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ZEROS AND LOCAL EXTREME POINTS OF FABER
POLYNOMIALS ASSOCIATED WITH HYPOCYCLOIDAL DOMAINS∗

MICHAEL EIERMANN† AND RICHARD S. VARGA‡

Abstract. Faber polynomials play an important role in different areas of constructive complex
analysis. Here, the zeros and local extreme points of Faber polynomials for hypocycloidal domains
are studied. For this task, we use tools from linear algebra, namely, the Perron-Frobenius theory of
nonnegative matrices, the Gantmacher-Krein theory of oscillation matrices, and the Schmidt-Spitzer
theory for the asymptotic spectral behavior of banded Toeplitz matrices.
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1. The Problem. Faber polynomials, introduced by Faber in [5] and [6], have
been a mainstay for analysts interested in the approximation of analytic functions, and
there is a rich mathematical literature (cf. [3], [9, §I.6], [17, Chapter 2], [19]) describing
Faber polynomials, their properties, and their applications. Recently, applications of
Faber polynomials, both in a theoretical as well as in a practical sense, have been
made to the iterative solution of large nonsymmetric systems of linear equations, and
the use of Faber polynomials has brought new analysis tools to this area of linear
algebra (cf. [4], [7], [18]).

Our goal in this paper is just the opposite: we wish to show here that linear
algebra techniques, especially the application of the theory of oscillation matrices to
certain Hessenberg matrices, can provide new tools for the classical complex analysis
problem of determining the zeros of Faber polynomials for special domains.

We briefly recall the definition of Faber polynomials. Let Ω ⊂ IC be a compact set,
not a single point, whose complement IC∞ \ Ω (with respect to the extended plane)
is simply connected. By z = ψ(w), we denote the conformal map from |w| > 1 onto
IC∞ \ Ω, which is normalized by ψ(∞) = ∞ and ψ′(∞) > 0. The Faber polynomi-
als {Fm}m≥0 for Ω are then defined (cf. [17, p. 130]) from the following generating
function:

ψ′(w)
ψ(w)− z =

∞∑
m=0

Fm(z)w−m−1 (|w| > 1, z ∈ Ω).(1.1)

Here, we investigate the zeros and the local extreme points of Faber polynomials for
a special class of compact sets.

With IN(IN0) denoting the set of positive (nonnegative) integers, consider the
mapping

ψ(w) := αw + βw1−p (p ∈ IN, p ≥ 2, α > 0, β ∈ IC, β 6= 0) ,(1.2)

which is conformal in the exterior of the unit circle if and only if ρ := (p−1)|β|/α ≤ 1.
The boundary of the associated compact set

Ω = H(p, α, β) := IC∞ \ {z ∈ IC : z = ψ(w) with |w| > 1}(1.3)
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Fig. 1.1. Hypocycloidal domains H(p, α, β) for p = 5 and p = 7, together with the zeros of the
associated Faber polynomials {Fm}50

m=1.

is a hypocycloid; more precisely, it is a cusped hypocycloid if ρ = 1 and a blunted
hypocycloid if ρ < 1 (see Fig. 1.1)1 Note that for p = 2, the Faber polynomials are
well known: H(2, α, β) is either an interval (if ρ = 1) or an ellipse together with
its interior (if ρ < 1) and, for those sets, Fm is a suitably scaled mth Chebyshev
polynomial Tm of the first kind (cf. Rivlin [13, p. 1]).

We show in this note that all zeros {ξm,k}mk=1 and all local extreme points
{ζm−1,k}m−1

k=1 of the Faber polynomials Fm for the sets H(p, α, β) are located on cer-
tain stars. This is illustrated in Fig. 1.1, where, for example, in the figure on the left,
the boundary of H(5, 10, 1) is the outer closed curve (which is a blunted hypocycloid),
and the boundary of H(5, 10τ, τ−4) (with τ := (2/5)1/5) is shown as the inner closed
curve (which is a cusped hypocycloid), along with all the zeros of the associated Faber
polynomials {Fm}50

m=1. (Up to a constant multiplicative factor, the Faber polynomials
for these two sets are identical.2) These zeros lie in p = 5 equally spaced (in angle)
intervals which emanate from the origin, thereby forming a star. We shall prove that
the zeros {ξm,k}mk=1, as well as the local extreme points {ζm−1,k}m−1

k=1 , are dense on
these stars, as m → ∞. In addition, we prove that the zeros {ξm,k}mk=1 interlace on
these stars in a certain precise sense. Similar results are derived for the local extreme
points {ζm−1,k}m−1

k=1 .

1 A hypocycloid is the curve traced by a point connected to a circle rolling on the interior of the
circumference of another (fixed) circle. When the point is on the circumference of the rolling circle
(which is equivalent to ρ = 1 in our above notation), the curve is called a cusped hypocycloid. When
the point is not on circumference of the rolling circle, the curve is often called a hypotrochoid. We
prefer the more suggestive notations of a blunted hypocycloid, for the case that the point is interior
to the rolling circle (i.e., ρ < 1), and of a looped hypocycloid, for the case that the point is exterior
to the rolling circle (i.e., ρ > 1). A detailed discussion of those curves is contained, e.g., in [15, p.
278].

2 In general, the Faber polynomials Fm for Ω = IC∞ \ψ({w : |w| > 1}) and the Faber polynomials
F̃m for Ω̃ := IC∞\ψ({w : |w| > τ}), τ > 1, are related by F̃m(z) = τ−mFm(z) and therefore, have the
same zeros. Consequently, the zeros of the Faber polynomials for H(p, α, β) and for H(p, ατ, βτ1−p)
are identical.
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All these results can be considered as generalizations of well-known properties of
the zeros and local extreme points of Chebyshev polynomials. For the hypocycloidal
domains H(p, α, β), some of these results have been recently obtained by He and Saff
[12]. As previously mentioned, our approach, which is completely different from the
one used by He and Saff, is based merely on tools from linear algebra. Specifically, we
apply basic facts from i) the Frobenius theory of nonnegative matrices (cf. [21, Chapter
2]), from ii) the Gantmacher-Krein theory of oscillation matrices (cf. [10, Chapter 2]),
and from iii) the Schmidt-Spitzer theory of the asymptotic spectral behavior of finite
sections of Toeplitz matrices (cf. [16]). We remark that a difference between our
results here and those of [12] is the interlacing of the zeros (and the local extreme
points) on their stars, which is a nice bonus from the theory of oscillation matrices!

We shall briefly summarize in Section 2 the tools to be used in this paper. Our
results, concerning the zeros and local extreme points of Faber polynomials for hypocy-
cloidal domains, will be formulated in Section 3 and proved in Section 4. Finally in
Section 5, we describe the properties of Faber polynomials for another class of compact
sets which are closely related to hypocycloidal domains.

2. The Tools. The previously mentioned exterior conformal map ψ from |w| >
1, associated with an arbitrary compact set Ω (not a single point) whose complement
IC∞ \ Ω is simply connected, has a Laurent expansion of the form

ψ(w) = αw +
∞∑
k=0

αkw
−k (α > 0, αk ∈ IC for k ∈ IN0) ,(2.1)

which converges for all |w| > 1. Substituting this expansion of ψ into (1.1) and
comparing equal powers of w leads to the recurrence relation

zFk(z) = αFk+1(z) +

 k∑
j=0

αjFk−j(z)

+ kαkF0(z) (k ∈ IN0)

with F0(z) := 1

(2.2)

(cf. Curtiss [3]). But, if we rewrite (2.2) for k = 0, 1, . . . ,m− 1 in matrix-vector form,
we have

z [F0(z), F1(z), . . . , Fm−1(z)]

= [F0(z), F1(z), . . . , Fm−1(z)]Fm + [0, . . . , 0, αFm(z)] ,
(2.3)

where Fm denotes the mth section (i.e., the leading m ×m principal submatrix) of
the infinite upper Hessenberg matrix

F :=



α0 2α1 3α2 4α3 · · ·
α α0 α1 α2

α α0 α1
. . .

