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A NEW LEHMER PAIR OF ZEROS AND A NEW LOWER BOUND
FOR THE DE BRUIJN-NEWMAN CONSTANT Λ∗
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Dedicated to Wilhelm Niethammer on the occasion of his 60th birthday.
Abstract. The de Bruijn-Newman constant Λ has been investigated extensively because the

truth of the Riemann Hypothesis is equivalent to the assertion that Λ ≤ 0. On the other hand, C.
M. Newman conjectured that Λ ≥ 0. This paper improves previous lower bounds by showing that

−5.895 · 10−9 < Λ.

This is done with the help of a spectacularly close pair of consecutive zeros of the Riemann zeta
function.
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1. Introduction. It is known (cf. Titchmarsh [9, p. 255]) that the Riemann
ξ-function can be expressed in the form

ξ
(x

2

)
/8 =

∫ ∞
0

Φ(u) cos(xu)du (x ∈ IC),(1.1)

where

Φ(u) :=
∞∑
n=1

(
2π2n4e9u − 3πn2e5u

)
exp

(
−πn2e4u

)
(0 ≤ u <∞),(1.2)

and the Riemann Hypothesis is the statement that all zeros of ξ are real. If we define

Ht(x) :=
∫ ∞

0

etu
2
Φ(u) cos(xu)du (t ∈ IR;x ∈ IC),(1.3)

then H0 and the Riemann ξ-function are related through

H0(x) = ξ
(x

2

)
/8,(1.4)

so that the Riemann Hypothesis is also equivalent to the statement that all zeros of
H0 are real.

In 1950, De Bruijn [2] established that
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(i) Ht has only real zeros for t ≥ 1/2;

(ii) if Ht has only real zeros for some real t, then Ht′ has only real zeros
for any t′ ≥ t.

C.M. Newman showed further in [6] that there is a real constant Λ, which satisfies
−∞ < Λ ≤ 1/2, such that

Ht has only real zeros if and only if t ≥ Λ.(1.5)

In the literature, this constant Λ is now called the de Bruijn-Newman constant.
The Riemann Hypothesis is equivalent to the conjecture that Λ ≤ 0. On the other
hand, C. M. Newman conjectured that Λ ≥ 0. The significance of Newman’s conjec-
ture is that if it is true, then the Riemann Hypothesis, even if it is true, is only barely
so, as even slight perturbations of the zeta function give rise to zeros that are not on
the critical line.

There has been extensive recent research activity in finding lower bounds for
Λ, and these results have been summarized in Csordas, Smith, and Varga [4]. In
particular, the best lower bound for Λ in that paper was

−4.379 · 10−6 < Λ.(1.6)

It is known (cf. Csordas, Norfolk, and Varga [3]) that Ht, defined in (1.3), is an
even real entire function of order 1 and maximal type, for each real t. Thus, from the
Hadamard factorization theorem, Ht(x) can be represented as

Ht(x) = Ht(0)
∞∏
j=1

(
1− x2

x2
j(t)

)
(t ∈ IR;x ∈ IC),(1.7)

where from (1.3) and from the fact that Φ(u) > 0 for all u ≥ 0, it follows that
Ht(0) > 0. It is also known that

∞∑
j=1

|xj(t)|−2 <∞.(1.8)

It is convenient to order the zeros of H0, {xj(0)}∞j=1, in Re z > 0 according to
increasing modulus, and, from the evenness of H0, we set

x−j(0) := −xj(0) (j = 1, 2, · · ·).(1.9)

Following Csordas, Smith, and Varga [4], we make the following

Definition 1.1. With k a positive integer, let xk(0) and xk+1(0) (with 0 <
xk(0) < xk+1(0)) be two consecutive simple positive zeros of H0, and set

∆k := xk+1(0)− xk(0).(1.10)

Then, {xk(0);xk+1(0)} is a Lehmer pair of zeros of H0 if

∆2
k · gk(0) < 4/5,(1.11)
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where

gk(0) :=
∑

j 6=k,k+1

′
{

1
(xk(0)− xj(0))2

+
1

(xk+1(0)− xj(0))2

}
;(1.12)

here (and in what follows), the prime in the above summation means that j 6= 0,
so that the above summation extends over all positive and negative integers with
j 6= k, k + 1, 0.

