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CONTINUOUS Θ-METHODS FOR THE STOCHASTIC PANTOGRAPH
EQUATION∗

CHRISTOPHER T.H. BAKER† AND EVELYN BUCKWAR‡

Abstract. We consider a stochastic version of the pantograph equation:

dX(t) = {aX(t) + bX(qt)} dt + {σ1 + σ2X(t) + σ3X(qt)} dW (t),

X(0) = X0,

for t ∈ [0, T ], a given Wiener process W and 0 < q < 1. This is an example of an Itô stochastic delay differential
equation with unbounded memory. We give the necessary analytical theory for existence and uniqueness of a strong
solution of the above equation, and of strong approximations to the solution obtained by a continuous extension of
the Θ-Euler scheme (Θ ∈ [0, 1]). We establishO(

√
h) mean-square convergence of approximations obtained using

a bounded mesh of uniform step h, rising in the case of additive noise to O(h). Illustrative numerical examples are
provided.
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1. Introduction. The paper is organised as follows: In this section, we set the scene
and motivate the later discussion. Section 2 provides the necessary theoretical background
concerning a stochastic version of the pantograph equation; in §3 we detail the construction
of an approximate solution on a uniform mesh of width h and give necessary definitions. We
state the main theoretical results in Theorem 3.3 and its corollary. In §4 we present some
numerical experiments; finally, §5 contains the proofs of Theorems 3.2 and 3.3.

1.1. Background on the deterministic and stochastic equations. To orientate the
reader, we shall relate the problem of interest

dX(t) =
{
aX(t) + bX(qt)

}
dt+

{
σ1 + σ2X(t) + σ3X(qt)

}
dW (t),(1.1a)

X(0) = X0,(1.1b)

to the corresponding deterministic pantograph equation

y′(t) = ay(t) + by(qt), q ∈ (0, 1),(1.2a)

in which it is conventional to take y′(t) to denote the right-hand derivative. If (1.2a) holds for
t ≥ 0 then a solution is uniquely determined by an intial value:

y(0) = y0.(1.2b)

If (1.2a) holds for t ≥ t0 > 0 then a solution is uniquely determined by requiring

y(t) = ψ(t) (qt0 ≤ t ≤ t0),(1.2c)

where ψ(·) is a given intial function. In the latter case, even if ψ(·) is smooth on [qt0, t0],

successively higher derivatives of the solution display ‘jumps’ at
1

q
t0,

1

q2
t0,

1

q3
t0, . . . in the
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case that ψ′(t0) 6= aψ(t0) + bψ(qt0). Some of the difficulties involved in the numerical
simulation of long-time behaviour of the solution of (1.2a–b) are discussed in [17], where
earlier work, including [12], is also cited.

Since qt < t when t ≥ 0, (1.2a) is (for t ≥ 0) a differential equation with time lag.
The quantity t − qt will be called the lag and we note that the delayed argument qt satisfies
qt → ∞ as t → ∞ but the lag is unbounded. Equation (1.2a) provides an example of what
are frequently called delay differential equations. By analogy, (1.1a), which we term the
stochasic pantograph equation is an example of a stochastic delay differential equation.

The problem (1.1a) occurs when we allow (i) for external noise acting on the system,
i.e. σ1 6= 0, σ2 = σ3 = 0, or (ii) for noise in the internal parameters a and b corresponding
to σ2 6= 0 and σ3 6= 0, respectively, in our model. We observe that (1.1) can be expressed
equivalently (incorporating the initial condition) as

X(t) = X0 +

∫ t

0

aX(s) + bX(qs) ds+

∫ t

0

σ1 + σ2X(s) + σ3X(qs) dW (s),(1.3)

where we employ the Itô integral. This is an initial-value problem with solution defined by
X0. If the problem were defined for t ≥ t0 > 0 it would be necessary (compare (1.2c))
to define an initial function X(t) = Ψ(t) for t ∈ [qt0, t0] and the properties of Ψ(t) would
affect the discussion. In this article we will be interested in obtaining approximations to strong
solutions of the stochastic pantograph equation. To the best of our knowledge, approximation
schemes for stochastic equations with varying lag have not previously been discussed in the
literature.

We shall refer to (1.2a–b) as the underlying deterministic version of (1.1a–b), and to
(1.1a–b) as the stochastic analogue of (1.2a–b). The solution trajectories defined by (1.1a–b)
are continuous but not smooth. In consequence the smoothness of solutions of the underlying
deterministic problem appears to be of no interest. This claim bears closer examination in the
small noise case but, for the present, we consider the initial value problem (1.1a–b) for which
the underlying deterministic problem has a smooth solution.

Remark 1: Equation (1.2a) and its generalisations possess a wide range of applications.
Equation (1.2a) arises, for example, in the analysis of the dynamics of an overhead current
collection system for an electric locomotive or in the problem of a one-dimensional wave
motion, such as that due to small vertical displacements of a stretched string under grav-
ity, caused by an applied force which moves along the string ([12] and [26]). Existence,
uniqueness and asymptotic properties of the solution of (1.2) have been considered in [7, 15].
The equation (1.2) can be used as a paradigm for the construction of numerical schemes
for functional-differential equations with unbounded memory, cf. [5], [14], [16] (we do not
attempt to give a complete list of references here).

1.2. Additional background. For the theoretical prerequisites on probability concepts
we refer to [29]. Stochastic calculus and stochastic ordinary differential equation (SODEs)
are treated in [1] and [19]; for the theory of stochastic delay differential equation (SDDEs),
see (for example) [21, 24, 25]. SDDEs with general infinite memory are treated in [18], the
case of fading memory is considered in [23].