α α0
. . .

. . .
. . .


.(2.4)

(Note that F has a nearly Toeplitz structure, i.e., if we discard its first row, we obtain
a Toeplitz matrix.) It is well known (and easy to see from (2.3)) that λ ∈ IC is a zero
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of Fm if and only if λ is an eigenvalue of Fm (with corresponding left eigenvector
[F0(λ), F1(λ), . . . , Fm−1(λ)]). To find the zeros of Fm, it thus suffices to locate the
eigenvalues of Fm , the mth section of F .

To determine the local extreme points of Fm+1, we consider another sequence
{Gm}m≥0 of polynomials defined by

1
ψ(w) − z =

∞∑
m=0

Gm(z)w−m−1 (|w| > 1, z ∈ Ω) .(2.5)

These are the generalized Faber polynomials for Ω with respect to the weight function
1/ψ′ (cf. [17, §2.2]). Following [7], we call Gm the mth Faber polynomial of the second
kind3 for Ω. On differentiating (1.1) with respect to z and on differentiating (2.5)
with respect to w, it easily follows (cf. [20]) that

Gm(z) =
F ′m+1(z)
m+ 1

(m ∈ IN0) ,(2.6)

and hence, the local extreme points of Fm+1 are the zeros of Gm.
In analogy with (2.2), the polynomials Gk satisfy the recurrence relations

zGk(z) = αGk+1(z) +
k∑
j=0

αjGk−j(z) (k ∈ IN0)

with G0(z) := 1/α ,

(2.7)

or, in matrix-vector form,

z [G0(z), G1(z), . . . , Gm−1(z)]

= [G0(z), G1(z), . . . , Gm−1(z)]Gm + [0, . . . , 0, αGm(z)] ,
(2.8)

where Gm is now the mth section of the infinite upper Hessenberg Toeplitz matrix

G :=



α0 α1 α2 α3 · · ·
α α0 α1 α2

α α0 α1
. . .

α α0
. . .

. . . . . .


.(2.9)

Thus, from (2.6) and (2.8), the local extreme points of Fm+1 are nothing but the
eigenvalues of Gm. This connection, together with the asymptotic spectral properties
of finite Toeplitz matrices, can be used to derive results on the asymptotic behavior of
the local extreme points of the classical Faber polynomials (of the first kind) (cf. [20])
and also of the zeros of these polynomials (cf. [2]). Here, we are interested in transient
(i.e., nonasymptotic) properties of the zeros and local extreme points of classical Faber
polynomials for special sets.

3 This notation is motivated by the special cases when Ω is either an interval or an ellipse, together
with its interior. As previously mentioned here, the Faber polynomials Fm (of the first kind) are
suitably scaled Chebyshev polynomials Tm of the first kind. As shown in the beginning of Section
3, the generalized Faber polynomials Gm are then suitably scaled Chebyshev polynomials Um of the
second kind (cf. [13, p. 7]).
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For the hypocycloidal domains H(p, α, β) defined by (1.2) and (1.3), G of (2.9)
reduces to the particularly simple infinite matrix

G = Gh =



0 · · · 0 β
α 0 · · · 0 β

α 0 0 β
. . . . . .


(2.10)

(where the subscript h refers to “hypocycloid”), and similarly, from (2.4), we have

F = Fh = Gh + (p− 1)β u1uTp ,(2.11)

where uk denotes the kth unit column vector in IR∞(k = 1, 2, . . .). Note that Fh and
Gh are banded matrices (i.e., only their first lower and their (p− 1)st upper diagonals
contain nonzero entries), and Fh and Gh differ only in the pth element of their first
rows.

After a reduction to the case α = β = 1, we shall show in Section 4 that Gh
and Fh of (2.10) and (2.11) are cyclic of index p matrices, so that, with a suitable
permutation, the pth powers of Gn and Fh are, respectively, the direct sum of p infinite
matrices {H(k)}p−1

k=0, and {K(k)}p−1
k=0, where H(k) and K(k) are infinite banded upper

Hessenberg matrices (k = 0, 1, · · · , p− 1). The main part of our investigation is then
a study of the spectral properties of their j-th sections K(k)

j and H(k)
j , in IRj×j , for

every j ∈ IN. It turns out all these sections are nonnegative and irreducible matrices,
and, more importantly, these sections are also oscillation matrices. Thus, the full
power of the Perron-Frobenius theory of nonnegative matrices and the Gantmacher-
Krein theory of oscillation matrices are applicable to the study of the spectra of these
sections.

The Perron-Frobenius theory of irreducible nonnegative matrices is an essential
part of the tool box of anyone interested in matrix theory and numerical linear alge-
bra. We therefore assume that the reader is familiar with this theory. (The facts we
shall use in the sequel are described, e.g., in [21, Chapter 2], [1], and [8, Chapter 4].)
Unfortunately, it seems that the theory of oscillation matrices is less well known to
workers in numerical linear algebra. One of the objects of this paper is to also show
that the theory of oscillation matrices is in fact a powerful tool even for problems
which, at first glance, have little connections with matrices. For the reader’s conve-
nience, we therefore recall below the main definitions and results which we use from
the theory of oscillation matrices.

LetM = [µi,j ]1≤i,j≤m be an arbitrary matrix in IRm×m. The set of multi-indices
i, with k (for 1 ≤ k ≤ m) elements from {1, 2, . . . ,m}, is defined by

∆m,k := {i = (i1, i2, . . . , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ m}.

For i = (i1, i2, . . . , ik) and j = (j1, j2, . . . , jk) in ∆m,k, the k× k submatrix ofM with
rows il and columns jn will be denoted by M(i, j) := [µi,j ]i∈i,j∈j. Then, M is totally
nonnegative (totally positive) if detM(i, j) is nonnegative (positive) for all i, j ∈ ∆m,k

and all k = 1, 2, · · · ,m.
The best known examples of totally nonnegative matrices arise from the class of
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Jacobi matrices, i.e., tridiagonal matrices of the form

J =



α1 β1

γ1 α2 β2

γ2 α3
. . .

. . . . . . βm−2

γm−2 αm−1 βm−1

γm−1 αm


.

A nonsingular Jacobi matrix J is totally nonnegative if and only if βi ≥ 0 and γi ≥ 0
(i = 1, 2, . . . ,m − 1), and, in addition, all sections of J have positive determinants,
i.e.,

α1 > 0, det
[
α1 β1

γ1 α2

]
> 0, det

 α1 β1 0
γ1 α2 β2

0 γ2 α3

 > 0, . . . , detJ > 0

(cf. [10, p. 94]).
By definition, an arbitrary square matrix M is an oscillation matrix if M is

totally nonnegative and if some k ∈ IN is such that Mk is totally positive. A totally
nonnegative Jacobi matrix J is an oscillation matrix if and only if its sub- and super-
diagonal entries βi and γi (i = 1, 2, . . . ,m − 1) are all positive (cf. [10, p. 119]). A
main result of the Gantmacher-Krein theory is that this oscillation matrix criterion
is valid for any totally nonnegative matrix:

Theorem A ([10, p. 115]). A totally nonnegative matrix M = [µi,j ]1≤i,j≤m is
an oscillation matrix if and only if M is nonsingular and µi,i+1 > 0 and µi+1,i > 0
hold for all i = 1, 2, . . . ,m− 1.

