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Abstract. Many current computer designs employ caches and a hierarchical memory architecture. The speed of
a code depends on how well the cache structure is exploited. The number of cache misses provides a better measure
for comparing algorithms than the number of multiplies.

In this paper, suitable blocking strategies for both structured and unstructured grids will be introduced. They
improve the cache usage without changing the underlying algorithm. In particular, bitwise compatibility is guar-
anteed between the standard and the high performance implementations of the algorithms. This is illustrated by
comparisons for various multigrid algorithms on a selection of different computers for problems in two and three
dimensions.

The code restructuring can yield performance improvements of factors of 2-5. This allows the modified codes
to achieve a much higher percentage of the peak performance of the CPU than is usually observed with standard
implementations.
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1. Introduction. Years ago, knowing how many floating point multiplies were used in
a given algorithm (or code) provided a good measure of the running time of a program. This
was a good measure for comparing different algorithms to solve the same problem. This is
no longer true.

Many current computer designs, including the node architecture of most parallel super-
computers, employ caches and a hierarchical memory architecture. Therefore the speed of a
code (e.g., multigrid) depends increasingly on how well the cache structure is exploited. The
number of cache misses provides a better measure for comparing algorithms than the number
of multiplies. Unfortunately, estimating cache misses is difficult to model a priori and only
somewhat easier to do a posteriori.

Typical multigrid applications are running on data sets much too large to fit into the
caches. Thus, copies of the data that are once brought to the cache should be reused as often
as possible. For multigrid, the possible number of reuses is always at least as great as the
number of iterations of the smoother or rougher.

Tiling is an attractive method for improving data locality. Tiling is the process of de-
composing a computation into smaller blocks and doing all of the computing in each block
one at a time. In some cases, compilers can do this automatically. However, this is rarely the
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case for realistic scientific codes. In fact, even for simple examples, manual help from the
programmers is, unfortunately, necessary.

Language standards interfere with compiler optimizations. Due to the requirements
about loop variable values at any given moment in the computation, compilers are not al-
lowed to fuse nested loops into a single loop. In part, it is due to coding styles that make very
high level code optimization (nearly) impossible [12].

We note that both the memory bandwidth (the maximum speed that blocks of data can
be moved in a sustained manner) as well as memory latency (the time it takes move the
first word(s) of data) contribute to the inability of codes to achieve anything close to peak
performance. If latency were the only problem, then most numerical codes could be written
to include prefetching commands in order to execute very close to the CPU’s peak speed.
Prefetching refers to a directive or manner of coding (which is unfortunately compiler and
hardware dependent) for data to be brought into cache before the code would otherwise issue
such a request. In general, a number of operations which may be using the memory bus can
interfere with just modeling the cache by latency.

In this paper, suitable blocking strategies for both structured and unstructured grids will
be introduced. They improve the cache usage without changing the underlying algorithm. In
particular, bitwise compatibility is guaranteed between the standard and the high performance
implementations of the algorithms. This is illustrated by comparisons for various multigrid
algorithms on a selection of different computers for problems in two and three dimensions.

The code restructuring can yield a performance improvement by up to a factor of 5. This
allows the modified codes to achieve a quite high percentage of the peak performance of the
CPU, something that is rarely seen with standard implementations. For example, on a Digital
Alpha 21164 processor based workstation, better than 600 out of a possible 1000 megaflops
per second (MFlops/sec) has been achieved.

Consider solving the following set of problems:

Aiui = fi, 1 ≤ i ≤ k,

whereui ∈ IRni . Each problem represents a linear system of equations to solve for a dis-
cretized partial differential equation on a gridΩi.

For any problem onΩi, a popular approximate solver is Gauss-Seidel with either the
natural or red-black ordering. The red-black ordering has the advantage that it parallelizes
in a nice way (communication reduces to sending half of the boundary information at a time
which allows for overlapping communication and computing). On both serial and parallel
computers it also reduces the cost of the prolongation procedure since only the black points
need to be corrected. See [3], [4], [9], [11] for more details.

Consider the grid in Figure 1.1, where the boundary points are included in the grid. The
usual red-black ordered Gauss-Seidel iteration performs Gauss-Seidel on all of the red points
and then all of the black points. The algorithm can be translated into the following:

1. Update all of the red points in row 1.
2. Doj = 2, N

2a. Update all of the red points in rowj.
2b. Update all of the black points in rowj − 1.
2c. End Do

3. Update all of the black points in row N.
When four grid rows of data (ui andfi) along with the information from the corresponding
rows of the matrixAi can be stored in cache simultaneously, this is a cache based algorithm.

The advantage is that all of the data and the matrix pass through cache only once instead
of the usual twice. However, with substantial changes to the algorithm, almost all of the data
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FIG. 2.1.Data dependencies in a red-black Gauss-Seidel algorithm.

and matrix passes through cache just once instead of2m times form iterations of red-black
Gauss-Seidel. In addition, the new algorithm calculates bitwise the same answer as a non-
cache Gauss-Seidel implementation. Hence, the standard convergence analysis still holds for
the new algorithms. A technique to do this reduction can be found in [6].

