1(Ω) ≤ Chλ‖u‖H1+λ(Ω)

can be obtained by using a finite element interpolation for non-smooth functions (cf. [21],
[5]).

REMARK 3.2. In two dimensions, there is no need for stabilization since the natural
spaces Yh(Ω) and Mh(Γ) (built as described above with obvious modification) are compat-
ible regarding the inf-sup condition (cf. [2], [20]). In three dimensions this condition is lost
and is restored by bubble stabilization (cf. [10], [11]). Note, however, that even for non-
regular two-dimensional solutions, the one-dimensional result in Theorem 2.4 is needed for
proving optimal convergence results.



ETNA
Kent State University 
etna@mcs.kent.edu

144 F. Ben Belgacem and S. C. Brenner

3.2. The unilateral contact variational inequality. Assume again that Ω is a bounded
polyhedral domain in R

3. The boundary Γ = ∂Ω is a union of three non-overlapping sections
Γu,Γg and ΓC . The part Γu of nonzero measure is subject to the Dirichlet conditions, while
on Γg the Neumann condition is prescribed, and ΓC is the candidate to be in contact with a

rigid obstacle. To avoid technicalities arising from the special Sobolev space H
1
2

00(ΓC), we
assume that Γu and ΓC do not touch.

For given data f ∈ L2(Ω) and g ∈ H
1
2 (Γg)

′, the Signorini problem consists of finding
u such that

−∆u = f in Ω,(3.8)

u = 0 on Γu,(3.9)
∂u

∂n
= g on Γg,(3.10)

u ≥ 0,
∂u

∂n
≥ 0, u

∂u

∂n
= 0 on ΓC ,(3.11)

where n is the outward unit normal of ∂Ω. This model is currently encountered in the condi-
tioning field (where u is a temperature) and in the hydrostatic domain (where u is a pressure).

Sometimes, for practical reasons, one may want to use the mixed formulation where the
condition ϕ = ∂u

∂n
≥ 0 is taken into account explicitly. In this approach the space for the

displacement u is the subspace H1
0 (Ω,Γu) of H1(Ω) consisting of functions that vanish on

Γu, and the flux (normal derivative) ϕ = ∂u
∂n

∣

∣

ΓC
belongs to the closed convex set

M(ΓC) =
{

ψ ∈ H
1
2 (ΓC)′ : ψ ≥ 0

}

.

Here the nonnegativity of a distribution ψ ∈ H
1
2 (ΓC)′ is to be understood in the sense

that 〈ψ, χ〉 1
2
,ΓC

≥ 0 for any nonnegative χ ∈ H
1
2 (ΓC). Then (u, ϕ) is the solution of the

following mixed variational inequality:
Find (u, ϕ) ∈ H1

0 (Ω,Γu)×M(ΓC) such that
∫

Ω

∇u · ∇v dx+ 〈ϕ, v〉 1
2
,ΓC

=

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω,Γu),(3.12)

〈ψ − ϕ, u〉 1
2
,ΓC

≥ 0 ∀ψ ∈M(ΓC).(3.13)

A complete analysis of this mixed problem is provided in [17] (cf. also [16]) where an
existence and uniqueness result is proven (cf. Theorem 3.14 therein). Moreover we have the
following stability estimate:

‖u‖H1(Ω) + ‖ϕ‖
H

1
2 (ΓC)′

≤ C(‖f‖L2(Ω) + ‖g‖
H

1
2 (Γg)′

).

It is useful to note that if K(Ω) is the convex cone

K(Ω) =
{

v ∈ H1
0 (Ω,Γu) : v ≥ 0

}

,

then u ∈ K(Ω) is also the unique solution of the following primal problem:
Find u ∈ K(Ω) such that

∫

Ω

∇u · ∇(v − u) dx ≥

∫

Ω

f(v − u) dx+ 〈g, v − u〉 1
2
,Γg

∀ v ∈ K(Ω).(3.14)
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REMARK 3.3. The Neumann and Signorini conditions (3.10) and (3.11) are taken into
account in a weak sense in the primal variational inequality (3.14). Indeed, we have

〈
∂u

∂n
, v〉 1

2
,Γ − 〈g, v〉 1

2
,Γg

≥ 0 ∀ v ∈ H
1
2

00(Γ,Γu) and v
∣

∣

ΓC
≥ 0,(3.15)

〈
∂u

∂n
, u〉 1

2
,Γ − 〈g, u〉 1

2
,Γg

= 0,(3.16)

where H
1
2

00(Γ,Γu) is the subspace of H
1
2 (Γ) consisting of functions that vanish on Γu.