For our subsequent use, we quote two other sufficient criteria for oscillation ma-
trices.

Theorem B ([10, p. 112 and p. 118]). If M ∈ IRm×m is an oscillation matrix,
then each principal submatrix of M is also an oscillation matrix.
M ∈ IRm×m is an oscillation matrix if M can be expressed as a product of an

oscillation matrix with a nonsingular totally nonnegative matrix.
The theory of oscillation matrices turns out to be extremely useful for determin-

ing properties of the zeros of special Faber polynomials because oscillation matrices,
although they are not necessarily symmetric, are a natural generalization of positive
definite Hermitian Jacobi matrices.

Theorem C ([10, p. 100]). The eigenvalues λ1, λ2, . . . , λm of an oscillation
matrix M = [µi,j ]1≤i,j≤m ∈ IRm×m are simple and positive, i.e., they can be arranged
so that

0 < λ1 < λ2 < · · · < λm .

We shall also make use of the following two results concerning the behavior of the
eigenvalues of oscillation matrices.

Theorem D ([10, p. 124]). Let M = [µi,j ]1≤i,j≤m ∈ IRm×m be an oscil-
lation matrix, and let {λk,l}kl=1 be the eigenvalues of Mk, the kth section of M
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(k = 1, 2, . . . ,m), where these eigenvalues are arranged as

0 < λk,1 < λk,2 < · · · < λk,k .

Then, the eigenvalues of Mj+1 interlace with those of Mj, i.e.,

0 < λj+1,1 < λj,1 < λj+1,2 < λj,2 < · · · < λj,j < λj+1,j+1

for every j = 1, 2, . . . ,m− 1.
Theorem E ([10, p. 127]). Let λ1 < λ2 < · · · < λm denote the eigenvalues of

an oscillation matrix M = [µi,j ]1≤i,j≤m ∈ IRm×m. Then,

∂λj
∂µ1,1

> 0 and
∂λj

∂µm,m
> 0 for every j ∈ {1, 2, . . . ,m} .

Finally, we shall apply a main result of the Schmidt-Spitzer theory [16] concerning
the asymptotic spectral behavior of finite Toeplitz matrices. We briefly recall this
result, but only for the special case which we shall need in the sequel. Let

T =


α0 α1 · · · αm
α α0 α1 · · · αm

α α0 α1 · · · αm
. . . . . . . . . . . .

(2.12)

be a (semi-infinite) banded upper Hessenberg Toeplitz matrix, whose symbol is defined
by

t(w) := αw + α0 + α1w
−1 + · · ·+ αmw

−m.

If Tm denotes the mth section (i.e., the leading principal m×m submatrix) of T , and
if Λ(Tm) denotes its spectrum, then we set

Λ∞(T ) :=
{
λ ∈ IC : λ = lim

m→∞
λm, where λm ∈ Λ (Tim) and lim

m→∞
im =∞

}
,(2.13)

so that Λ∞(T ) is the set in IC of all accumulation points of {Λ(Tm)}m≥1.
To describe Λ∞(T ) in a different way, more terminology is needed. For any real

number ρ with ρ > 0, let Γρ be the image of the circle |w| = ρ under the mapping
w 7→ t(w) and set

Λρ(T ) := {λ ∈ IC : n (Γρ, λ) 6= 0} ,(2.14)

where n (Γρ, λ) is the winding number of Γρ with respect to the point λ. For λ ∈ Γρ,
we follow the usual convention of defining n (Γρ, λ) to be different from zero.

With these notations, we now can formulate the fundamental theorem of Schmidt
and Spitzer:

Theorem F ([16, Theorem 1]). The set Λ∞(T ) of (2.13), associated with the
Toeplitz matrix T of (2.12), has the following characterization:

Λ∞(T ) =
⋂
ρ>0

Λρ(T ) .
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3. The Results. To motivate our results, we first consider the case p = 2 of
(1.2), where, as mentioned previously, the Faber polynomials are closely related to
the familiar Chebyshev polynomials. It is not difficult to see from (2.2) that, for
Ω = H(2, α, β) of (1.3) with |β| ≤ α,

F0(z) = T0(z) and Fm(z) = 2
(
β

α

)m/2
Tm

(
z

2
√
αβ

)
(m ∈ IN),

where Tm(z) := cos(m arccos z) (−1 ≤ z ≤ 1), and from (2.7) that

Gm(z) =
1
α

(
β

α

)m/2
Um

(
z

2
√
αβ

)
(m ∈ IN0),

where Um(z) := sin((m+1) arccos z)/ sin(arccos z) (−1 < z < 1). The zeros {ξm,j}mj=1

of Fm are thus given by

ξm,j = 2
√
αβ cos

(
(2j − 1)π

2m

)
(j = 1, 2, . . . ,m),

whereas the zeros {ζm,j}mj=1 of Gm are given by

ζm,j = 2
√
αβ cos

(
jπ

m+ 1

)
(j = 1, 2, . . . ,m).

This explicit knowledge of these Faber polynomials and their zeros shows that the
following results (of Theorems 3.1-3.4) are well known for the case of p = 2.

We begin with a structural property of the polynomials Fm and Gm for general
hypocycloidal domains.

Theorem 3.1. For Ω = H(p, α, β), the Faber polynomials of the first kind,
{Fm}m≥0, and the Faber polynomials of the second kind, {Gm}m≥0, have the following
form:

If m = jp+k, where j ∈ IN0 and k ∈ {0, 1, . . . , p−1}, then there exist polynomials
K

(k)
j and H(k)

j of exact degree j such that

Fm(z) =
(
β

α

)j ( z
α

)k
K

(k)
j

(
zp

αp−1β

)
and Gm(z) =

1
α

(
β

α

)j ( z
α

)k
H

(k)
j

(
zp

αp−1β

)
.

The polynomials K(k)
j and H

(k)
j are independent of α and β. They fulfill identical

(p+1)-term recurrence relations. More precisely, for every k ∈ {0, 1, . . . , p−1}, there
holds

zK
(k)
j (z) =

p∑
l=0

(
p

l

)
K

(k)
j+1−l(z) (j = p, p+ 1, . . . ), and

zH
(k)
j (z) =

p∑
l=0

(
p

l

)
H

(k)
j+1−l(z) (j = p− 1, p, . . . ) .

We remark that the polynomials K(k)
j and H(k)

j will be treated in more detail in
Section 4.

To determine the zeros of Fm and Gm, it is therefore sufficient to investigate the
zeros of K(k)

j and H(k)
j , respectively.
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Fig. 3.1. Zeros of F10 (+) and of G10 (◦) for H(3, 2, 1) (on the left). Graphs of K
(0)
7 (solid

line) and H
(0)
7 (dashed line) for p = 3 (on the right).

Theorem 3.2. For every j ∈ IN and every k ∈ {0, 1, . . . , p − 1}, the zeros
{λ(k)

j,l }
j
`=1 of K(k)

j and the zeros {η(k)
j,l }

j
`=1 of H(k)

j are all simple, positive, and strictly
less than κp := p p/(p− 1)p−1:

0 < λ
(k)
j,1 < λ

(k)
j,2 < · · · < λ

(k)
j,j < κp and 0 < η

(k)
j,1 < η

(k)
j,2 < · · · < η

(k)
j,j < κp.