Substantially better techniques to reduce the number of cache misses for Poisson’s equa-
tion on tensor product grids can be found in§§2-3 for two and three dimensional problems.

A technique that is suitable for both two and three dimensional problems on unstructured
grids can be found in§4.

Finally, in §5, we draw some conclusions and discuss future work.

2. Optimization techniques for two dimensions. The key idea behind data locality
optimizations is to reorder the data accesses so that as few accesses as possible are performed
between any two data references which refer to the same memory location. Hence, it is more
likely that the data is not evicted from the cache and thus can be loaded from one of the
caches instead of the main memory. The new access order is only correct, however, if no data
dependency is violated during the reordering process. Therefore, the transformed program
must yield results which are bitwise identical to those of the original program.

The data dependencies of the red-black Gauss-Seidel algorithm depend on the type of
discretization which is used. If a 5 point stencil is used to approximate the differential oper-
ator and placed over one of the black nodes as shown in Figure 2.1, all of the red points that
are required for relaxation are up to date, provided the red node above the black one is up
to date. Consequently, we can update the red points in any rowi and the black ones in row
i−1 in a pairwise manner. This technique, which has already been mentioned in Section 1, is
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calledfusion technique. It fuses two consecutive sweeps through the whole grid into a single
sweep through the grid, updating both the red and the black nodes simultaneously.

This fusion technique applies only to one single red-black Gauss-Seidel sweep. If several
successive red-black Gauss-Seidel iterations must be performed, the data in the cache is not
reused from one sweep to the next, if the grid is too large to fit entirely into the cache. If we
want to optimize the red-black Gauss-Seidel method further, we have to investigate the data
dependencies between successive relaxation sweeps. Again, if a 5 point stencil is placed over
one of the red nodes in linei − 2, that node can be updated for the second time only if all
of its neighboring black nodes have already been updated once. This condition is fulfilled as
soon as the black node in linei − 1 directly above the red node has been updated once. As
described earlier, this black node may be updated as soon as the red node in linei directly
above it has been updated for the first time. In general, we can update the red nodes in any
two rowsi andi − 2 and the black nodes in the rowsi − 1 andi − 3 in pairs. Thisblocking
techniquecan obviously be generalized to more than two successive red-black Gauss-Seidel
iterations by considering more than four rows of the mesh (see also [13]).

Both techniques described above require a certain number of rows to fit entirely into
the cache. For thefusion technique, at least four adjacent rows of the grid must fit into the
cache. For theblocking technique, it is necessary that the cache is large enough to hold at
leastm∗2+2 rows of the grid, wherem is the number of successive Gauss-Seidel steps to be
blocked. Hence, these techniques can reduce the number of accesses to the highest level of the
memory hierarchy into which the whole problem fits. These same techniques fail to utilize the
higher levels of the memory hierarchy efficiently, especially the processor registers and the
L1 cache, which may be rather small (e.g., 8 kilobytes on the Alpha 21164 chip). However, a
high utilization of the registers and the L1 cache turns out to be crucial for the performance of
our codes. Therefore, the idea is to introduce a two dimensional blocking strategy instead of
just a one dimensional one. Data dependencies in the red-black Gauss-Seidel method make
this more difficult than two dimensional blocking to matrix multiplication algorithms [2], for
example.

The key idea for that technique is to move a small two dimensionalwindowover the grid
while updating all the nodes within its scope. In order to minimize the current working set of
grid points, we choose the window to be shaped like a parallelogram (see Figure 2.2). The
updates within reach of such a window can be performed in a linewise manner from top to
bottom.

For example, consider the situation shown in Figure 2.2, which illustrates the algorithm
for the case of two blocked Gauss-Seidel sweeps. We assume that a valid initial state has
been set up beforehand, using a preprocessing step for handling the boundary regions of the
grid. First consider the leftmost parallelogram (window). The red and the black points in the
two lowest diagonals are updated for the first time, while the upper two diagonals remains
untouched. Then the red points in the uppermost diagonal of the window are updated for the
first time. As soon as this has been done, the black nodes in the next lower diagonal can also
be updated for the first time. After that, the red and the black points belonging to the lower
two diagonals are updated for the second time. Now consider the parallelogram on the right.
We observe that the situation is exactly as it was initially for the left parallelogram: the red and
the black nodes belonging to the lower two diagonals have already been updated once, while
the two uppermost diagonals are still untouched. Consequently, we move the window to the
position corresponding to the right parallelogram and repeat the update procedure. Generally
speaking, the high utilization of the registers and the highest levels of the memory hierarchy,
especially the processor registers and the L1 cache, is achieved by reusing the data in the
overlapping region of the dashed line areas (see also [15, 14]). This overlap corresponds to
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FIG. 2.2.Two dimensional blocking technique for red-black Gauss-Seidel on a tensor product mesh.

two successive window positions.