One might expect the numerical analysis of delay differential equation (DDEs) and of
SODEs to have some bearing upon the problems that concern us here. We refer to [2, 4, 30] for
an overview of the issues in the numerical treatment of DDEs. For an overview of applications
and objectives of numerical methods for SODEs, see [8], [27] or [28]; for more extensive
treatments see [20, 22].
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The numerics of evolutionary problems for ordinary differential equations (ODEs), for
SODES, for DDEs, and for SDDEs have some features in common. They are associated with
a mesh

TN := t0 < t1 < t2 . . . < tN , with hn := tn+1 − tn,(1.4)

(maxhn is known as the width of TN ) such that the computation of a solution (trajectory)
proceeds by determining approximate values on the points {tn}n≥0 (and thence, if necessary,
determining a densely-defined approximation on the subinterval [tn, tn+1]). In this paper
we shall consider the case of a uniform mesh with hn ≡ h. Since, for q ∈ (0, 1), it is
usually the case that qtn 6∈ TN , we shall then require a densely defined approximation. Note
that introducing implicitness into the explicit term in (1.5) can produce unbounded solution
values in an individual trajectory (see [20], p. 336); Burrage and Tian [6] have proposed
and analysed a method that deals with this type of problem. Our numerical scheme is based
on a choice of parameter Θ ∈ [0, 1] and (for additional detail, see §3) the construction of
approximations X̃(t) ≈ X(t) satisfying the equations X̃(t0) = X0 and, for 0 ≤ r ≤ N − 1
and ζ ∈ [0, 1],

X̃(tr + ζh) = X̃(tr)

+

∫ tr+ζh

tr

{
Θ(aX̃(tr+1) + bX̃(qtr+1)) + (1−Θ)(aX̃(tr) + bX̃(qtr))

}
ds

︸ ︷︷ ︸
implicit if Θ 6= 0

(1.5)

+

∫ t`+ζh

tr

{
σ1 + σ2X̃(tr) + σ3X̃(qtr)

}
dW (s)

︸ ︷︷ ︸
explicit

;

of course, the above integrals simplify. For comparison, we observe that, by (1.3), X(t)
satisfies the corresponding relation

X(t) = X(tr) +

∫ t

tr

aX(s) + bX(qs) ds+

∫ t

tr

σ1 + σ2X(s) + σ3X(qs) dW (s),

for t ∈ [tr, tr+1]. On TN , the approximations satisfy (for n ∈ {0, 1, . . . , N − 1})

X̃(tn+1) = X̃(tn) + h
{

Θ(aX̃(tn+1) + bX̃(qtn+1)) + (1−Θ)(aX̃(tn) + bX̃(qtn))
}

+
{
σ1 + σ2X̃(tn) + σ3X̃(qtn)

}(
W(n+1)h −Wnh

)
,

wherein ∆Wn+1 := W(n+1)h − Wnh, denotes independent N(0, h)-distributed Gaussian

random variables and X̃(qtn) is obtained from (1.5). We shall implement the scheme for
computing values of X̃(qtn) in an efficient mode. The corresponding deterministic version
is easily recognised as the linear Θ–method.

2. Theoretical analysis of the stochastic pantograph equation. Let (Ω,A, P ) be a
complete probability space with a filtration (At) satisfying the usual conditions, i.e. the
filtration (At)t≥0 is right-continuous, and each At, t ≥ 0, contains all P -null sets in A. Let
W (t) be a 1-dimensional Wiener process given on the filtered probability space (Ω,A, P ).
We consider the scalar stochastic delay differential equation (0 = t0 < T <∞)

dX(t) = {a X(t) + b X(qt)} dt
+ {σ1 + σ2 X(t) + σ3 X(qt)} dW (t), t ∈ [0, T ],(2.1a)
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X(0) = X0,(2.1b)

with 0 < q < 1 and E|X0|2 < ∞. The first term on the right-hand-side of (2.1a) is usually
called the drift function and the second term is called the diffusion function. The integral
version of equation (2.1a) is given by

X(t) = X0 +

∫ t

0

aX(s) + bX(qs) ds+

∫ t

0

σ1 + σ2X(s) + σ3X(qs) dW (s),(2.2)

for t ∈ [0, T ]. The second integral in (2.2) is a stochastic integral which is to be interpreted
in the Itô sense. If σ2 = σ3 = 0 the equation has additive noise, otherwise the equation has
multiplicative noise.

For an R-valued stochastic process U(t) : [0, T ]× Ω → R, we write

E(U) =

∫

Ω

U dP,

and we say that

U ∈ L2 = L2(Ω,A, P ) if E (|U |2) < ∞;

we define the norm

‖U‖2 =
(
E (|U |2)

) 1
2 ,

and in this article we will prove convergence in the norm ‖.‖2 of a numerical approximation,
as the underlying mesh is refined.

DEFINITION 2.1. An R-valued stochastic process X(t) : [0, T ] × Ω → R is called a
strong solution of (2.1), if it is a measurable, sample-continuous process such that X|[0, T ]
is (At)0≤t≤T -adapted, and X satisfies (2.1a) or (2.2), almost surely, and satisfies the initial
condition X(0) = X0. A solution X(t) is said to be path-wise unique if any other solution
X̂(t) is stochastically indistinguishable from it, i.e.

P
(
X(t) = X̂(t) for all 0 ≤ t ≤ T

)
= 1.

THEOREM 2.2. If 0 < q < 1 and E|X0|2 < ∞, then there exists a path-wise unique
strong solution to problem (2.1).

Proof. Existence and uniqueness can be established in the usual way by successive ap-
proximations, setting

X0(t) = X0,

Xn(t) = X0 +

∫ t

0

{a Xn−1(s) + b Xn−1(qs)} ds

+

∫ t

0

{σ1 + σ2 Xn−1(s) + σ3 Xn−1(qs)} dW (s).

More general cases have been treated in [18].

We adapt a theorem from Mao ([21], Lemma 5.5.2), that we will make use of in our
analysis.
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THEOREM 2.3. The solution of problem (2.1) has the property

E
(

sup
0≤t≤T

|X(t)|2
)
≤ C1(T ),(2.3)

with

C1(T ) := (
1

2
+ 3 E|X0|2) exp(18 K (T + 4) T ),(2.4a)

K := max(|a|, |b|, |σ1|, |σ2|, |σ3|).(2.4b)

Moreover, for any 0 ≤ s < t ≤ T with t− s < 1,

E|X(t)−X(s)|2 ≤ C2(T )(t− s),(2.5)

where C2(T ) = 12K(1 + 2C1(T )).
Proof. Using the inequality (a+b+c)2 ≤ 3(a2+b2+c2), Hölder’s inequality and Doob’s

martingale inequality (both may be found in [20, 21]), we can derive for every t ∈ [0, T ]

E
(

sup
0≤s≤t

|X(s)|2
)
≤ 3 E|X0|2 + 3 K E

(
sup

0≤s≤t
|
∫ s

0

1 + X(r) + X(qr) dr|2
)

+3 KE
(

sup
0≤s≤t

|
∫ s

0

1 + X(r) + X(qr) dW (r)|2
)

≤ 3 E|X0|2 + 9 K T

∫ t

0

1 + E|X(s)|2 + E|X(qs)|2 ds

+36 K

∫ t

0

1 + E|X(s)|2 + E|X(qs)|2 ds

≤ 3 E|X0|2 + 9 K (T + 4)

∫ t

0

1 + 2E
(

sup
0≤r≤s

|X(r)|2
)
ds.