We remark that the convergence of the sum in (1.12) is guaranteed by the con-

vergence of the sum
∞∑
j=1

|xj(0)|−2 (cf. (1.8)).

With Definition 1.1, we further have from Csordas, Smith, and Varga [4] the
following result.

Theorem 1.1. Let {xk(0);xk+1(0)} be a Lehmer pair of zeros of H0. If (cf.
(1.12)) gk(0) ≤ 0, then Λ > 0. If gk(0) > 0, set

λk :=
(1− 5

4∆2
k · gk(0))4/5 − 1
8gk(0)

,(1.13)

so that −1/[8gk(0)] < λk < 0. Then, the de Bruijn-Newman constant Λ satisfies

λk ≤ Λ.(1.14)

2. Application of Theorem 1.1. For our applications below, let N(T ) denote
the number of zeros of the Riemann zeta function ζ(s), with s = σ + it, in the rect-
angle 0 ≤ σ ≤ 1 and 0 ≤ t ≤ T . The following result was proved by Backlund [1].

Theorem 2.1. N(T ) satisfies

N(T ) =
T

2π
log
(
T

2π

)
− T

2π
+

7
8

+ e(T ),(2.1)

where

|e(T )| < 0.137 logT + 0.443 log logT + 4.35 (T ≥ 2).(2.2)

A straightforward calculation, based on (2.1) and (2.2), gives the following result,
whose proof is given (for completeness) in the Appendix.

Lemma 2.1. N(T ) satisfies

N(T + 1)−N(T ) ≤ logT (T ≥ 3 · 108).(2.3)

This brings us to
Lemma 2.2. . Suppose Λ < 0, so that all zeros, xj := xj(0), of H0 are real (cf.

(1.5)) and recall that xj = 2γj, where 1
2 + iγj is the associated zero of ζ(s). Then,

∞∑
j=m

1
x2
j

≤ log([γm]− 1) + 1
4([γm]− 1)

([γm] ≥ 3 · 108),(2.4)
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where, for each real u, [u] denotes the greatest integer ≤ u.
Proof: We have

∞∑
j=m

1
x2
j

=
1
4

∞∑
j=m

1
γ2
j

≤ 1
4

∞∑
j=[γm]

∑
j≤γ`<j+1

1
γ2
`

≤ 1
4

∞∑
j=[γm]

(
N(j + 1)−N(j)

j2

)
≤ 1

4

∞∑
j=[γm]

log j
j2

,

the last inequality following from (2.3) of Lemma 2.1. But, this last sum is bounded
above by

1
4

∫ ∞
[γm]−1

log u du
u2

=
log([γm]− 1) + 1

4([γm]− 1)
,

which is the desired result of (2.4). 2
In their important numerical study of the zeros of the Riemann ζ-function on the

critical line, van de Lune, te Riele, and Winter [5] found a spectacularly close pair of
consecutive simple zeros, namely, 1

2 + iγK and 1
2 + iγK+1, for which (cf. (2.8))

γK+1 − γK = 0.000 108 569 6 (K := 1, 048, 449, 114).

Then, 2γK and 2γK+1 are zeros of the function H0, so that (cf. (1.4)){
xK := xK(0) = 2γK = 7.777 177 720 045 702 406 · 108, and

xK+1 := xK+1(0) = 2γK+1 = 7.777 177 720 047 873 798 · 108,
(2.5)

is similarly a spectacularly close pair of consecutive simple positive zeros of H0. The
calculations of van de Lune, te Riele, and Winter [5] established that the first 1.5 ·109

zeros are real, but they did not compute accurate values for them. Therefore, we have
used a CRAY-YMP and techniques from Odlyzko [7] to determine, to high precision,
a large number of zeros of H0 on either side of the zeros of (2.5), in order to facilitate
the estimation of gK(0) of (1.12). As we shall see below, only a surprisingly small
number of these nearby zeros is actually needed to estimate gK(0).