Moreover, the zeros of each of these 2p polynomial sequences, {K(k)
j }j≥1 and

{H(k)
j }j≥1, are dense in [0, κp], for j →∞.
From Theorems 3.1 and 3.2, it is clear that the zeros {ξm,l}ml=1 of Fm, as well as

the zeros {ζm,l}ml=1 of Gm, are located on the stars

S(p, α, β) :=
{
z = rei[arg(β)+2πk]/p :

k = 0, 1, . . . , p− 1 and 0 ≤ r ≤ α p

p− 1
[(p− 1)|β|/α]1/p

}
,

(3.1)

and that {ξm,l}ml=1, as well as {ζm,l}ml=1, are dense on S(p, α, β) as m → ∞. As an
illustration, the zeros of F10 and G10 for H(3, 2, 1) are plotted on the left in Fig. 3.1.

Our next result describes the interlacing properties of these zeros.
Theorem 3.3. For every k ∈ {0, 1, . . . , p− 1}, the zeros of K(k)

j+1 interlace with

the zeros of K(k)
j , i.e.,

λ
(k)
j+1,1 < λ

(k)
j,1 < λ

(k)
j+1,2 < λ

(k)
j,2 < · · · < λ

(k)
j,j < λ

(k)
j+1,j+1,

and the zeros of H(k)
j+1 interlace with the zeros of H(k)

j , i.e.,

η
(k)
j+1,1 < η

(k)
j,1 < η

(k)
j+1,2 < η

(k)
j,2 < · · · < η

(k)
j,j < η

(k)
j+1,j+1,

for all j ∈ IN.
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Fig. 3.2. Positive zeros of {Fm}50
m=3 (on the left) and of {Gm}50

m=3 (on the right) for H(3, 2, 1)
plotted versus m.

Moreover, for every j ∈ IN and every k ∈ {0, 1, . . . , p− 1}, the following relation
holds between the zeros of K(k)

j and the zeros of H(k)
j :

η
(k)
j,1 < λ

(k)
j,1 < η

(k)
j,2 < λ

(k)
j,2 < · · · < η

(k)
j,j < λ

(k)
j,j .

The last assertion above of Theorem 3.3 implies that the successive zeros of K(k)
j

are always larger than the corresponding zeros of H(i)
j , which can be directly seen

in Figure 3.1 (right-hand side). In view of Theorem 3.1, this implies that the zeros
of Fm are always radially larger than the corresponding zeros of Gm on each of the
p intervals of the star S(p, α, β); this can also be seen in Figure 3.1 (left-hand side).
The first assertion relates the zeros of Fm to the zeros of Fm+p, and the zeros of Gm
to the zeros of Gm+p.

But, we can prove an even stronger result:
Theorem 3.4. For every j ∈ IN, the zeros of K(k+1)

j are strictly larger than the

zeros of K(k)
j if k ∈ {0, 1, . . . , p− 2}, i.e.,

λ
(k)
j,1 < λ

(k+1)
j,1 < λ

(k)
j,2 < λ

(k+1)
j,2 < · · · < λ

(k)
j,j < λ

(k+1)
j,j ,

and the zeros of K(0)
j+1 interlace with the zeros of K(p−1)

j , i.e.,

λ
(0)
j+1,1 < λ

(p−1)
j,1 < λ

(0)
j+1,2 < λ

(p−1)
j,2 < · · · < λ

(p−1)
j,j < λ

(0)
j+1,j+1 .

Similar inequalities hold true for the zeros of the polynomials H(k)
j , i.e., for j ∈ IN,

η
(k)
j,1 < η

(k+1)
j,1 < η

(k)
j,2 < η

(k+1)
j,2 < · · · < η

(k)
j,j < η

(k+1)
j,j

for k ∈ {0, 1, . . . , p− 2}, and

η
(0)
j+1,1 < η

(p−1)
j,1 < η

(0)
j+1,2 < η

(p−1)
j,2 < · · · < η

(p−1)
j,j < η

(0)
j+1,j+1 .
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Note, as a consequence of Theorems 3.3 and 3.4, that

λ
(0)
j+1,l < λ

(0)
j,l < λ

(1)
j,l < λ

(2)
j,l < · · · < λ

(p−1)
j,l < λ

(0)
j+1,l+1

and

η
(0)
j+1,l < η

(0)
j,l < η

(1)
j,l < η

(2)
j,l < · · · < η

(p−1)
j,l < η

(0)
j+1,l+1

hold for every j ∈ IN. The obvious consequences from Theorem 3.4 for the zeros of
Fm and Gm are illustrated in Fig. 3.2.

4. The Proofs. We begin by recalling two previous notational conventions: For
an arbitrary (semi-)infinite matrix M = [µi,j ]1≤i,j<∞, Mm := [µi,j ]1≤i,j≤m denotes
its mth section, i.e., the leading m × m principal submatrix of M. Further, um
is always the mth unit column vector, of finite or infinite dimension, whatever the
context dictates.

As a first step, we apply a diagonal similarity transformation to the matrices Gh
of (2.10) and Fh of (2.11). With δ := (α/β)1/p (where it makes no difference which
branch of the pth root is selected), we define an infinite diagonal matrix D by

D := diag
(
δ0, δ1, δ2, . . .

)
and observe that

D−1GhD =
(
αp−1β

)1/p H and D−1FhD =
(
αp−1β

)1/p K,(4.1)

where

H :=



0 · · · 0 1
1 0 · · · 0 1

1 0 0 1
. . . . . .


and K := H+ (p− 1) u1uTp .(4.2)

Note that H and K possess the same sparsity pattern as Gh and Fh.
Observation 4.1. Without loss of generality, we may assume that the parameters

α and β of Gh and Fh are both equal to 1. We therefore need only investigate the
eigenvalues of the sections of H and K.

In terms of the polynomial sequences {Fm}m≥0 and {Gm}m≥0 associated with the
matrices F of (2.11) and G of (2.10), this is nothing but a linear change of variables
and a rescaling. In other words, after the transformation Fm(z) 7→ δmFm(αz/δ), the
following recurrence relations for the Faber polynomials (of the first and second kind)
are valid for the set H(p, 1, 1) (cf. (1.3)):

Fm(z) = zm (m = 0, 1, . . . , p− 1), Fp(z) = zp − p,
Fm(z) = zFm−1(z)− Fm−p(z) (m = p+ 1, p+ 2, . . .),

(4.3)

and, similarly,

Gm(z) = zm (m = 0, 1, . . . , p− 1),

Gm(z) = zGm−1(z)−Gm−p(z) (m = p, p+ 1, . . .).
(4.4)
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As a second step, we note that the mth sections of H and K are nonnegative
matrices which are, for all m ≥ p, moreover irreducible matrices which are cyclic of
index p. This follows by inspecting their directed graphs (cf. [21, p. 19]) which, e.g.
for p = 3, have the following structure:

ν1 ν3 ν5 ν7

• → • → • → • · · ·
↑ ↙ ↑ ↙ ↑ ↙ ↑
• → • → • → • · · ·
ν2 ν4 ν6 ν8

.