The previously described fusion and blocking techniques belong to the class ofdata
access transformations. In order to obtain further speedups of the execution time,data layout
transformations, like for examplearray padding, must also be taken into account and applied.

The term array padding refers to the idea of allocating more memory for the arrays than
is necessary in order to avoid a high rate ofcache conflict misses. A cache conflict miss
occurs whenever two or more pieces of data which are needed simultaneously are mapped
by the hardware to the same position within the cache (cache line). The higher the degree of
associativity of the cache [7], the lower is the chance that the code performance suffers from
cache conflict misses.

Figures 2.3 and 2.4 show the best possible performance which can be obtained for the
red-black Gauss-Seidel algorithm alone and a complete multigrid V-cycle with four pres-
moothing and no postsmoothing steps applying the described data locality optimizations
compared to a standard implementation. We implemented half injection as the restriction
operator and linear interpolation as the prolongation operator. The performance results are
shown both for a Digital PWS 500au with Digital UNIX V4.0D, which is based on the Alpha
21164 chip, and for a Compaq XP1000 with Digital UNIX V4.0E, which uses the successor
chip Alpha 21264. Both machines run at a clock rate of 500 megahertz and have a theoretical
floating point peak performance of 1 gigaflop each. The PWS 500au has 8 kilobytes of direct
mapped L1 cache, whereas the XP1000 uses 64 kilobytes of two way set associative L1 cache
and a faster memory hierarchy. Therefore, the speedups that can be achieved by applying the
transformations described previously are higher for the Alpha 21164 based architecture. The
performance on both machines increases with growing grid size until effects like register de-
pendencies and branch missprediction are dominated by data cache miss stalls. Then, the
performance repeatedly drops whenever the grid gets too large to fit completely into the L2
or L3 cache on the Digital PWS 500au, or the L1 and L2 cache on the Compaq XP1000.

In order to illustrate further the effectiveness of our optimization techniques we present
a variety of profiling statistics for the Digital PWS 500au. Table 2.1 shows the percentages
of data accesses that are satisfied by the individual levels of the memory hierarchy. These
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FIG. 2.3. Speedups for the 2D red-black Gauss-Seidel method (above) and for 2D V(4,0)-multigrid cycles
(below) on structured grids on a Digital PWS 500au.

Relaxation % of all accesses which are satisfied by
Method ± L1 Cache L2 Cache L3 Cache Memory

Standard 5.1 27.8 50.0 9.9 7.2
Fusion 20.9 28.9 43.1 3.4 3.6

1D-Blocking (2) 21.1 29.1 43.6 4.4 1.8
1D-Blocking (3) 21.0 28.4 42.4 7.0 1.2
2D-Blocking (4) 36.7 25.1 6.7 10.6 20.9

2D-Blocking+Pad (4) 37.7 54.0 5.5 1.9 1.0
TABLE 2.1

Memory access behavior of different red-black Gauss-Seidel variants in two dimensions using a1024 × 1024
tensor product grid (on a Digital PWS 500au).

statistics were obtained by using a low overhead profiling tool namedDCPI [1]. DCPI uses
hardware counters and a sampling approach to reduce the cost of profiling. In our case the
slowdown for profiling was negligible. The numbers in parentheses denote how many suc-
cessive Gauss-Seidel iterations are blocked into a single pass through the whole data set.
The column “±” contains the differences between the theoretical and observed number of
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FIG. 2.4. Speedups for the 2D red-black Gauss-Seidel method (above) and for 2D V(4,0)-multigrid cycles
(below) on structured grids on a Compaq XP1000.

load operations. Small entries in this column may be interpreted as measurement errors.
Higher values, however, indicate that larger fractions of the array references are not realized
as load/store operations by the compiler, but as very fast register accesses. In general, the
higher the numbers in the columns “±”, “L1 Cache” and “L2 Cache”, the faster is the execu-
tion time of the code. Looking at the last two rows of Table 2.1, one can observe that array
padding is particularly crucial for the L1 cache hit rate, which increases by more than a factor
of 2 for the two dimensional blocking technique as soon as appropriate padding constants are
introduced.

3. Optimization techniques for three dimensions.The performance results for a stan-
dard implementation of a red-black Gauss-Seidel smoother on a structured grid in three di-
mensions are comparable to the 2D case. The MFlops/sec rates drop dramatically on a wide
range of currently available machines, especially for larger grids. Again, this is because data
cannot be maintained in the cache between successive smoothing iterations.

To overcome this effect, we propose a three dimensional blocking technique, which is
illustrated in Figure 3.1. This technique makes use of a small cube or a cuboid that is moved
through the original large grid. According to the description of our optimization techniques
for two dimensions in Section 2, this cuboid can be interpreted as athree dimensional window
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FIG. 3.1.Three dimensional blocking technique for red-black Gauss-Seidel on a structured grid.
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FIG. 3.2.Array padding technique for three dimensional structured grids.

which denotes the grid nodes that are currently under consideration. In order that all the data
dependencies of the red-black Gauss-Seidel method are still respected our algorithm has to
be designed as follows.