Hence

1

2
+ E

(
sup

0≤s≤t
|X(s)|2

)

≤ 1

2
+ 3 E|X0|2 + 18 K (T + 4)

∫ t

0

1

2
+ E

(
sup

0≤r≤s
|X(r)|2

)
ds,

from which the Gronwall inequality (see, e.g. [20, 21]) gives

1

2
+ E

(
sup

0≤s≤t
|X(s)|2

)
≤ (

1

2
+ 3 E|X0|2) exp(18 K (T + 4) t),

and the required inequality (2.3) follows.

The proof of (2.5) is straightforward: For t− s < 1 we obtain

E|X(t)−X(s)|2 ≤ 2 K E|
∫ t

s

X(r) + X(qr) dr|2

+ 2 K E|
∫ t

s

1 + X(r) + X(qr) dW (r)|2
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≤ 6 K (t− s)

∫ t

s

1 + E|X(r)|2 + E|X(qr)|2 dr

+6 K

∫ t

s

1 + E|X(r)|2 + E|X(qr)|2 dr

≤ 6 K (t− s+ 1)

∫ t

s

1 + E|X(r)|2 + E|X(qr)|2 dr

≤ 12 K (1 + 2 C1(T ))(t− s).

LEMMA 2.4. As a consequence of the preceding theorem we obtain the following esti-
mate for all t ∈ [0, T ]

E|aX(t) + bX(qt)| ≤
√

2 L C1(T ),(2.6)

with L = 2 max(|a|, |b|).
Proof. We have

|aX(t) + bX(qt)| =
√
|aX(t) + bX(qt)|2

≤
√
L(|X(t)|2 + |X(qt)|2)

≤
√

2 L sup
0≤r≤T

|X(r)|2.

Since E(
√
η · 1) ≤ (E(

√
η)2)

1
2 · 1 holds for any η ∈ R

+ we get

E|aX(t) + bX(qt)| ≤
√

2 L E( sup
0≤r≤T

|X(r)|2)

≤
√

2 L C1(T ).

3. Numerical analysis. Whilst we discussed in [3] the numerical solution of an SDDE
with a fixed lag, there appears to be no analysis of numerical methods for SDDEs with varying
lag. We propose and analyze a continuous Θ-method to obtain strong approximations of the
solution to (2.1). We have a mesh

TN := {t0, t1, . . . , tN}, tn = n · h, n = 0, . . . , N, h = T/N,(3.1)

with a fixed uniform step h on the interval [0, T ]. Since, in general, the points qtn will not be
mesh-points and in fact we can define a second non-uniform mesh, which consists of all the
tn ∈ TN and all the points qtn:

S2N := {s0, s1, . . . , s2N}, s0 = t0, s1 = qt1, . . . , s2N = tN .(3.2)

We can also represent any point s` ∈ S2N , with tn < s` ≤ tn+1, by

s` = tn + ζh, where tn, tn+1 ∈ TN and ζ ≡ ζ(s`) ∈ (0, 1].(3.3)

We define an approximate solution X̃(t) for all t ≥ 0, which depends upon the parameter Θ
with Θ ∈ [0, 1]:

X̃(t0) = X0,(3.4a)
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X̃(tn+1) = X̃(tn)

+ h
{

Θ (aX̃(tn+1) + bX̃(qtn+1)) + (1−Θ) (aX̃(tn) + bX̃(qtn))
}

(3.4b)

+
{
σ1 + σ2X̃(tn) + σ3X̃(qtn)

}
∆Wn+1,

for 0 ≤ n ≤ N − 1 and with ∆Wn+1 := W(n+1)h −Wnh, denoting independent N(0, h)-
distributed Gaussian random variables. We can express (3.4b) equivalently as

X̃(tn+1) = X̃(tn)

+

∫ tn+1

tn

{
Θ (aX̃(tn+1) + bX̃(qtn+1)) + (1−Θ) (aX̃(tn) + bX̃(qtn))

}
ds(3.5)

+

∫ tn+1

tn

{
σ1 + σ2X̃(tn) + σ3X̃(qtn)

}
dW (s),

for 0 ≤ n ≤ N − 1.
As the approximations of X(qtn) are not provided by (3.4b), we need a continuous

extension that permits evaluation of X̃(sr) at any point sr ∈ S2N . For this purpose we
modify (3.5) to compute the values X̃(qtn) at qtn = t` + ζh with ζ ∈ (0, 1]:

X̃(t` + ζh) = X̃(t`)

+

∫ t`+ζh

t`

{
Θ (aX̃(tl+1) + bX̃(qtl+1)) + (1−Θ) (aX̃(t`) + bX̃(qt`))

}
ds(3.6)

+

∫ t`+ζh

t`

{
σ1 + σ2X̃(t`) + σ3X̃(qt`)

}
dW (s).

We require X̃(tn) to be Atn
-measurable at the meshpoints tn, n = 0, . . . N .

Remark 2: (i) When Θ 6= 0, the formula in (3.4b) is an implicit equation for X̃(tn+1).
(ii) Such a formula (that is, with Θ 6= 0) would normally be called “semi-implicit” because it
is implicit only in the drift but is explicit in the diffusion. In the deterministic case, Θ ∈ [ 1

2 , 1]
gives better stability properties than Θ ∈ [0, 1

2 ). However, one would suspect that, in the
stochastic case, the semi-implicit methods with Θ ∈ [ 12 , 1] need not have robust stability
properties (in particular when the diffusion coefficients are large). We provide some indi-
cation of stability in our numerical examples but we do not, in this paper, analyze stability
properties theoretically. (iii) For qtn+1 ∈ [tn, tn+1] (this happens for example at n = 0,
when we wish to compute X̃(t1)), the formula in (3.6) is an implicit equation for X̃(qtn+1),
containing the unknown quantity X̃(tn+1). To proceed, one solves (3.6) for X̃(qtn+1) and
inserts the resulting equation into (3.4b). The latter then can be solved for X̃(tn+1). (iv)
Using the fixed stepsize h for the approximations X̃(tn), tn ∈ TN makes it possible to con-
struct the path of the Wiener process from left to right on the fixed, but non-uniform mesh
S2N .