It is evident that the above directed graphs are strongly connected (for m ≥ p) which
gives the irreducibility of these sections. In addition, as any closed path in the above
directed graphs has a length which is always a multiple of p, these sections are (cf.
[21, p. 49]) then cyclic of index p. This latter property allows us to assign one of p
different colors to each vertex of these directed graphs (for any m ≥ 1) arising from
the sections of the matrices H and K.

By a result of Romanovsky [14], the spectra of H and K and all their mth sections
(including 1 ≤ m < p) are therefore invariant with respect to rotations of the complex
plane about the origin through the angles 2πk/p (k = 0, 1, . . . , p− 1). This could also
be deduced from the p-fold symmetry of the hypocycloid domains H(p, α, β).

Following from the fact (cf. [21, p. 39]) that a nonnegative irreducible cyclic of
index p matrix has a normal form, it is not surprising that the infinite matrix H also
has a a cyclic normal form given by

PTHP =


ET

E
. . .

E

 , where E :=


1 1

1 1

1
. . .
. . .

 ,(4.5)

i.e., PTHP is a p × p block matrix whose blocks are infinite bidiagonal Toeplitz
matrices. The (infinite) permutation matrix P =

[
uπ(1),uπ(2),uπ(3), . . .

]
in (4.5)

gathers successive vertices of the same color in the directed graph above.
Next, since the pth power of a cyclic of index p matrix is a block-diagonal matrix

(cf. [21, p. 43]), it similarly follows that the pth power of PTHP has the block-diagonal
form

[
PTHP

]p
=


H(0)

H(1)

. . .
H(p−1)

 ,(4.6)

where the (infinite) diagonal blocks are given by

H(k) := EkET Ep−k−1 (k = 0, 1, . . . , p− 1).(4.7)

Similarly, K has the cyclic normal form

PTKP =


ẼT

E
. . .

E

 , where Ẽ := E + (p− 1)u1uT1 ,(4.8)
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with the same permutation matrix P of (4.5), and

[
PTKP

]p
=


K(0)

K(1)

. . .
K(p−1)

(4.9)

with

K(k) := EkẼTEp−k−1 = Ek
(
ET + (p− 1)u1uT1

)
Ep−k−1(4.10)

(k = 0, 1, . . . , p− 1) .
What is the polynomial interpretation of these matrix manipulations? In matrix-

vector form, the recurrence relations (2.3) for the polynomials Fm become

z [F0(z), F1(z), F2(z), . . . ] = [F0(z), F1(z), F2(z), . . . ]K,

or, equivalently,

z [F0(z), F1(z), F2(z), . . . ]P = [F0(z), F1(z), F2(z), . . . ]P
(
PTKP

)
.

If we take into account the structure of the permutation matrix P (cf. (4.5)), as well
as the structure of PTKP (cf. (4.8)), we see that the last identity is equivalent to the
p equations

z [F0(z), Fp(z), F2p(z), . . . ] = [F1(z), Fp+1(z), F2p+1(z), . . . ] E ,
z [F1(z), Fp+1(z), F2p+1(z), . . . ] = [F2(z), Fp+2(z), F2p+2(z), . . . ] E ,

... =
...

z [Fp−2(z), F2p−2(z), F3p−2(z), . . . ] = [Fp−1(z), F2p−1(z), F3p−1(z), . . . ] E ,
z [Fp−1(z), F2p−1(z), F3p−1(z), . . . ] = [F0(z), Fp(z), F2p(z), . . . ] ẼT .

Using the above equations in succession gives

zp [F0(z), Fp(z), F2p(z), . . . ] = zp−1 [F1(z), Fp+1(z), F2p+1(z), . . . ] E
= zp−2 [F2(z), Fp+2(z), F2p+2(z), . . . ] E2

=
...

= z [Fp−1(z), F2p−1(z), F3p−1(z), . . . ] Ep−1

= [F0(z), Fp(z), F2p(z), . . . ] ẼT Ep−1

= [F0(z), Fp(z), F2p(z), . . . ]K(0),

where the last equation above makes use of the case k = 0 of (4.10). The same
procedure shows that

zp [Fk(z), Fp+k(z), F2p+k(z), . . . ] = [Fk(z), Fp+k(z), F2p+k(z), . . . ]K(k)

for k = 0, 1, . . . p− 1. Together with Fk(z) = zk for k ∈ {0, 1, . . . , p − 1} from (4.3),
this implies by induction that Fjp+k has the form

Fjp+k(z) = zkK
(k)
j (zp) (j ∈ IN0 and k = 0, 1, . . . , p− 1).
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Here, K(k)
j is a polynomial of exact degree j. Moreover, using the last two displays,

each of the p polynomial sequences {K(k)
j }j≥0 can be computed recursively, namely,

from K
(k)
0 (z) = 1 and

z
[
K

(k)
0 (z),K(k)

1 (z),K(k)
2 (z), . . .

]
=
[
K

(k)
0 (z),K(k)

1 (z),K(k)
2 (z), . . .

]
K(k)

(k = 0, 1, . . . , p-1). Analogously for the polynomials Gk of (4.4), there holds

Gjp+k(z) = zkH
(k)
j (zp) (j ∈ IN0 and k = 0, 1, . . . , p− 1)

with polynomials H(k)
j of exact degree j satisfying H(k)

0 (z) = 1 and

z
[
H

(k)
0 (z),H(k)

1 (z),H(k)
2 (z), . . .

]
=
[
H

(k)
0 (z),H(k)

1 (z),H(k)
2 (z), . . .

]
H(k)

(k = 0, 1, . . . , p − 1). The above recurrence relations can then be used to derive the
explicit recurrence relations for K(k)

j (z) and H(k)
j (z), appearing at the end of Theorem

3.1.
Observation 4.2. If m = jp+k, where j ∈ IN0 and k ∈ {0, 1, . . . , p−1}, then the

spectrum of Hm consists of the pth roots of the eigenvalues of H(k)
j (which is defined

as the jth section of H(k)) and the eigenvalue λ = 0 with multiplicity k. Similarly, the
spectrum of Km consists of the pth roots of the eigenvalues of K(k)

j (which is defined
as the jth section of K(k)) and the eigenvalue λ = 0 with multiplicity k. To determine
the eigenvalues of finite sections Hm and Km of H and K, it suffices to investigate
the finite sections of H(k) and K(k) of (4.7) and (4.10).

Taking into account the multiplicative factor (αp−1β)1/p in (4.1) between the
eigenvalues of Gh and H, and Fh and K, we note that the remainder of Theorem 3.1
then follows from Observation 4.2.

As a third step, we have a closer look at the infinite matrices H(k) and K(k), and
also at their finite sections H(k)

j and K(k)
j .

Lemma 4.3. For every k ∈ {0, 1, . . . , p− 1}, the infinite matrices H(k) and K(k)

are banded upper Hessenberg matrices with nonzero entries only along the diagonals
−1, 0, . . . , p − 1. Moreover, they have nearly a Toeplitz structure, i.e., if we discard
their first rows, then the resulting matrices are all equal to the Toeplitz matrix with
symbol (1 + 1/w)p.

The first row of H(k) equals
∑p−1
j=p−1−k bTj , where the “binomial vectors” bk are

defined by

bTk :=
[(
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

)
, 0, . . .

]
,(4.11)

and the first row of K(k) equals
(∑p−1

j=p−1−k bTj
)

+ (p− 1) bTp−k−1.