After all the red points within the current position of the cuboid (window) have been
updated, the cuboid has to be shifted back by one grid line in each dimension. Then the black
points inside the new scope can be updated before the cuboid is again moved on to its next
position. It is apparent that this algorithm incorporates the fusion and the blocking techniques,
which have been described in more detail for the two dimensional case in Section 2. In
addition, this algorithm is also suitable for blocking several Gauss-Seidel iterations. The
four positions of the cuboid shown in Figure 3.1 illustrate that two successive Gauss-Seidel
iterations have been blocked into one single pass through the entire grid.

However, this blocking technique by itself does not lead to significant speedups on the
Alpha 21164 based PWS 500au, for example. A closer look at the cache statistics using the
DCPI profiling tool (see Section 2) reveals that, again, the poor performance is caused by a
high rate of cache conflict misses.

This problem can easily be pictured using the following model. We assume a three
dimensional grid containing643 double precision values which occupy 8 bytes of memory
each. Furthermore, we assume an 8 kilobyte direct mapped cache (e.g., the L1 cache of the
Alpha 21164). Consequently, every two grid points which are adjacent with regard to the
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trailing dimension of the three dimensional array are64× 64× 8 bytes away from each other
in the address space. Note that this distance is a multiple of the cache size. Thus, every two
grid nodes which satisfy this neighboring condition are mapped to the same cache line by the
hardware and therefore cause each other to be evicted from the cache, in the end resulting in
a very poor performance of the relaxation code.

Again, as in the two dimensional case, array padding turns out to be the appropriate
data layout transformation technique to mitigate this effect. Figure 3.2 illustrates our padding
technique. Firstly, we introduce padding inx direction in order to avoid cache conflict misses
caused by grid points which are adjacent in dimensiony. Secondly, we use padding to in-
crease the distance between neighboring planes of the grid. This reduces the effect ofz adja-
cent nodes causing cache conflicts. This kind of interplane padding is very crucial for code
efficiency and has to be implemented carefully. In our codes this interplane padding is intro-
duced by making use of both dexterous index arithmetic and the fact that Fortran compilers
do not check any array boundaries to be crossed.

FIG. 3.3. Speedups for the 3D red-black Gauss-Seidel method (above) and for 3D V(4,0)-multigrid cycles
(below) on structured grids on a Digital PWS 500au.

Figures 3.3 and 3.4 show the speedups that can be obtained on the Digital PWS 500au
and on the Compaq XP1000 machines (see Section 2). We do not show speedup results for
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FIG. 3.4. Speedups for the 3D red-black Gauss-Seidel method (above) and for 3D V(4,0)-multigrid cycles
(below) on structured grids on a Compaq XP1000.

smaller grids since they are negligible. This is due to the large ratio of the size of the cuboid
to the size of the whole grid.

As we have already mentioned in Section 2 for the two dimensional case, the PWS 500au
tends to be more sensitive to our optimization techniques. This is mainly due to the larger L1
cache, its higher associativity, and the lower memory access times of the XP1000 architecture.

The effectiveness of our code transformation techniques is of course influenced by sev-
eral properties of the underlying machines and the compilers which we used. Nevertheless,
the results we obtain are similar for a wide variety of machines and not just restricted to the
examples presented in this paper.

4. Unstructured grids. A detailed cache analysis is much more difficult for unstruc-
tured grid problems. The problem coefficients are variable, and the number of connections
varies from grid point to grid point. Furthermore, data storage must involve indirect address-
ing. Therefore, our cache optimizations for unstructured grids depend less on the technical
details of the cache than in the case of structured grids. The goal is the same, however, as
in the structured grid case. We wish to optimize the Gauss-Seidel smoother for cache while
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Largest grid Number of relaxations desired
Available that fits 3 4 5
cache size in cache % #nodes % #nodes % #nodes

128 kb 48× 49 80.44 1892 73.21 1722 66.33 1560
256 kb 68× 69 85.93 4032 80.61 3782 75.45 3540
512 kb 97× 97 89.96 8464 86.09 8100 82.30 7744
1024 kb 136× 137 92.81 17292 90.01 16770 87.25 16256

TABLE 4.1
Percentage of nodes which are updated completely with one pass through cache.

maintaining bitwise the same solution as in standard Gauss-Seidel. The optimization, how-
ever, will be for larger cache sizes.