DEFINITION 3.1. (i) The local truncation error for the continuous Θ-method is defined,
for a given Θ, tn ∈ TN and ζ ∈ [0, 1] as the sequence of random variables

δh(tn, ζ) = X(tn + ζh)
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−
{
X(tn) +

∫ tn+ζh

tn

(
Θ (a X(tn+1) + b X(qtn+1))

)
ds

+

∫ tn+ζh

tn

(
(1−Θ) (a X(tn) + b X(qtn))

)
ds

+

∫ tn+ζh

tn

(
σ1 + σ2 X(tn) + σ3 X(qtn)

)
dW (s)

}
.

(ii) The Θ-method is said to be consistent with order p1 in the mean and with order p2 in
the mean-square sense if the following estimates hold with p2 ≥ 1

2 and p1 ≥ p2 + 1
2 :

max
0≤n≤N−1

sup
ζ∈[0,1]

|E(δh(tn, ζ))| ≤ C hp1 as h→ 0,(3.7)

and

max
0≤n≤N−1

sup
ζ∈[0,1]

(
E|δh(tn, ζ)|2

) 1
2 ≤ C hp2 as h→ 0,(3.8)

where the (generic) constant C does not depend on h, but may depend on T and the initial
data.

(iii) We denote by ε(tn) the global error of the Θ-method, i.e. the sequence of random
variables

ε(tn) = X(tn) − X̃(tn), n = 1, . . . , N.(3.9)

Note that ε(tn) isAtn
-measurable since bothX(tn) and X̃(tn) areAtn

-measurable random
variables.

(iv) For fixed T <∞ the approximations X̃(·) are convergent in the mean-square sense
on meshpoints with order p if

max
1≤n≤N

(
E|ε(tn)|2

) 1
2 ≤ C hp as h→ 0.(3.10)

THEOREM 3.2. If 0 < q < 1, the continuous Θ-method for problem (2.1) is consistent
(a) with order 2 in the mean and (b) with order 1 in the mean square.

We now state the main theorem of this article.
THEOREM 3.3. Suppose that 0 < q < 1. Then

1. The recurrence relation (3.4b) has a unique solution, if

h < h∗ =

{
1

Θ (|a|+ q|b|) , Θ ∈ (0, 1],

+∞ Θ = 0,
(3.11)

and
2. The approximation (3.4) of the strong solution of (2.1) on [0, T ] is convergent on

mesh-points in the mean-square sense with order 1
2 .

The proofs of Theorems 3.2 and 3.3 are given in Section 5. As a corollary to Theorem
3.3 we have the following result.

THEOREM 3.4. If equation (2.1a) has additive noise, then the Θ-method is consistent
with order p1 = 2 in the mean and order p2 = 3/2 in the mean square, which implies an
order of convergence p = 1 in the mean-square-sense.
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Proof. In this case the term containing the Itô integral in the expression of the local error
δh(tn, ζ) vanishes, an appropriate modification of the proof of Theorem 3.2, part b), yields
the desired result.

Remark 3: In [10] it was shown that a method must have an order of convergence of at
least 1 to guarantee convergence to the correct solution of a stochastic ordinary differential
equation if adaptive step-size techniques are applied. This implies that one cannot hope to
employ adaptive step-size techniques successfully, with the Θ-method.

4. Numerical experiments. We have performed numerical experiments in which the
method (3.4) is applied to

dX(t) = {a X(t) + b X(qt)} dt
+ {σ1 + σ2 X(t) + σ3 X(qt)} dW (t), t ∈ [0, T ],(4.1)

with initial value X(0) = 1. In the examples I, II and III we have used the parameters
T = 2, a = −1.5, b = 1, q = 0.5 in (4.1) and method (3.4) with θ = 1. Each test was
performed with two levels of noise intensity in one of the parameters σi, i = 1, 2, 3. In the
examples IV, V, and VI we have used the parameters T = 2, a = −16, b = 2, q = 0.8 in
(4.1) and method (3.4) with the stepsize h = 1/8.

One of our tests concerned the illustration of the theoretical order of convergence. If we
square both sides of (3.10) we obtain the mean-square error E|X(T )−X̃N |2 which should be
bounded by C h2p. The mean-square-error at the final time T was estimated in the following
way. A set of 20 blocks each containing 100 outcomes (ωi,j ; 1 ≤ i ≤ 20, 1 ≤ j ≤ 100), were

simulated and for each block the estimator εi = 1
100

∑100
j=1 |X(T, ωi,j)− X̃N (ωi,j)|2 was

formed. The ‘explicit solution’ was computed on a very fine mesh (usually 2048 steps). In
the table below ε denotes the mean of this estimator, which was itself estimated in the usual
way: ε = 1

20
∑20

i=1 εi.
In deterministic numerical analysis one can sometimes establish the existence of an ex-

pansion of an error ε(h) in terms of powers of the step size h, of the form (say) ε(h) =
µ1(t)h

ν1 +O(hν2) with ν2 > ν1 > 0 and µ1 6= 0. One can then estimate the asymptotic rate
of convergence ν1 by computing |ε(h)| for differing, sufficiently small, h > 0; in particular,
|ε(h/2)|/|ε(h)| → 1

2

ν1 as h → 0. In the case of stochastic differential equations, the exis-
tence of an expansion of the error is, to the best of our knowledge, only established for weak
approximations. In spite of that, the ‘ratio’ of errors, given below for the approximations to
the pantograph equation in the tables are consistent with the theoretical order of convergence,
as stated in Theorem 3.3 (see examples I and II in Tables 4.1 and 4.2, respectively) and The-
orem 3.4 (see example III in Table 4.3). It may therefore be possible to show theoretically
that, under appropriate conditions, {E|X(T )− X̃N |2}

1
2 = µph

p +O(hp+1).
The Figures 4.1, 4.2 and 4.3 (results for examples IV, V, and VI) suggest an improvement

in the stability behaviour of the Θ-methods, when changing from explicit (Θ = 0) to implicit
(Θ = 0.5).