The general expectation is that there are other Lehmer pairs that produce bounds
for Λ that are even closer to 0 (see the discussion in Csordas, Smith, and Varga [4]
and Odlyzko [8]). However, at this time we do not know of another pair that is likely
to produce a better bound. The computations of van de Lune, te Riele, and Winter
[5] do not prove conclusively that there is no closer pair among the first 1.5 · 109 zeros
of the zeta function. However, given the search method used, it seems unlikely that
such a pair was missed. The computations of Odlyzko [8] near the zero 1

2 + iγm of the
ζ-function, with m = 1020, as well as in some other high intervals, did find some close
Lehmer pairs, but none of them seem to lead to results as good as we obtain here.

The proof of the next lemma is patterned after Lemma 5.1 of Csordas, Smith,
and Varga [4].

Lemma 2.3. Suppose Λ < 0. Then, the pair of consecutive simple positive zeros
{xK(0);xK+1(0)} in (2.5) is a Lehmer pair of zeros of H0.
Proof. We first establish an upper bound for gK(0) of (1.12) for K := 1, 048, 449, 114.
Writing for convenience xj := xj(0), gK(0) can be expressed as the sum of the fol-
lowing three terms:

gK(0) = MK,n + IK,n+1 +RK,K+n+2, where n := 9, 998,(2.6)
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and where

MK,n :=
K+n+1∑
j=K−n

j 6=K,K+1

{
1

(xK − xj)2
+

1
(xK+1 − xj)2

}
,

IK,n+1 :=
K−n−1∑

j=−K−n−1

′ {
1

(xK − xj)2
+

1
(xK+1 − xj)2

}
,

and

RK,K+n+2 :=
∑

|j|≥K+n+2

{
1

(xK − xj)2
+

1
(xK+1 − xj)2

}
.

We separately bound the sums MK,n, IK,n+1, and RK,K+n+2.
Consider first MK,n. Since Λ < 0 by hypothesis, it follows that all the zeros of H0

are real and simple (cf. Lemma 2.2 of Csordas, Smith, and Varga [4]). Hence, from
the definition of MK,n,

MK,n <
K+n+1∑
j=K−n

j 6=K,K+1

{
1

(xK − xK−1)2
+

1
(xK+1 − xK+2)2

}

= 2n
{

1
(xK − xK−1)2

+
1

(xK+1 − xK+2)2

}
,

so that

MK,n <
n

2

{
1

(γK − γK−1)2
+

1
(γK+2 − γK+1)2

}
.(2.7)

Now, the newly computed zeros, γK−1 and γK+2, along with γK and γK+1, are
γK−1 = 3.888 588 853 843 374 083 · 108,
γK = 3.888 588 860 022 851 203 · 108,

γK+1 = 3.888 588 860 023 936 899 · 108,
γK+2 = 3.888 588 866 907 450 543 · 108.

(2.8)

Thus, with the above numbers and with n := 9, 998, the upper bound of (2.7), when
rounded upward to the next integer, becomes

MK,n < 23, 642.(2.9)

We next bound above IK,n+1 by

IK,n+1 < 2
K−n−1∑

j=−K−n−1

′ 1
(xK − xK−n−1)2

(2.10)

=
4K

(xK − xK−n−1)2

=
K

(γK − γK−n−1)2
.
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With the value of γK from (2.8) and with our calculated value of

γK−n−1 = γK−9999 = 3.888 553 840 902 274 209 · 108,

the upper bound of (2.10), when rounded upward to the next integer, is

IK,n+1 < 86.(2.11)

Finally, we bound above RK,K+n+2. Since H0 is an even function, we have (cf.
(1.9)) x−j(0) = −xj(0), so that RK,K+n+2 can be expressed as

RK,K+n+2 =(2.12)
∞∑

j=K+n+2

{
1

(xK − xj)2
+

1
(xK+1 − xj)2

+
1

(xK + xj)2
+

1
(xK+1 + xj)2

}
.