Roughly speaking, (3.15) says that ∂u
∂n

= g on Γg and ∂u
∂n

≥ 0 on ΓC while (3.16) expresses
the saturation condition u ∂u

∂n
= 0 on ΓC .

The approximation of the variational inequality (3.12)–(3.13) is obtained by generalizing
the two-dimensional bubble stabilized mixed finite elements in [3] to three dimensions. The
finite element tools are the same as those introduced in the previous section. We assume
moreover that the mesh T Ω

h is compatible with the partition of the boundary, meaning that
the trace of it to Γu,Γg and to ΓC results in two dimensional triangulations. The triangulation
of ΓC is denoted by T C

h .
Taking into account the Dirichlet boundary condition, we define

Yh(Ω) =
{

vh ∈ C
0(Ω) : vh

∣

∣

κ
∈ P1(κ) ∀κ ∈ T

Ω
h and vh

∣

∣

ΓC
= 0

}

.

The finite element space where uh is computed is then given by

Xh(Ω) = Yh(Ω)⊕
(

⊕

T∈T
C

h

RϕT

)

,

and the convex cone for the discrete Lagrange multipliers on ΓC is taken to be

Mh(ΓC) =
{

ψh ∈ L
2(ΓC) : ψh

∣

∣

T
∈ P0(T ) ∀T ∈ T

C
h and ψh ≥ 0

}

.

We are now ready to set the discrete mixed variational inequality:
Find (uh, ϕh) ∈ Xh(Ω)×Mh(ΓC) such that

∫

Ω

∇uh · ∇vh dx+ 〈ϕh, vh〉 1
2
,ΓC

=

∫

Ω

fvh dx ∀ vh ∈ Xh(Ω),(3.17)

〈ψh − ϕh, uh〉 1
2
,ΓC

≥ 0 ∀ψh ∈Mh(ΓC).(3.18)

Again the availability of the Babuška-Brezzi condition

inf
ψh∈Mh(ΓC)

sup
vh∈Xh(Ω)

〈ψh, vh〉 1
2
,ΓC

‖vh‖H1(Ω)‖ψh‖
H

1
2 (ΓC)′

> γ

allows us to prove existence, uniqueness and stability results.
The analysis of the discretization error is based on the saddle point theory for variational

inequalities (cf. [17], [16]). The methodology is to first obtain the convergence rate on the
primal variable u by analyzing (3.14) and its approximation. We have therefore to write down
a variational problem for uh after suppressing the Lagrange multiplier. Let us then introduce
the closed convex cone

Kh(Ω) =
{

vh ∈ Xh(Ω) : 〈ψh, vh〉 1
2
,ΓC

=

∫

ΓC

ψhvh dΓ ≥ 0 ∀ψh ∈Mh(ΓC)
}

.
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It is easy to see that uh is also the unique solution of the following variational inequality:
Find uh ∈ Kh(Ω) such that

∫

Ω

∇uh · ∇(vh − uh) dx ≥

∫

Ω

f(vh − uh) dx+ 〈g, vh − uh〉 1
2
,Γg

(3.19)

∀ vh ∈ Kh(Ω).
Note that Kh(Ω) 6⊂ K(Ω) and hence problem (3.19) is a nonconforming discretization

of (3.14). Applying Falk’s lemma (cf. [14]) to (3.19) yields the following error estimate, the
proof of which can be found for instance in [4].