In what follows we present two intriguing examples of behaviour of trajectories. In the
first one we add noise to the example of the deterministic pantograph equation, that was
considered (and computed numerically) in [12] and [17]:

y′(t) = 0.95y(t)− y(0.99t), y(0) = 1, t ∈ [0, 150].(4.2)

Our numerical solution decreases rapidly, stays very small for a considerably long period of
time and then increases exponentially, as does the exact solution. We have computed

dX(t) = {0.95X(t)−X(0.99t)} dt+ σ2 X(t) dW (t), X(0) = 1,(4.3)
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Time step Ia ε ratio Ib ε ratio

0.125 0.00126 * 0.03234 *

0.0625 0.000593 2.1 0.02374 1.4

0.03125 0.000287 2.1 0.01175 2

0.015625 0.000128 2.2 0.00431 2.2
TABLE 4.1

Example Ia σ2 = 0.5, Ib σ2 = 1, σi = 0, i = 1, 3

Time step IIa ε ratio IIb ε ratio

0.125 0.00131 * 0.02284 *

0.0625 0.00057 2.3 0.01209 1.9

0.03125 0.000245 2.3 0.00497 2.4

0.015625 0.00011 2.2 0.002583 1.9
TABLE 4.2

Example IIa σ3 = 0.5, IIb σ3 = 1, σi = 0, i = 1, 2

Time step IIIa ε ratio IIIb ε ratio

0.125 0.00074 * 0.002776 *

0.0625 0.000185 4 0.000742 3.7

0.03125 5.189E-05 3.6 0.00018 4.1

0.015625 1.2097E-05 4.3 4.401E-05 4.1
TABLE 4.3

Example IIIa σ1 = 0.5, IIIb σ1 = 1, σi = 0, i = 2, 3

for t ∈ [0, 160] and σ2 = 0, 0.1, 0.3, 0.5, Θ = 0.5 for various trajectories of the Wiener
process. A typical outcome is presented in Figures 4.4 and 4.5.

In our second example we have changed the value of q in

dX(t) = {−X(t) + 0.9X(qt)} dt+ σ2 X(t) dW (t), X(0) = 1,(4.4)

from 0.1 to 0.9. In Figures 4.6 to 4.9 are shown representatives of typical trajectories. One
cannot draw conclusions from a small set of sample trajectories, but (assuming the numerical
solutions to be accurate) the results raise some interesting questions about the relative merits
of deterministic and stochastic models of the real-life pantograph.

5. Proofs of Theorems 3.2 and 3.3. Proof of Theorem 3.2: For the SDDE (2.1) and
the Θ-method (3.4) the local error δh(tn, ζ) takes the special form:

δh(tn, ζ) = a

∫ tn+ζh

tn

X(s)− (ΘX(tn+1) + (1−Θ)X(tn))ds

+b

∫ tn+ζh

tn

X(qs)− (ΘX(qtn+1) + (1−Θ)X(qtn)) ds(5.1)

+

∫ tn+ζh

tn

σ2(X(s)−X(tn)) + σ3(X(qs)−X(qtn)) dW (s),
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FIG. 4.1. Example IV σ1 = 0.5, σi = 0, i = 2, 3 left: Θ = 0, right: Θ = 0.5
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FIG. 4.2. Example V σ2 = 0.5, σi = 0, i = 1, 3 left: Θ = 0, right: Θ = 0.5
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FIG. 4.3. Example VI σ3 = 0.5, σi = 0, i = 1, 2 left: Θ = 0, right: Θ = 0.5

for n = 0, . . . , N − 1. We will frequently make use of the fact that for all 0 ≤ u ≤ t ≤ T the
equation

X(t)−X(0) =

∫ t

0

aX(s) + bX(qs) ds+

∫ t

0

σ1 + σ2X(s) + σ3X(qs) dW (s)

is equivalent to

X(t)−X(u) =

∫ t

u

aX(s) + bX(qs) ds+

∫ t

u

σ1 + σ2X(s) + σ3X(qs) dW (s).(5.2)

First we prove consistency in the mean with order 2. We have

|E(δh(tn, ζ))| ≤ |a| |E
(∫ tn+ζh

tn

X(s)−X(tn) + Θ(X(tn+1)−X(tn)) ds
)
|
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FIG. 4.4. A path of the solution of (4.3) with (left) σ2 = 0 and (right) σ2 = 0.1.
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FIG. 4.5. A path of the solution of (4.3) with (left) σ2 = 0.3 and (right) σ2 = 0.5.

+ |b| |E
(∫ tn+ζh

tn

X(qs)−X(qtn) + Θ(X(qtn+1)−X(qtn)) ds
)
|.

Invoking (5.2), as well as Lemma 2.4, we obtain

|E(δh(tn, ζ))| ≤ |a| E
{∫ tn+ζh

tn

∫ s

tn

|aX(u) + bX(qu)| du ds
}

+ |a| Θ E
{∫ tn+ζh

tn

∫ tn+1

tn

|aX(u) + bX(qu)| du ds
}

+ |b| E
{∫ tn+ζh

tn

∫ qs

qtn

|aX(u) + bX(qu)| du ds
}

+ |b| Θ E
{∫ tn+ζh

tn

∫ qtn+1

qtn

|aX(u) + bX(qu)| du ds
}

≤ K
√

2 K C1(T )
{∫ tn+ζh

tn

∫ s

tn

du ds+ Θ

∫ tn+ζh

tn

∫ tn+1

tn

du ds

+

∫ tn+ζh

tn

∫ qs

qtn

du ds+ Θ

∫ tn+ζh

tn

∫ qtn+1

qtn

du ds
}

= K
√

2 K C1(T )(
ζ2

2
(1 + q) + ζ Θ(1 + q)) h2,
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FIG. 4.6. A path of the solution of (4.4) with q = 0.1 and (left) σ2 = 0 and (right) σ2 = 0.5.
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FIG. 4.7. A path of the solution of (4.4) with q = 0.3 and (left) σ2 = 0 and (right) σ2 = 0.5.
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FIG. 4.8. A path of the solution of (4.4) with q = 0.6 and (left) σ2 = 0 and (right) σ2 = 0.5.
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FIG. 4.9. A path of the solution of (4.4) with q = 0.9 and (left) σ2 = 0 and (right) σ2 = 0.5.