4.1. Motivation from Structured Grids. To understand what might be gained from
cache optimization in the unstructured grid case, we first examine a structured grid problem.
Assume a 5 point discretization on a rectangular mesh. (The same ideas apply to a 9 point
stencil.) Suppose that anm × n block of nodes fits in cache. All nodes in cache get one
update. We then shrink the block we are computing on by one along its boundary and relax
again on an(m − 2) × (n − 2) subblock. Note that a buffer of one column and one row
of nodes is not updated in order to maintain bitwise the same answer as the standard Gauss-
Seidel. Continuing, on an(m−2i)×(n−2i) subblock,i+1 relaxations are performed while
still maintaining the exact same updates as in the standard implementation of Gauss-Seidel.
Assuming that all four sides of the block are cache block boundaries,(m − 2i) × (n − 2i)
nodes geti + 1 updates. We can say that in general(m − 2k + 1) × (n − 2k + 1) nodes get
k updates. Hence, if we require onlyk updates,

(m − 2k + 1)(n − 2k + 1)
mn

× 100%

of the data passes through cache once instead ofk times.
For most multigrid applicationsk is quite small, typically 1 to 5. The casek = 1 is

irrelevant to this paper. For many caches,m andn are large. Table 4.1 shows how many
nodes are completely updated with one pass through cache for a variety of cache sizes and
k ∈ {3, 4, 5}. We assume a 5 point discretization and that half of the total cache is available
for data storage. We also assume that a data word is 8 bytes and that there is one unknown
per node. For each unknown, the Gauss-Seidel algorithm requires the nonzero coefficients
from a row of the matrix, the corresponding unknowns, and the right hand side entry.

4.2. Extension to Unstructured Grids. As in the structured case, we again are optimiz-
ing the smoother portion of the multigrid code. Our strategy involves several preprocessing
steps, each of which will be discussed in detail:

• For each multigrid level, the physical grid is partitioned into contiguous blocks of
nodes (cache blocks).

• For each cache block, sets of nodes which are a given distance from the cache block
boundary are identified.

• Within each cache block, the nodes are renumbered according to this distance infor-
mation.

• All matrices and operators are reordered based on the new nodal ordering.
After the preprocessing, we can perform cache aware Gauss-Seidel updates:
• Perform as many Gauss-Seidel updates as possible on each cache block without

referencing data from other cache blocks.
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FIG. 4.1.Decomposition of a grid into cache blocks by using the METIS load balancing package.

• Calculate the residual wherever possible as Gauss-Seidel is performed.
• Revisit the cache blocks to finish updating nodes on the boundary of the cache

blocks.

4.3. Decomposition of Grid. The first step of our strategy is to decompose the grid on
each multigrid level intocache blocks. A cache block consists of nodes which are contigu-
ous. A cache block should have the property that the corresponding matrix rows, unknowns,
and right hand side values all fit into cache at the same time. Furthermore, the decompo-
sition of the problem grid into cache blocks should also have the property that boundaries
between blocks are minimized while the number of nodes in the interior is maximized. Many
readily available load balancing packages for parallel computers are designed to do just this.
The package which we use is the METIS library [8]. An example of a Texas shaped grid
decomposed by METIS into twelve cache blocks is given in Figure 4.1.

4.4. Identification of Subblocks. Once a cache block is identified, we need to know
how many relaxations are possible for each node without referencing another block. Within
a cache block, thekth subblockconsists of those nodes which can be updated at mostk times
without referencing other subblocks. Identifying the number of updates possible for each
node in a block without referencing another block is equivalent to identifying the distance
of each node to the cache block boundary. To differentiate between the physical problem
boundary and cache block boundaries, we label as∂Ωs the nodes in cache blockΩs which
depend on any node in anotherΩi.

Consider a cache blockΩs. Let the vectorD be such thatDi is the number of relaxations
permissible on any nodei in Ωs. Then we see thatDi is the length of the shortest path between
i and any node on the boundary∂Ωs, where the length of a path is the number of nodes in
a path. We assume thatDi = 1 for any node on∂Ωs. A node ismarkedif its distance is
known, and a node isscannedif it is marked and all of its neighbors’ distances are known.
Algorithms 1 and 2 calculate the distance of each node in a block. Algorithm 1 marks all
nodes of distance one or two. Algorithm 2 finds the distances of all other nodes in a cache
block. The motivation for both algorithms is Dijkstra’s method for finding the shortest path
between two nodes [5].
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Algorithm 1 Mark cache boundary nodes.
Label-Boundary-Nodes

1: Initialize stacksS1 andS2.
2: Set distanceDi = 0 for all nodesi in Ωs.
3: for each nodei in Ωs such thatDi == 0 do
4: if i is on∂Ωs then
5: Pushi ontoS1.
6: while S1 is not emptydo
7: Pop nodei off S1.
8: if i is in ∂Ωs then
9: SetDi = 1.

10: for each nodej connected toi do
11: if (Dj == 0) AND (j is in Ωs) then
12: SetDj = −1.
13: Pushj ontoS1.
14: end if
15: end for
16: else
17: SetDi = 2.
18: Pushi ontoS2.
19: end if
20: end while
21: end if
22: end for

Algorithm 2 Mark cache interior nodes.
Label-Internal-Nodes

1: Set current subblocks = 2.
2: Set current distancec = 2.
3: Let m be the number of Gauss-Seidel updates desired.
4: while S2 is not emptydo
5: if s < m then
6: Set current distancec = c + 1.
7: end if
8: Move contents ofS2 to S1.
9: while S1 is not emptydo

10: Pop nodei off S1.
11: for each nodej adjacent toi do
12: if Dj == 0 then
13: SetDj = c.
14: Pushj ontoS2.
15: end if
16: end for
17: end while
18: Let s = s + 1.
19: end while
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FIG. 4.2.Renumbering example.