Proof. Both matrices, H(k) and K(k), are, by definition (cf. (4.7) and (4.10)),
products of p−1 upper bidiagonal matrices and one lower bidiagonal matrix, and they
have thus banded upper Hessenberg form with nonzero entries only on the diagonals
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−1, 0, 1, . . . , p− 1. We note that

H(p−1) = Ep−1ET =



(
p
1

) (
p
2

)
· · ·

(
p
p

)(
p
0

) (
p
1

) (
p
2

) (
p
p

)
(
p
0

) (
p
1

) . . .
(
p
p

)
. . . . . . . . .


(4.12)

is clearly a Toeplitz matrix with symbol w(1 + 1/w)p. Note further from (4.7) that,
for k = 0, 1, . . . p− 2,

H(k+1) −H(k) = Ek
(
EET − ET E

)
Ep−k−2 = Ek

(
u1uT1

)
Ep−k−2,

which, together with Eu1 = u1 and uT1 Ek = bTk , leads to

H(k+1) = H(k) + u1bTp−k−2 (k = 0, 1, . . . p− 2) .(4.13)

Similarly, K(k) and H(k) are connected by the relation

K(k) = H(k) + (p− 1) u1bTp−k−1 (k = 0, 1, . . . p− 1) .(4.14)

Thus, all assertions of Lemma 4.3 follow easily from (4.12) – (4.14).
Our next aim is to show that the finite sections H(k)

j of H(k) and K(k)
j of K(k) are

oscillation matrices. To this end, we introduce, for k = 0, 1, . . . , p− 1, the matrices

A(k)
j := Ekj ETj Ep−k−1

j and B(k)
j := Ekj [ET + (p− 1)u1uT1 ]jEp−k−1

j .(4.15)

Lemma 4.4. For every k ∈ {0, 1, . . . , p − 1} and for every j ∈ IN, the finite
matrices H(k)

j and K(k)
j are oscillation matrices.

Proof. First, we show that A(k)
j and B(k)

j of (4.15) are oscillation matrices: The
upper bidiagonal matrix Ej and the lower bidiagonal matrix ETj are, from (4.5), clearly
totally nonnegative, and, as their determinants are unity, they are both nonsingular.
Similarly, ẼTj is also totally nonnegative and nonsingular. As a consequence of the
Cauchy-Binet formula (cf. [10, p. 86] or [11, Theorem 2.3]), any product of these
matrices, e.g., A(k)

j or B(k)
j , is also nonsingular and totally nonnegative.

Next, it can be verified that [EkET ]j = [Ej ]kETj + ckuTj for k = 1, 2, . . ., where uj
denotes the jth unit vector in IRj and where ck in IRj is defined by

ck :=
[
0, . . . , 0,

(
k
0

)
,
(
k
1

)
, . . . ,

(
k
k−1

)]T
, if k < j, and

ck :=
[(

k
k−j
)
,
(

k
k−j+1

)
, · · · ,

(
k
k−1

)]T
for k ≥ j.

Further, there holds [ME ]j =MjEj for every infinite matrix M. It follows (cf. (4.7)
and (4.10)) that

H(0)
j = A(0)

j , H(k)
j = A(k)

j + ckuTj and

K(0)
j = B(0)

j , K(k)
j = B(k)

j + ckuTj ,
(4.16)
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(k = 1, 2, . . . , p − 1). This shows that A(k)
j differs from H(k)

j at most in their last

column (and that between B(k)
j and K(k)

j , the same relation holds true).

Next, we claim that all subdiagonal and superdiagonal entries of A(k)
j are positive

for any j ≥ 2. To see this, fix any j ≥ 2. From (4.5), write Ekj := I + U(k),
where U(k) in IRj×j is a nonnegative strictly upper triangular matrix with a positive
superdiagonal for each k with 1 ≤ k ≤ p− 1. Similarly, write ETj := I + L, where L
in IRj×j is a nonnegative lower triangular matrix consisting of a subdiagonal of all 1’s
and remaining entries zero. From (4.15), we have

A(k)
j = (I + U(k))(I + L)(I + U(p− k − 1))

= I + L+ {U(k) + U(p− k − 1)}+ a nonnegative matrix in IRj×j .

But for each k with k = 0, 1, . . . , p − 1, the sum {U(k) + U(p − k − 1)} always has
a positive superdiagonal. Hence, A(k)

j has all subdiagonal and superdiagonal entries

positive for all k = 0, 1, . . . , p − 1 and all j ≥ 2, with the same holding for B(k)
j of

(4.15).
To summarize, A(k)

j and B(k)
j are nonsingular, totally nonnegative, and have only

nonzero entries along their sub- and super-diagonals. Consequently, they are oscilla-
tion matrices from Theorem A. Moreover, as H(k)

j is a leading principal submatrix

of A(k)
j+1, and similarly, as K(k)

j is a leading principal submatrix of B(k)
j+1, they are

therefore also oscillation matrices from Theorem B.
Remark. In Lemma 4.4, we proved that the leading principal submatrices of

K(k) = Ek
(
ET + (p− 1)u1uT1

)
Ep−k−1

are oscillation matrices. The same argument shows that the leading principal subma-
trices of

Ek
(
ET + pu1uT1

)
Ep−k−1 (k = 0, 1, . . . , p− 1)

are also oscillation matrices.
Recall that the eigenvalues of H(k)

j are the zeros of H(k)
j and that the eigenvalues

of K(k)
j are the zeros of K(k)

j . This leads, from Theorems C and D, to

Observation 4.5. The zeros
{
λ

(k)
j,l

}j
l=1

of K(k)
j and the zeros

{
η

(k)
j,l

}j
l=1

of H(k)
j

satisfy

0 < λ
(k)
j,1 < λ

(k)
j,2 < · · · < λ

(k)
j,j and 0 < η

(k)
j,1 < η

(k)
j,2 < · · · < η

(k)
j,j ,

for each k ∈ {0, 1, . . . , p− 1}.
Moreover, the following interlacing properties hold:

0 < λ
(k)
j+1,1 < λ

(k)
j,1 < λ

(k)
j+1,2 < λ

(k)
j,2 < · · · < λ

(k)
j,j < λ

(k)
j+1,j+1,

0 < η
(k)
j+1,1 < η

(k)
j,1 < η

(k)
j+1,2 < η

(k)
j,2 < · · · < η

(k)
j,j < η

(k)
j+1,j+1.

Note that this proves the main part of Theorem 3.2 and the first assertion of
Theorem 3.3.
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As a fourth step, we investigate the relation between the eigenvalues of H(k)
j and

the eigenvalues of H(k+1)
j . Similarly, we seek for a relation between the eigenvalues of

K(k)
j and the eigenvalues of K(k+1)

j . We need another set of auxiliary matrices, namely

C(k)
j := EjH(k)

j E−1
j and D(k)

j := EjK(k)
j E−1

j ,(4.17)

(k = 0, 1, . . . , p− 2).
Lemma 4.6. For every k ∈ {0, 1, . . . , p − 2} and for every j ∈ IN, the finite

matrices C(k)
j and D(k)

j are oscillation matrices.
Moreover, the following relations are valid:

H(k+1)
j = C(k)

j + ujuTj and K(k+1)
j = D(k)

j + ujuTj , k ∈ {0, 1, . . . , p− 2} .(4.18)

Proof. Note from (4.7) that, for k ∈ {0, 1, . . . , p− 2},

H(k)
j E−1

j = [EkETEp−k−1]jE−1
j = [EkETEp−k−2]j

is the product of nonsingular totally nonnegative matrices which, using the method
of proof of Lemma 4.4, can be verified to be an oscillation matrix. The matrix C(k)

j ,
as the product of the nonsingular totally nonnegative matrix Ej and the oscillation
matrix H(k)

j E−1
j , is therefore an oscillation matrix from Theorem B.