with C1(T ) and K given in (2.4). With

C3(T, ζ) := K
√

2 K C1(T )(
ζ2

2
(1 + q) + ζ Θ(1 + q))



ETNA
Kent State University 
etna@mcs.kent.edu

144 Continuous Θ-methods for the stochastic pantograph equation

the preceding calculations can be expressed as

|E(δh(tn, ζ))| ≤ C3(T, ζ) h
2,(5.3)

yielding

sup
ζ∈(0,1]

|E(δh(tn, ζ))| ≤ C3(T, 1) h
2,

which proves (a). Now we prove (b) consistency in the mean-square with order 1. For ease
of exposition we abbreviate

f(s) = a (X(s)−X(tn)−Θ(X(tn+1)−X(tn)))

+b (X(qs)−X(qtn)−Θ(X(qtn+1)−X(qtn))),

g(s) = σ2 (X(s)−X(tn)) + σ3 (X(qs)−X(qtn)).

We use the Hölder inequality, Schwartz inequality for integrals, 2ab ≤ a2+b2, (a+b)2 ≤
2(a2 + b2) and (2.4). We have:

E|δh(tn, ζ)|2 ≤ E
(∫ tn+ζh

tn

|f(s)| ds
)2

+ E
(∫ tn+ζh

tn

|g(s)| dW (s)

)2

+2 E
(∫ tn+ζh

tn

|f(s)| ds
)
×
(∫ tn+ζh

tn

|g(s)| dW (s)

)

≤ E
(∫ tn+ζh

tn

|f(s)| ds
)2

+

∫ tn+ζh

tn

E|g(s)|2 ds

+ 2
(
E
(∫ tn+ζh

tn

|f(s)| ds
)2 )1/2

×
(∫ tn+ζh

tn

E|g(s)|2 ds
)1/2

≤ 2 E
(∫ tn+ζh

tn

|f(s)| ds
)2

+ 2

∫ tn+ζh

tn

E|g(s)|2 ds

≤ 2 h

∫ tn+ζh

tn

E|f(s)|2 ds + 2

∫ tn+ζh

tn

E|g(s)|2 ds.

By setting H = max(|a|2, |b|2, |σ2|2, |σ3|2) and replacing f(s) and g(s), we obtain

E|δh(tn, ζ)|2 ≤ H
{

8 h

∫ tn+ζh

tn

E
(
|X(s)−X(tn)|2

)
+ Θ2E

(
|X(tn+1)−X(tn)|2

)

+ E
(
|X(qs)−X(qtn)|2

)
+ Θ2E

(
|X(qtn+1)−X(qtn)|2

)
ds

+ 4

∫ tn+ζh

tn

E
(
|X(s)−X(tn)|2

)
+ E

(
|X(qs)−X(qtn)|2

)
ds
}

≤ H
{

8 h

∫ tn+ζh

tn

C2(T )(s− tn) + Θ2C2(T )(tn+1 − tn)
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+ C2(T )q(s− tn) + Θ2qC2(T )(tn+1 − tn) ds

+ 4

∫ tn+ζh

tn

C2(T )(s− tn) + q C2(T )(s− tn) ds
}

≤ 8 C2 (T ) H(1 + q)(ζ2 + Θ2 ζ) h2.

With C4(T, ζ) := 8 C2 (T ) H(1 + q)(ζ2 + Θ2 ζ) we have

E|δh(tn, ζ)|2 ≤ C4(T, ζ) h
2,(5.4)

which implies that

sup
ζ∈(0,1]

(E|δh(tn, ζ)|2)
1
2 ≤

√
C4(T, 1)h.

Proof of Theorem 3.3:
For 1. we follow [16]. The recurrence relation (3.4b) has a unique solution if and only if

Θ(a+ b((n+ 1)q − n)+)h 6= 1, n = 0, 1, ...,

where (x)+ = 0 if x ≤ 0 and (x)+ = x if x > 0. It is then not difficult to show, that (3.4b)
has a unique solution, when h < h∗.

2. By using (5.2) and (3.5), adding and subtracting

∫ tn+ζh

tn

a(ΘX(tn+1) + (1−Θ)X(tn)) + b(ΘX(qtn+1) + (1−Θ)X(qtn)) ds

+
∫ tn+ζh

tn

σ1 + σ2X(tn) + σ3X(qtn) dW (s)

and rearranging, we obtain for any point s` ∈ S2N with tn < s` ≤ tn+1, using the represen-
tation (3.3)

ε(tn + ζh) = X(tn + ζh) − X̃(tn + ζh)(5.5)

= ε(tn) + δh(tn, ζ) + Uh(tn, ζ),

where

Uh(tn, ζ) :=

∫ tn+ζh

tn

a (Θ(X(tn+1)− X̃(tn+1) + (1−Θ)(X(tn)− X̃(tn))) ds

+

∫ tn+ζh

tn

b (Θ(X(qtn+1)− X̃(qtn+1) + (1−Θ)(X(qtn)− X̃(qtn))) ds(5.6)

+

∫ tn+ζh

tn

σ2(X(tn)− X̃(tn)) + σ3(X(qtn)− X̃(qtn)) dW (s).

Thus squaring, employing the conditional mean with respect to the σ-algebra A0 and
taking absolute values, we obtain

E(|ε(tn + ζh)|2|A0) ≤ E(|ε(tn)|2|A0) + E(|δh(tn, ζ)|2|A0)︸ ︷︷ ︸
1)

+ E(|Uh(tn, ζ)|2|A0)︸ ︷︷ ︸
2)
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+ 2 |E(δh(tn, ζ) · ε(tn) |A0)|︸ ︷︷ ︸
3)

+2 |E(δh(tn, ζ) · Uh(tn, ζ) |A0)|︸ ︷︷ ︸
4)

(5.7)

+ 2 |E(ε(tn) · Uh(tn, ζ) |A0)|︸ ︷︷ ︸
5)

,

which holds almost surely.
We will now estimate the separate terms in (5.7) individually and in sequence; all the

estimates hold almost surely. We will frequently use the Hölder inequality, the inequalities
2 ab ≤ a2 + b2 and (a + b)2 ≤ 2a2 + 2b2 and properties of conditional expectation. In the
calculations the generic constant C(T, ζ) appears frequently and may have different values.
• For the term labelled 1) in (5.7) we have by (5.4)

E( |δh(tn, ζ)|2|A0) = E(E( |δh(tn, ζ)|2|Atn
)|A0) ≤ C(T, ζ) h2.