LEMMA 3.4. The following error estimate holds:

‖u− uh‖
2
H1(Ω) ≤ C

[

inf
vh∈Kh(Ω)

(

‖u− vh‖
2
H1(Ω)+ <

∂u

∂n
, vh > 1

2
,Γ −〈g, vh〉 1

2
,Γg

)

(3.20)

+ inf
v∈K(Ω)

(

〈
∂u

∂n
, v − uh〉 1

2
,Γ − 〈g, v − uh〉 1

2
,Γg

)

]

.

The first infimum of the bound given in Lemma 3.2 is the approximation error and the
boundary term involved there is specifically generated by the discretization of variational
inequalities. The second infimum is the consistency error, the price for the “variational crime”
due to the nonconformity of the approximation. These two errors will be studied separately.

LEMMA 3.5. Assume that for some λ (0 < λ < 1
2 ) we have g ∈ H

1
2
−λ(Γg)

′ and that
the exact solution u of Signorini’s problem belongs to H1+λ(Ω). Then the following estimate
holds :

inf
vh∈Kh(Ω)

(

‖u− vh‖
2
H1(Ω)+ <

∂u

∂n
, vh > 1

2
,Γ −〈g, vh〉 1

2
,Γg

)

≤

Ch2λ
[

‖u‖H1+λ(Ω) + ‖f‖L2(Ω) + ‖g‖
H

1
2
−λ(Γg)′

]

‖u‖H1+λ(Ω).

Proof. It suffices to choose vh ∈ Yh(Ω) to be the Lagrange interpolant of u. It is checked
that vh ∈ Kh(Ω) since vh

∣

∣

ΓC
≥ 0. The estimate is derived following [4].

LEMMA 3.6. Assume that for some λ (0 < λ < 1
2 ) we have g ∈ H

1
2
−λ(Γg)

′ and that
the exact solution u of Signorini’s problem belongs to H1+λ(Ω). Then the following estimate
holds :

inf
v∈K(Ω)

(

〈
∂u

∂n
, v − uh〉 1

2
,Γ − 〈g, v − uh〉 1

2
,Γg

)

≤

Chλ
[

‖u‖H1+λ(Ω) + ‖f‖L2(Ω) + ‖g‖
H

1
2
−λ(Γg)′

]

(

‖u− uh‖H1(Ω) + hλ‖u‖H1+λ(Ω)

)

.

Proof. First of all, observe that since g ∈ H
1
2
−λ(Γg)

′ and ∂u
∂n

∈ H
1
2
−λ(Γ)′, a density

argument and (3.15) imply

〈
∂u

∂n
, v〉 1

2
−λ,Γ − 〈g, v〉 1

2
−λ,Γg

≥ 0 ∀ v ∈ H
1
2
−λ(Γ) and v

∣

∣

ΓC
≥ 0.

It follows that if ψh = Π0
h(
∂u
∂n

) ∈ Mh(Γ) is the piecewise constant interpolant of ∂u
∂n

, then
we have

ψh
∣

∣

T
=

1

|T |
〈
∂u

∂n
, 1T 〉 1

2
−λ,Γ =

1

|T |
〈g, 1T 〉 1

2
−λ,Γg

∀T ∈ T
C
h ,
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where 1T ∈ H
1
2
−λ(Γ) is the characteristic function of the set T . In particular, this means

that ψh
∣

∣

Γg
∈Mh(Γg) (respectively, ψh

∣

∣

ΓC
∈Mh(ΓC)) is the piecewise constant interpolant

of g on Γg (respecttively, of ϕ on ΓC).
Now, to prove the result of the lemma we choose v = u ∈ K(Ω), then

〈
∂u

∂n
, u− uh〉 1

2
,Γ − 〈g, u− uh〉 1

2
,Γg

= 〈ψh, u− uh〉 1
2
−λ,Γ − 〈ψh, u− uh〉 1

2
−λ,Γg

+ 〈
∂u

∂n
− ψh, u− uh〉 1

2
−λ,Γ − 〈g − ψh, u− uh〉 1

2
−λ,Γg

.

In view of the unilateral contact condition we have

〈ψh, uh〉 1
2
−λ,Γ − 〈ψh, uh〉 1

2
−λ,Γg

=

∫

ΓC

ψhuh dΓ ≥ 0.