Algorithm 1 examines each node in a cache block until an unmarked boundary node is
found. This node is pushed ontoS1 (lines 4-5). Each nodei is now removed fromS1. If i is
a cache boundary node, theni is marked as distance one, and all unmarked adjacent nodesj
which are inΩs are marked as distance−1 (so thatj will not be pushed ontoS1 more than
once) and pushed ontoS1 for later scanning (lines 8-15). Otherwise,i is marked as distance
two from the cache boundary and pushed onto stackS2 (lines 16-18).

Each timeS1 is emptied, the FOR loop (line 3) iterates until an unmarked cache boundary
node is found. The algorithm finishes whenS1 is empty and there are no more unmarked
cache boundary nodes. At the conclusion of Algorithm 1, all cache boundary nodes have
been marked as distance one, and all nodes which are distance two from the boundary have
been marked and placed onS2 in preparation for Algorithm 2.

The contents ofS2 are now moved toS1. Algorithm 2 removes each nodei from S1 and
scans it (lines 10-17). Each unmarked neighborj of i is marked and pushed ontoS2. Once
S1 is empty, the stacks switch roles. Oncem subblocks have been identified, all remaining
unmarked nodes are marked as distancem from the cache boundary. Algorithm 2 continues
until both stacks are empty. At the conclusion of Algorithm 2, vectorD contains the smaller
of m and the minimum distance from each node of blockΩs to the boundary∂Ωs.

4.5. Renumbering within Cache Blocks.We assume that the grid has been divided
into k cache blocks and that within a block the numbering is contiguous (see Figure 4.2a).
In block j the unknowns which are on the block boundary are marked as being on subblock
1, Lj

1. In general, letLj
i denote those unknowns in blockj which are distancei from the

boundary. LetL1
n1 be the subblock of block 1 farthest from∂Ω1. The algorithm renum-

bers the unknowns inL1
n1, L

1
n1−1, . . . , L

1
1, L

2
n2, . . . L

2
1, . . . , L

k
nk, Lk

nk−1, . . . , L
k
1 , in that or-

der (see Figure 4.2b). The result is a nodal ordering which is contiguous within blocks and
subblocks. This ordering has the property that unknowns which are closer to the block bound-
ary have a higher number than those further from the boundary. Numbering within a subblock
is contiguous but arbitrary.

Assumingm updates, we find (where possible)n1 = m + 1 subblocks. SubblocksL1
n1

andL1
n1−1 are treated as one subblock when updates are made. The residual calculation,

however, is different in each subblock. This will be discussed in more detail in§4.8.



ETNA
Kent State University 
etna@mcs.kent.edu

Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich R¨ude, and Christian Weiss 35

As the final preprocessing step, all matrices and transfer operators are reordered accord-
ing to the new grid numbering.

4.6. Computational Cost of Preprocessing.The decomposition of the grid into cache
blocks, subblock identification, and the Gauss-Seidel algorithms are the only differences be-
tween our cache aware multigrid code and a standard multigrid code. The computational cost
of subblock identification can be calculated by analyzing Algorithms 1 and 2. It can be shown
that the combined complexity of the two algorithms on the finest grid is no greater than7

d2

sweeps of standard Gauss-Seidel over the finest grid, whered is the number of degrees of
freedom per node. This estimate is pessimistic. In experiments, the combined complexity is
less than one sweep of standard Gauss-Seidel over the finest grid. (See§4.10.)

4.7. Updating within Cache Blocks. Once all matrix and grid operators have been
reordered, the multigrid scheme can be applied. Assume thatm smoothing steps are applied.
Within cache blockΩj , all nodes receive one update. All nodes in subblocksLj

m+1, . . . , L
j
2

are updated a second time. All nodes in subblocksLj
m+1, . . . , L

j
3 are updated a third time.

This proceeds until all nodes inLj
m andLj

m+1 have been updatedm − 1 times. Finally, all

nodes inLj
m+1 andLj

m are updated once more, a partial residual is calculated inLj
m, and the

entire residual is calculated inLj
m+1.

4.8. Residual Calculation.A multigrid strategy also requires residual calculations. To
maintain cache effects obtained during the smoothing step, the residual should also be calcu-
lated in a cache aware way. Consider the linear equationAx = b, whereA = (aij). Suppose
that we solve this system by a Gauss-Seidel method. We would like to calculate the residual,
r = b − Auk, whereuk is the calculated solution afterk updates. On the final Gauss-Seidel
update (assumingm updates),

um
i =

1
aii

(bi −
∑

j<i

aiju
m
j −

∑

j>i

aiju
m−1
j ) ≡ 1

aii
(bi − Cm

i − Um−1
i )

The partial sumCm
i also appears in the residual calculation

ri = bi −
∑

j

aiju
m
j = bi −

∑

j<i

aiju
m
j − aiiu

m
i −

∑

j>i

aiju
m
j = bi − Cm

i − aiiu
m
i − Um

i .