• For the term labelled 2) in (5.7) we have

E(|Uh(tn, ζ)|2|A0)

≤ 2 E
(
|

tn+ζh∫
tn

a (Θ(X(tn+1)− X̃(tn+1)) + (1−Θ)(X(tn)− X̃(tn)))

+ b (Θ (X(qtn+1)− X̃(qtn+1) + (1−Θ)(X(qtn)− X̃(qtn))) ds|2|A0

)

+ 2 E
(
|

tn+ζh∫
tn

σ2(X(tn)− X̃(tn)) + σ3(X(qtn)− X̃(qtn)) dW (s)|2|A0

)

≤ 8 ζ h
{ tn+ζh∫

tn

|a|2 Θ2E(|X(tn+1)− X̃(tn+1)|2|A0) ds

+
tn+ζh∫

tn

|a|2 (1−Θ)2E(|X(tn)− X̃(tn)|2|A0) ds

+
tn+ζh∫

tn

|b|2 Θ2E(|X(qtn+1)− X̃(qtn+1)|2|A0) ds

+
tn+ζh∫

tn

|b|2 (1−Θ)2E(|X(qtn)− X̃(qtn)|2|A0) ds
}

+ 4
tn+ζh∫

tn

|σ2|2 E(|X(tn)− X̃(tn)|2|A0) + |σ3|2 E(|X(qtn)− X̃(qtn)|2|A0) ds

= 8 ζ2 h2
{
|a|2 Θ2E(|ε(tn+1)|2|A0) + |a|2 (1−Θ)2E(|ε(tn)|2|A0)

+ |b|2 Θ2E(|ε(qtn+1)|2|A0) + |b|2 (1−Θ)2E(|ε(qtn)|2|A0)
}

+ 4 ζ h
{
|σ2|2 E(|ε(tn)|2|A0) + |σ3|2 E(|ε(qtn)|2|A0)

}
.

• For the term labelled 3) we have, due to properties of conditional expectation and (5.3)

2 |E(δh(tn, ζ) · ε(tn) |A0)| ≤ 2 E(|E(δh(tn, ζ) |Atn
)| · |ε(tn)| |A0)

≤ 2
(
E(|E(δh(tn, ζ) |Atn

)|2
) 1

2 ·
(
E(|ε(tn)|2|A0)

) 1
2

≤ 2
(
E(C(T, ζ) h2)2

) 1
2 ·
(
E(|ε(tn)|2|A0)

) 1
2

= 2
(
E(C(T, ζ) h3)

) 1
2 ·
(
h E(|ε(tn)|2|A0)

) 1
2
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≤ C(T, ζ) h3 + h E(|ε(tn)|2|A0).

• For the term labelled 4) in (5.7) we obtain, using (5.4) and the calculations for term 2)

2 |E(δh(tn, ζ) · Uh(tn, ζ) |A0)|

≤ 2
(
E(|δh(tn, ζ)|2|A0)

) 1
2
(
E(|Uh(tn, ζ)|2|A0)

) 1
2

≤ E(E(|δh(tn, ζ)|2|Atn
)|A0) + E(|Uh(tn, ζ)|2|A0)

≤ C(T, ζ) h2 + 8 ζ2 h2
{
|a|2 Θ2E(|ε(tn+1)|2|A0) + |a|2 (1−Θ)2E(|ε(tn)|2|A0)

+ |b|2 Θ2E(|ε(qtn+1)|2|A0) + |b|2 (1−Θ)2E(|ε(qtn)|2|A0)
}

+ 4 ζ h
{
|σ2|2 E(|ε(tn)|2|A0) + |σ3|2 E(|ε(qtn)|2|A0)

}
.

• For the term labelled 5) in (5.7) we have

2 |E(ε(tn) · Uh(tn, ζ) |A0)|

≤ 2 E(|E(Uh(tn, ζ) |Atn
)| · |ε(tn)| |A0)

≤ 2 ζ h
{
|a| Θ E(|ε(tn+1)| · |ε(tn)| |A0) + |a| (1−Θ) E(|ε(tn)|2 |A0)

+ |b| Θ E(|ε(qtn+1)| · |ε(tn)| |A0) + |b| (1−Θ) E(|ε(qtn)| · |ε(tn)| |A0)
}

≤ |a| Θ ζ h
{

2
(
E(|ε(tn+1)|2 |A0)

) 1
2 ·
(
E(|ε(tn)|2 |A0)

) 1
2

}

+ 2 |a| (1−Θ) ζ h E(|ε(tn)|2|A0)

+ |b| Θ ζ h
{

2
(
E(|ε(qtn+1)|2 |A0)

) 1
2 ·
(
E(|ε(tn)|2 |A0)

) 1
2

}

+ |b| (1−Θ) ζ h
{

2
(
E(|ε(qtn)|2 |A0)

) 1
2 ·
(
E(|ε(tn)|2 |A0)

) 1
2

}

≤ |a| Θ ζ h E(|ε(tn+1)|2 |A0)

+ ζ h (|a| Θ + 2 |a| (1−Θ) + |b| Θ + |b| (1−Θ))E(|ε(tn)|2|A0)

+ |b| Θ ζ h E(|ε(qtn+1)|2 |A0) + |b| (1−Θ) ζ h E(|ε(qtn)|2 |A0).

Combining these results, we obtain

E(|ε(tn + ζh)|2|A0)

≤ (16 ζ2 h2 |a|2 Θ2 + |a| Θ ζ h) E(|ε(tn+1)|2 |A0)

+ (1 + 16 ζ2 h2 |a|2 (1−Θ)2 + 8 ζ h |σ2|2 + h(5.8)

+ h (|a| Θ + 2 |a| (1−Θ) + |b| Θ + |b| (1−Θ)))E(|ε(tn)|2|A0)

+ (16 ζ2 h2 |b|2 Θ2 + |b| Θ ζ h) E(|ε(qtn+1)|2 |A0)
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+ (16 ζ2 h2 |b|2 (1−Θ)2 + 8 ζ h |σ3|2 + |b| (1−Θ) ζ h)E(|ε(qtn)|2 |A0)

+ C(T, ζ) h2 + C(T, ζ) h3.