It follows that

〈ψh, u− uh〉 1
2
−λ,Γ − 〈ψh, u− uh〉 1

2
−λ,Γg

≤ 〈ψh, u〉 1
2
−λ,Γ − 〈ψh, u〉 1

2
−λ,Γg

.

On account of the saturation condition (3.16) we have then

〈ψh, u− uh〉 1
2
−λ,Γ − 〈ψh, u− uh〉 1

2
−λ,Γg

≤ 〈ψh −
∂u

∂n
, u〉 1

2
−λ,Γ − 〈ψh − g, u〉 1

2
−λ,Γg

≤ ‖
∂u

∂n
− ψh‖

H
1
2
+λ(Γ)′

‖u‖
H

1
2
+λ(Γ)

+ ‖g − ψh‖
H

1
2
+λ(Γg)′

‖u‖
H

1
2
+λ(Γg)

.

As g ∈ H
1
2
−λ(Γg)

′ and ∂u
∂n

∈ H
1
2
−λ(Γ)′, an application of Theorem 2.4 produces

〈ψh −
∂u

∂n
, u〉 1

2
−λ,Γ − 〈ψh − g, u〉 1

2
−λ,Γg

≤(3.21)

Ch2λ
[

‖u‖H1+λ(Ω) + ‖f‖L2(Ω) + ‖g‖
H

1
2
−λ(Γg)

]

‖u‖H1+λ(Ω).

The remaining part is handled in the following way:

〈
∂u

∂n
− ψh, u− uh〉 1

2
−λ,Γ − 〈g − ψh, u− uh〉 1

2
−λ,Γg

≤

‖
∂u

∂n
− ψh‖

H
1
2 (Γ)′

‖u− uh‖
H

1
2 (Γ)

+ ‖g − ψh‖
H

1
2 (Γg)′

‖u− uh‖
H

1
2 (Γ)

.

Again by Theorem 2.4 we obtain

〈
∂u

∂n
− ψh,u− uh〉 1

2
−λ,Γ − 〈g − ψh, u− uh〉 1

2
−λ,Γg

≤(3.22)

Chλ
[

‖u‖H1+λ(Ω) + ‖f‖L2(Ω) + ‖g‖
H

1
2
−λ(Γg)′

]

‖u− uh‖H1(Ω).

Combining (3.21) and (3.22) yields the proof of the lemma.
Assembling together the results of both lemmas and using a bootstrapping argument

gives the final error estimate.
THEOREM 3.7. Assume that for some λ (0 < λ < 1

2 ) we have g ∈ H
1
2
−λ(Γg)

′ and that
the exact solution u of Signorini’s problem belongs to H1+λ(Ω). Then the solution of (3.19)
satisfies

‖u− uh‖H1(Ω) ≤ Chλ
[

‖u‖H1+λ(Ω) + ‖f‖L2(Ω) + ‖g‖
H

1
2
−λ(Γg)′

]

.
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Because of the inf-sup condition it is possible to establish a convergence rate for the
Lagrange multipliers which is also optimal.

COROLLARY 3.8. Assume that for some λ (0 < λ < 1
2 ) we have g ∈ H

1
2
−λ(Γg)

′ and
that the exact solution u of Signorini’s problem belongs to H1+λ(Ω). Then the following
estimate holds:

‖ϕ− ϕh‖
H

1
2 (ΓC)′

≤ Chλ
[

‖u‖H1+λ(Ω) + ‖f‖L2(Ω) + ‖g‖
H

1
2
−λ(Γg)′

]

.

Proof. The saddle point theory provides (cf. [17]) the estimate

‖ϕ− ϕh‖
H

1
2 (ΓC )′

≤ ‖u− uh‖H1(Ω) + inf
ψh∈Mh(ΓC)

‖ϕ− ϕh‖
H

1
2 (ΓC)′

.

Taking ψh = Π0
h(
∂u
∂n

)|Γc
= Π0,C

h ϕ and applying Theorem 2.4 gives the estimate.
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