Therefore we can saveCm
i and use it later in the residual calculation. Furthermore,aiiu

m
i =

bi −
∑

j 6=i aiju
m
j . Hence, after the final Gauss-Seidel update on unknownxi, only Um

i need
be calculated to finish the residualri. In our implementation, the partial sumUm

i corresponds
exactly to the unknownsxj which are in the neighboring unfinished subblock.

These observations motivate our implementation of the residual calculation in the cache
aware Gauss-Seidel routine. Consider the first pass through cache blockΩs during a smooth-
ing step. All unknowns are completely updated except those in subblocks1, . . . , m − 1
(assumingm updates). We assume that subblockj consists of nodes distancej from ∂Ωs.
The key point is that each unknownxi in subblockj depends only on unknowns in subblocks
j − 1, j, andj + 1. Therefore, the residual can be fully calculated for all unknowns in sub-
blockm + 1 (if it exists). The partial sumCm

i is available for the residual calculation at each
unknownxi in subblockm. No residual calculation is possible for unknowns in subblocks
1, . . . , m − 1.

On thepth pass throughΩs, the nodes are updated in order on subblocks1, 2, . . . , m −
p + 1. Note that all nodes in subblockm − p + 1 are now fully updated. This means that
the partial sumCm

i is available for the residual calculation for each unknownxi in subblock
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n−p+1 and the partial sumUm
j is available for each unknownxj in subblockm−p+2. In

other words, as soon as the nodes in subblockm − p + 1 are being updated for the last time,
the residual calculation for subblockm − p + 1 can be started, and the residual calculation
for subblockm − p + 2 can be finished.

For example, assume that 3 Gauss-Seidel updates are to be performed in a block with at
least 3 subblocks. The residual can be fully calculated in cache for all nodes except those in
subblocks 1-3. Furthermore, a partial residual can be calculated in subblock 3. On the second
pass through the cache block, subblock 2 is fully updated, a partial residual is computed in
subblock 2, and the residual is completed in subblock 3. On the third pass through the block,
subblock 1 is fully updated. Once all cache blocks are fully updated, the residual can be
completed in the first subblock of each block.

4.9. Revisiting Cache Blocks.As the problem size increases, the strategy for revisit-
ing cache blocks to finish updating boundary unknowns (the backtracking scheme) becomes
more important. In the worse case, boundary information for each block must pass through
cachem times, wherem is the number of relaxations desired. For a problem with a large
number of cache blocks, a cache aware Gauss-Seidel implementation with a poor backtrack-
ing scheme might spend the majority of the computational time revisiting blocks. Hence,
our objective is to develop a backtracking scheme which reduces the number of times that
boundary information must pass through cache.

Suppose we have a decomposition of a grid into cache blocks. Each block can be thought
of as a node of a graph. For any two adjacent blocks, the corresponding nodes will have an
edge connecting them. This dual graph can be visualized as an adjacency matrix. By reducing
the bandwidth of this matrix, we can potentially find an ordering for the cache blocks so that
boundary information can be reused in cache during the backtracking phase of Gauss-Seidel.
This permutation of the cache blocks is applied in the preprocessing phase. First, the cache
blocks are reordered, then the subblocks are identified, the nodes are renumbered, and the
operators are renumbered as previously described.

4.10. Numerical Experiments. All numerical experiments were performed on a SGI
O2 with a 300 megahertz IP32 R12000 CPU, 128 megabytes of main memory, a 2×32 kilo-
byte split L1 cache, and a 1 megabyte unified 4 way secondary cache. Cache line lengths are
32 bytes (L1 instruction cache), 64 bytes (L1 data cache), and 128 bytes (L2 cache) [10]. The
native cc and f77 compilers were used under IRIX 6.5. The METIS software package was
used to decompose all domains into cache blocks. Unless otherwise stated, an effective cache
size of 512 kilobytes is assumed.

All tests solve a two dimensional linear elastic problem on a domain shaped like the
state of Texas. The domain is discretized with linear triangular elements, and each node has
two degrees of freedom. The northernmost horizontal border has zero Dirichlet boundary
conditions at the corner points, and a force is applied at the southernmost tip in the downward
(southern) direction.

The first experiment compares three different Gauss-Seidel implementations. (See Table
4.2.) Note the decrease in speedup as the matrix order increases. The larger system has
thirty-seven cache blocks, whereas the smaller system has nine. Our policy of revisiting the
cache blocks in order may account for the worse performance in the larger system. Another
possible cause is the worse condition of the cache blocks in the larger system. In the smaller
system 69% to 86% of the nodes in each block can be updated when the block is first visited.
For the larger system, however, only 58% to 72% of the nodes can be updated on the first
visit to twenty-eight of the thirty-four cache blocks. For each system, the speedup increases
with the number of updates. With more updates, more work is done in cache during the first
visit to a block.