Similarly,

K(k)
j E−1

j = [Ek(ET + (p− 1)u1uT1 )Ep−k−1]jE−1
j = [Ek(ET + (p− 1)u1uT1 )Ep−k−2]j

is an oscillation matrix (cf. the Remark following Lemma 4.4), and thus, D(k)
j , the

product of a nonsingular totally nonnegative matrix and an oscillation matrix, is an
oscillation matrix.

To show (4.18), we observe from (4.16) that

H(k+1)
j − C(k)

j = A(k+1)
j + ck+1uTj − Ej [A

(k)
j + ckuTj ]E−1

j

= ck+1uTj − EjckuTj E−1
j ;

(here, we set c0 := 0 ∈ IRj). Since uTj E−1
j = uTj and ck+1 − Ejck = uj , the first

assertion of (4.18) is now proven, and the second follows exactly along the same lines.

Note from (4.17) that the eigenvalues of the oscillation matrices D(k)
j and K(k)

j

are obviously the same, and from (4.18) that K(k+1)
j is obtained from D(k)

j by adding
1 to the (j, j) entry, provided that k ∈ {0, 1, . . . , p− 2}. In addition,

Ep−1
j+1K

(0)
j+1E

1−p
j+1 = Ep−1

j+1 B
(0)
j+1E

1−p
j+1 = Ep−1

j+1 [ET + (p− 1)u1uT1 ]j+1 = B(p−1)
j+1

is an oscillation matrix (cf. the proof of Lemma 4.4) which contains K(p−1)
j as its

leading principal submatrix.
Analogously, the eigenvalues of the oscillation matrices C(k)

j and H(k)
j are the

same, and H(k+1)
j is obtained from C(k)

j by adding 1 to the (j, j) entry (for
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k ∈ {0, 1, . . . , p− 2}). Also, H(p−1)
j (which has a Toeplitz structure) is a principal

submatrix of H(0)
j+1. Theorem E directly leads us now to

Observation 4.7. The zeros
{
λ

(k)
j,l

}j
l=1

of K(k)
j are related by

0 < λ
(k)
j,1 < λ

(k+1)
j,1 < λ

(k)
j,2 < λ

(k+1)
j,2 < · · · < λ

(k)
j,j < λ

(k+1)
j,j (k = 0, 1, . . . , p− 2) and

0 < λ
(0)
j+1,1 < λ

(p−1)
j,1 < λ

(0)
j+1,2 < λ

(p−1)
j,2 < · · · < λ

(p−1)
j,j < λ

(0)
j+1,j+1.

Similarly, the zeros
{
η

(k)
j,l

}j
l=1

of H(k)
j are related by

0 < η
(k)
j,1 < η

(k+1)
j,1 < η

(k)
j,2 < η

(k+1)
j,2 < · · · < η

(k)
j,j < η

(k+1)
j,j (k = 0, 1, . . . , p− 2) and

0 < η
(0)
j+1,1 < η

(p−1)
j,1 < η

(0)
j+1,2 < η

(p−1)
j,2 < · · · < η

(p−1)
j,j < η

(0)
j+1,j+1.

Note that Observation 4.7 establishes Theorem 3.4.
As a fifth step, we seek relations between the eigenvalues of H(k)

j and the eigen-

values of K(k)
j .

Lemma 4.8. The matrices K(k)
j and H(k)

j are connected through

K(p−1)
j = H(p−1)

j + (p− 1)u1uT1 and

Ej
(
K(k)
j −H

(k)
j

)
E−1
j =

(
K(k+1)
j −H(k+1)

j

)
(for k = 0, 1, . . . , p− 2) .

Proof. The first relation is a direct consequence of (4.14). The second relation is
established (cf. (4.16)) from

Ej
(
K(k)
j −H

(k)
j

)
E−1
j = Ej

(
B(k)
j −A

(k)
j

)
E−1
j

= B(k+1)
j −A(k+1)

j = K(k+1)
j −H(k+1)

j .

The argument leading from Lemma 4.8 to Observation 4.7 now implies

Observation 4.9. The zeros
{
λ

(k)
j,l

}j
l=1

of K(k)
j and the zeros

{
η

(k)
j,l

}j
l=1

of H(k)
j

are related by

0 < η
(k)
j,1 < λ

(k)
j,1 < η

(k)
j,2 < λ

(k)
j,2 < · · · < η

(k)
j,j < λ

(k)
j,j .

Note that Observation 4.9 completes the proof of Theorem 3.3.
As a sixth step, we derive a sharp upper bound for the eigenvalues of H(k)

j and the

eigenvalues of K(k)
j . We first deduce an upper bound for the spectral radius ρ(K(p−1)

j )

of K(p−1)
j , which is a nonnegative irreducible matrix. To this end, we define the

positive vector x in IRj , for j ≥ 1, by

x = [x1, x2, . . . , xj ]
T :=

[
τ0, τ1, . . . , τ j−1

]T ∈ IRj , where τ := 1/(p− 1) ,
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Fig. 4.1. Shape of Γρ for p = 5.

and we compute the components of y = [y1, y2, . . . , yj ]T := K(p−1)
j x. It is easy to

verify from (4.14) that yk/xk = κp := pp/(p − 1)p−1 for k = 1, 2, . . . , j − p + 1
and that yk/xk < κp for k = j − p + 2, . . . , p. By a refined form of the “Quotient
Theorem” due to Collatz (cf. [21, Theorem 2.2]), we have that ρ(K(p−1)

j ) < κp, for

all j ≥ 1. We already know (cf. Observations 4.7 and 4.9) that ρ(K(k)
j ) < ρ(K(p−1)

j )

for k = 0, 1, . . . , p − 2, j ≥ 1, and that ρ(H(k)
j ) < ρ(K(p−1)

j ) for k = 0, 1, . . . , p − 1,
j ≥ 1. These inequalities could also be derived from the Perron-Frobenius theory on
nonnegative matrices.

Next, we wish to show that, for each k ∈ {0, 1, . . . , p − 1}, the eigenvalues of
H(k)
j , as well as the eigenvalues of K(k)

j , are dense in the interval II := [0, κp] (for
j → ∞). In view of the interlacing properties described in Observations 4.5, 4.7
and 4.9, it is certainly sufficient to show that the eigenvalues of the finite sections of
the Toeplitz matrix H of (4.2) are dense on the star S(p, 1, 1) (cf. (3.1)). In other
words, we must show that S(p, 1, 1) = Λ∞(H) (cf. (2.13)). Since Λ(Hj) ⊆ S(p, 1, 1)
for every j = 1, 2, . . . (which obviously implies Λ∞(H) ⊆ S(p, 1, 1)) has already been
shown, the symmetry properties of S(p, 1, 1) imply that we merely must prove that
[0, κ1/p

p ] ⊆ Λ∞(H) is valid.
Here, we make use of Theorem F. With ψ(w) = w + w1−p for p > 2, we monitor

the shape of the curve Γρ := {z ∈ IC : z = ψ(w) with w = ρ}, as ρ increases from 0 to
∞ (cf. Fig. 4.1), and show that [0, κ1/p

p ] ⊆ Λρ(H) for every ρ > 0:
For 0 < ρ < 1,Γρ has its largest intersection point with the real axis at τρ :=