As h,Θ < 1, ζ ∈ (0, 1] and by setting a∗ = max(|a|, |a|2) and b∗ = max(|b|, |b|2) , we
can obtain from (5.8) the estimate

E(|ε(tn + ζh)|2|A0)

≤ 17 ζ h a∗ Θ E(|ε(tn+1)|2 |A0)

+ (1 + ζ h (1 + 18 a∗ (1−Θ) + 8 |σ2|2 + a∗ Θ + b∗) )E(|ε(tn)|2|A0)(5.9)

+ ζ h 17 b∗ Θ E(|ε(qtn+1)|2 |A0)

+ ζ h (17 b∗ (1−Θ) + 8 |σ3|2) E(|ε(qtn)|2 |A0) + C(T, ζ) h2.

Subsequent calculations involving the term E(|ε(qtn+1)|2 |A0) depend on whether a)
tn ≤ qtn+1 ≤ tn+1 or b) qtn+1 < tn.

• Case a)
We set tn + ζh = qtn+1 on the left hand side of (5.9), solve for E(|ε(qtn+1)|2 |A0), and,

using that ζ ≤ q in this case, we obtain for 0 < q h 17 b∗ Θ < 1

E(|ε(qtn+1)|2 |A0)

≤ 1

1− q h 17 b∗ Θ

(
17 q h a∗ Θ E(|ε(tn+1)|2 |A0)(5.10)

+ (1 + q h (1 + 18 a∗ (1−Θ) + 8 |σ2|2 + a∗ Θ + b∗)) E(|ε(tn)|2|A0)

+ q h (17 b∗ (1−Θ) + 8 |σ3|2) E(|ε(qtn)|2 |A0) + C(T, q) h2
)
.

Returning to (5.9), we estimate E(|ε(qtn+1)|2 |A0) on the right hand side by (5.10),
which yields

E(|ε(tn + ζh)|2|A0)

≤ 17 ζ h a∗ Θ E(|ε(tn+1)|2 |A0)

+ (1 + ζ h (1 + 18 a∗ (1−Θ) + 8 |σ2|2 + a∗ Θ + b∗)) E(|ε(tn)|2|A0)

+ ζ h
17 b∗ Θ

1− q h 17 b∗ Θ

{
17 q h a∗ Θ E(|ε(tn+1)|2 |A0)

+ (1 + q h (1 + 18 a∗ (1−Θ) + 8 |σ2|2 + a∗ Θ + b∗)) E(|ε(tn)|2|A0)

+ q h (17 b∗ (1−Θ) + 8 |σ3|2) E(|ε(qtn)|2 |A0) + C(T, q) h2
}

+ ζ h (17 b∗ (1−Θ) + 8 |σ3|2) E(|ε(qtn)|2 |A0) + C(T, ζ) h2.

We write

R0 = 0 and Rk = sup
0≤i<k
ζ∈(0,1]

E
(
|ε(ti + ζh)|2|A0

)
.(5.11)
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Thus

Rn+1
1− h 17 Θ(a∗ + qb∗)

1− q h 17 b∗ Θ

≤ (1 +
17 h b∗ Θ

1− q h 17 b∗ Θ
) Rn

+ h
(
1 +

17 b∗ Θ q h

1− q h 17 b∗ Θ

)(
(1 + 18 a∗ (1−Θ) + 8 |σ2|2 + a∗ Θ + b∗) Rn

+ (17 b∗ (1−Θ) + 8 |σ3|2) Rn

)
+ C(T, 1) h2.

Hence

Rn+1
1− h 17 Θ(a∗ + qb∗)

1− q h 17 b∗ Θ

≤ 1

1− q h 17 b∗ Θ

{
1 + h

(
1 + 18 (a∗ + b∗)− 17 Θ (a∗ + qb∗)

+ 8 (|σ2|2 + |σ3|2)
) }

Rn + C(T, 1) h2.

Provided that 0 < h 17 Θ (a∗ + qb∗) < 1 we get

Rn+1

≤ 1

1− h 17 Θ(a∗ + qb∗)

{
1 + h

(
1 + 18(a∗ + b∗)− 17Θ (a∗ + qb∗) + 8(|σ2|2 + |σ3|2)

) }
Rn(5.12)

+
1− q h 17 b∗ Θ

1− h 17 Θ(a∗ + qb∗)
C(T, 1) h2

≤
{

1 + h
1 + 18 (a∗ + b∗) + 8 (|σ2|2 + |σ3|2)

1− h 17 Θ (a∗ + qb∗)

}
Rn + C(T, 1) h2.

• Case b)
We derive from (5.9) by using (5.11), when 0 < 17 h a∗ Θ < 1, that

Rn+1 (1− 17 h a∗ Θ)

≤
(
1 + h(1 + 18(a∗ + b∗)− 17 a∗Θ + 8 (|σ2|2 + |σ3|2)

)
Rn + C(T, 1)h2,

Rn+1

≤ 1 + h(1 + 18(a∗ + b∗)− 17a∗Θ + 8(|σ2|2 + |σ3|2)
1− 17 h a∗ Θ

Rn

+ C(T, 1) h2

≤
{

1 + h
1 + 18 (a∗ + b∗) + 8 (|σ2|2 + |σ3|2)

1− 17 h a∗ Θ

}
Rn + C(T, 1)h2.(5.13)
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Now we take h such that h 17 Θ (a∗ + qb∗) < L1 < 1 and h 17 a∗ Θ < L2 < 1 and set

M = max
i=1,2

1 + 18 (a∗ + b∗) + 8 (|σ2|2 + |σ3|2)
1− Li

.

Then we get from (5.12) and (5.13)

Rn+1 ≤ (1 + h M) Rn + C(T, 1) h2,

and, by iterating and observing that h(n+ 1) = tn+1 ≤ T ,

Rn+1 ≤ (1 +Mh)n+1R0 + C(T, 1)h2
n∑

k=0

(1 +Mh)k

≤ h
C(T, 1)

M
((1 +Mh)n+1 − 1))

≤ h
C(T, 1)

M
(eMh(n+1) − 1) ≤ h

C(T, 1)

M
(eMT − 1).

From this the results of the theorem follow.
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