ETNA
Kent State University 
etna@mcs.kent.edu

Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich R¨ude, and Christian Weiss 37

matrix Relaxations performed
order 2 3 4 5
31358 CAGSI 0.11 0.13 0.15 0.19

GSI 0.23 0.30 0.38 0.46
GSS 0.23 0.31 0.38 0.46
speedup 2.09 2.31 2.53 2.42

124414 CAGSI 0.49 0.60 0.74 0.97
GSI 1.03 1.35 1.74 2.04
GSS 1.02 1.33 1.63 2.03
speedup 2.08 2.22 2.20 2.07

CAGSI: cache Gauss-Seidel, integrated residual
GSI: non-cache Gauss-Seidel, integrated residual
GSS: non-cache Gauss-Seidel, separate residual

TABLE 4.2
CPU times (in seconds) from Gauss-Seidel updates with residual calculation on matrix arising from linear

elastic problem on Texas shaped domain.

# of updates on coarse/fine grids
V cycles 2-2 3-3 4-4 5-5

1 CAGSI 1.56 1.94 2.24 2.61
GSS 2.73 3.73 4.48 5.41
GSI 2.78 3.77 4.54 5.45
speedup 1.75 1.92 2.00 2.07

CAGSI: cache Gauss-Seidel, integrated residual
GSI: non-cache Gauss-Seidel, integrated residual
GSS: non-cache Gauss-Seidel, separate residual

TABLE 4.3
3 level V cycle applied to two dimensional linear elastic problem on domain shaped like the state of Texas.

Matrix orders are 7966, 31358, and 124414, respectively.

The second numerical test compares cache aware and non-cache implementations of a
three level V cycle. See Table 4.3 for speedup results. All three versions use the same grid
operators. The grids are nested, and the two finer grids were created by uniform refinement.
The matrices are order 7966, 31358, and 124414, respectively. Due to uniform refinement,
the majority of rows have fourteen nonzeroes. Therefore a usable cache size of 512 kilobytes
holds information for approximately 1820 nodes. In all cases, less than 20% of the CPU time
was spent in interpolation and restriction operations.

In the third test, we use a unintrusive performance measurement tool which relies on
hardware counters to analyze the cache efficiency of the various Gauss-Seidel implementa-
tions within a multigrid code (see Figure 4.3). Note that the only difference between the
multigrid implementations is the smoother. Observe that the L2 cache hit rate for the cache
aware multigrid method is approximately 25% to 30% higher than the standard implemen-
tations (see Figure 4.3a). As the number of updates increases, the hit rate increases. This
is expected, since more updates mean more work in each cache block during the first visit
to that block. Similarly, the average number of times a cache line is reused increases as the
number of updates increases, for the same reason (see Figure 4.3b).

Finally, we compare CPU times for the reordering algorithms with the time for one
Gauss-Seidel sweep over the finest grid. Table 4.4 compares the time to reorder all grids
in the linear elasticity problem to one sweep of standard Gauss-Seidel. We see that the time
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standard GS plus residual standard GS mesh renumbering
0.71 0.30 0.09

TABLE 4.4
CPU times (seconds) for Algorithms 1 and 2 to renumber all levels (83178 nodes total, two degrees of freedom

per node) compared with one sweep of standard Gauss-Seidel on finest level.

to renumber the nodes is less than that for one standard Gauss-Seidel sweep on the finest
level.

As noted in§1, there are hardware constraints which limit possible speedups. This is
especially true in the unstructured grid case, where indirect addressing is necessary. Never-
theless, there may be room for further improvement in the unstructured case, as evidenced by
the cache statistics in Figure 4.3(b).

5. Conclusions. In this paper, we have introduced a number of algorithms to solve el-
liptic boundary value problems using cache memories in a much more efficient manner than
is usual. These algorithms preserve the same numeric solutions as the standard algorithms
and codes do.

Bitwise compatibility is important since it allows us to guarantee that our codes are just
as correct as standard codes, share the same numeric properties (roundoff and stability), and
have the same convergence rates as usual algorithms. Additionally, there is the possibility in
the future of building a software tool to generate the type of codes we developed here.

Algorithms have been investigated for problems on structured grids in two and three
dimensions for Poisson’s equation. Speedups are about a factor of2 − 5 on a variety of
platforms. A quite high percentage of the peak performance of a processor can be achieved
by doing loop unrolling and a two dimensional blocking technique.

Another set of algorithms have been investigated for unstructured grids and scalar or
coupled general elliptic partial differential equations. Speedups are about a factor of2. This
technique extends trivially to parallel computers and higher dimensional problems. Using an
active set technique, like in§§2-3, might lead to better speedups in the single processor situa-
tion, but does not extend to parallel computers in a straightforward manner like the algorithm
in this paper. More investigation is needed to answer this speculation.

One of the goals of this joint research is a comprehensive library for solving partial
differential equations on one or more processors that utilize caches in an efficient manner
with little tuning required by the end user. While this is still a goal, studies like the one in this
paper, will lead to a realization of this goal in the near future.
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