ρ + ρ1−p > κ
1/p
p . Then, because the winding number n(Γρ, r) is nonzero for each

r in the interval [0, τρ], it follows by definition that [0, τρ] ⊆ Λρ(H). Consequently,
[0, κ1/p

p ] ⊆ Λρ(H) for 0 < ρ < 1.
For ρ = 1, Γρ is a looped hypocycloid centered at the origin, which intersects

the positive real axis in exactly one point, namely τ1 = 2 > κ
1/p
p . Consequently,

[0, κ1/p
p ] ⊆ Λρ(H) for ρ = 1.
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For 1 < ρ < (p − 1)1/p, Γρ is a looped hypocycloid centered at the origin, which
intersects the positive real axis in exactly two points, the larger of which equals
τρ = ρ+ ρ1−p > κ

1/p
p . Consequently, [0, κ1/p

p ] ⊆ Λρ(H) for 1 < ρ < (ρ− 1)1/p.
For ρ = (p−1)1/p, Γρ is a cusped hypocycloid centered at the origin, which inter-

sects the positive real axis in exactly one point, namely in τρ = κ
1/p
p . Consequently,

[0, κ1/p
p ] ⊆ Λρ(H) for ρ = (p− 1)1/p.
Finally, for ρ > (p−1)1/p, Γρ is a blunted hypocycloid centered at the origin, which

intersects the positive real axis in exactly one point, namely in τρ = ρ+ ρ1−p > κ
1/p
p .

Consequently, [0, κ1/p
p ] ⊆ Λρ(H) for ρ > (p− 1)1/p.

This completes the proof of [0, κ1/p
p ] ⊆ ∩ρ>0Λρ(H) = Λ∞(H) (cf. Theorem F)

and also the proof of Theorem 3.2.

5. Concluding Remarks. We finally note that we also implicitly determined
the zeros and local extreme points of the Faber polynomials associated with a another
class of compact sets, which are defined by mappings of the form

ψ(w) = αw

(
1 +

β

w

)p
(p ∈ IN, α > 0, β ∈ IC, β 6= 0) ,(5.1)

where ψ is conformal in |w| > 1 if and only if |β| ≤ 1/(p − 1). (For p = 1, this
condition is vacuous.) In Fig. 5.1, we present examples of the sets

Ω = Υ(p, α, β) := IC∞ \ {z ∈ IC : z = ψ(w) with |w| > 1} ,(5.2)

where, e.g., for the figure on the left, Υ(3, 1, 1/2) (which has a cusp on its boundary)
and Υ(3, 3/2, 1/3) are shown, along with the zeros of the associated Faber polynomials
{Fm}50

m=1 (cf. the second footnote in Section 1). Note that for p = 1, Υ(1, α, β)
represents the closed disk with center αβ and radius α. It is well known in this case
that Fm has then only one zero, namely ξ = αβ (with multiplicity m). In the sequel,
we shall therefore concentrate on the case of p > 14.

From (5.1), we know that the infinite upper Hessenberg matrix F associated with
these Faber polynomials {Fm}m≥0 has the form (cf. (2.4))

F = FΥ := α



(
p
1

)
β 2

(
p
2

)
β2 · · · p

(
p
p

)
βp(

p
0

) (
p
1

)
β

(
p
2

)
β2

(
p
p

)
βp(

p
0

) (
p
1

)
β

. . .
(
p
p

)
βp

. . . . . . . . .


,

whereas the the infinite upper Hessenberg Toeplitz matrix G associated with the Faber
polynomials of the second kind {Gm}m≥0 for Υ(p, α, β) has the form (cf. (2.9))

G = GΥ := α



(
p
1

)
β

(
p
2

)
β2 · · ·

(
p
p

)
βp(

p
0

) (
p
1

)
β

(
p
2

)
β2

(
p
p

)
βp(

p
0

) (
p
1

)
β

. . .
(
p
p

)
βp

. . . . . . . . .


.

4 Notice also that for p = 2, we obtain another well-known case: Υ(2, α, β) is either an interval
(if |β| = 1/2) or an ellipse together with its interior (if |β| < 1/2).
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Fig. 5.1. Υ(p, α, β) for p = 3 and p = 5, together with the zeros of the associated Faber
polynomials {Fm}50

m=1.

As in the case of the hypocycloidal domains, we apply a diagonal similarity transfor-
mation to the above matrices. With the infinite diagonal matrix

D := diag
(
β0, β1, β2, . . .

)
,

there holds

DFΥD−1 = K̃ := αβ



(
p
1

)
2
(
p
2

)
· · · p

(
p
p

)(
p
0

) (
p
1

) (
p
2

) (
p
p

)
(
p
0

) (
p
1

) . . .
(
p
p

)
. . . . . . . . .


,

and, similarly,

DGΥD−1 = H̃ := αβ



(
p
1

) (
p
2

)
· · ·

(
p
p

)(
p
0

) (
p
1

) (
p
2

) (
p
p

)
(
p
0

) (
p
1

) . . .
(
p
p

)
. . .

. . .
. . .


.

Since k
(
p
k

)
= p
(
p−1
k−1

)
(for p = 1, 2, . . . and k = 1, 2, . . . , p), the first row of K̃ equals

αβ p

[(
p− 1

0

)
,

(
p− 1

1

)
, . . . ,

(
p− 1
p− 1

)
, 0, . . .

]
= αβ pbTp−1,

where the vector bp−1 is defined in (4.11). Thus, we conclude, from (4.11) and the
last line of Lemma 4.3, that the above matrices can be expressed simply as

K̃ = αβK(0) and H̃ = αβH(p−1).
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Fig. 5.2. Zeros of {Fm}25
m=1 (on the left) and of {Gm}25

m=1 (on the right) for Υ(3, 1, 1/2)
plotted versus m.

Consequently, their associated Faber polynomials are explicitly given by

Fm(z) = αmK(0)
m

(
z

αβ

)
and Gm(z) = αm+1H(p−1)

m

(
z

αβ

)
(m ∈ IN0),

where the polynomials K(0)
m and H(p−1)

m are recursively defined in Theorem 3.1.
From Theorems 3.2 and 3.3, we immediately obtain our last new result:
Theorem 5.1. Let Fm and Gm denote, respectively, the mth Faber polynomial of

the first and second kind associated with the compact set Υ(p, α, β) of (5.2), where we
assume that p > 1. Then, all zeros {ξm,k}mk=1 of Fm, as well as all zeros {ζm,k}mk=1 of
Gm, are simple and are located in the (complex) open interval (0, αβpp/(p− 1)p−1).
Moreover, for m → ∞, both sets, {ξm,k}mk=1 and {ζm,k}mk=1, become dense on the
closed interval [0, αβpp/(p− 1)p−1].

With the orderings

|ξm,1| < |ξm,2| < · · · < |ξm,m| and |ζm,1| < |ζm,2| < · · · < |ζm,m| ,

the following interlacing properties are valid:

0 < |ξm+1,1| < |ξm,1| < |ξm+1,2| < |ξm,2| < · · · < |ξm,m| < |ξm+1,m+1|, and
0 < |ζm+1,1| < |ζm,1| < |ζm+1,2| < |ζm,2| < · · · < |ζm,m| < |ζm+1,m+1|,

for every m ∈ IN0.
These interlacing properties are illustrated in Fig. 5.2 for Υ(3, 1, 1/2).
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