Since 1
(xK−xj)2 =

x2
j

(xK−xj)2 · 1
x2
j
, where

x2
j

(xK−xj)2 is monotone decreasing for j ≥ K+n+

2, the sum of the first term from the bracketed quantity in (2.12) is bounded above by
x2
K+n+2

(xK−xK+n+2)2 ·
∞∑

j=K+n+2

1
x2
j

, and the sum of the third term from the bracketed quantity

in (2.12) is bounded above simply by
∞∑

j=K+n+2

1
x2
j

. With an analogous treatment for

the remaining terms from the bracketed quantity in (2.12), we thus have

RK,K+n+2 <

{
x2
K+n+2

(xK − xK+n+2)2
+

x2
K+n+2

(xK+1 − xK+n+2)2
+ 2
}
·

∞∑
j=K+n+2

1
x2
j

.(2.13)

With the values of γK and γK+1 from (2.8), and with the calculated value of

γK+n+2 = γK+10,000 = 3.888 623 880 181 523 962 · 108,(2.14)

we find that{
x2
K+n+2

(xK − xK+n+2)2
+

x2
K+n+2

(xK+1 − xK+n+2)2
+ 2
}

= 2.465 957 . . . · 1010.

Also, since γK+10,000 from (2.14) satisfies [γK+10,000] > 3 · 108, applying Lemma 2.2
gives

∞∑
j=K+n+2

1
x2
j

≤ log([γK+n+2]− 1) + 1
4([γK+n+2]− 1)

= 1.335 866 927 . . . · 10−8.

Substituting in the right side of (2.13) then gives, on rounding upward to the next
integer,

RK,K+n+2 < 330.(2.15)

Combining the upper estimates of (2.9), (2.11), and (2.15) gives

gK(0) < 24, 058.(2.16)
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But ∆K := xK+1 − xK = 2 (γK+1 − γK), so (2.8) gives

∆K = 2.171 392 . . . · 10−4,(2.17)

and with (2.16), we then have

∆2
K · gK(0) < 1.134 321 . . . · 10−3 < 4/5.

Thus from (1.11) of Definition 1.1, {xK ;xK+1} is a Lehmer pair of zeros of H0.2
Finally, we establish our new result, Theorem 2.2 below. If Λ ≥ 0, the lower

bound of (2.18) is trivially true. Hence, assume, as in Lemmas 2.2 and 2.3, that
Λ < 0. We note that λk, as defined in (1.13), is a monotone decreasing function of
gk(0) (if ∆2

k · gk(0) < 4/5). Hence the upper bound for gK(0) in (2.16), when used to
determine λk in (1.13), gives the lower bound −5.895 ·10−9 of (2.18) for Λ, as claimed
in the Abstract above.

Theorem 2.2. A lower bound for the de Bruijn-Newman constant Λ is

−5.895 · 10−9 < Λ.(2.18)

As remarked in Csordas, Smith, and Varga [4], the lower bound for Λ in (2.18)
is quite insensitive to upper estimates of gK(0). This can be seen from the following
Taylor series of λK of (1.13), in terms of ∆2

KgK(0) and its powers:

λK = − ∆2
K

8
− ∆4

KgK(0)
64

− ∆6
Kg

2
K(0)

128
− 11∆8

Kg
3
K(0)

2048
− · · · ,(2.19)

where we note, from (2.17), that just the first term of (2.19) is

− ∆2
K

8
= − 5.893 679 . . . · 10−9.

3. Appendix: Proof of Lemma 2.1. By (2.1), we can write N(T ) = s(T ) +
e(T ), where

s(T ) :=
(
T

2π

)
log
(
T

2π

)
− T

2π
+

7
8

(T ≥ 2).(3.1)

Then

s(T + 1)− s(T ) =
(
T + 1

2π

)
log
(
T + 1

2π

)
−
(
T + 1

2π

)
−
(
T

2π

)
log
(
T

2π

)
+
(
T

2π

)
.

Writing log
(
T+1
2π

)
= log

(
T
2π

)
+log

(
1 + 1

T

)
= log

(
T
2π

)
+ 1
T −

1
2T 2 + 1

3T 3 −· · · , we find
that

s(T + 1)− s(T ) = log T−log 2π
2π + 1

2π

{
1 + 1

2T −
1

6T 2 + 1
12T 3 − · · ·

}
− 1

2π

= log T−log 2π
2π + 1

2π

{
1

2T −
1

6T 2 + 1
12T 3 − · · ·

}
< log T−log 2π

2π + 1
4πT ,

where the upper bound arises from taking the first term of the alternating series
above. Hence by (2.2),

N(T + 1)−N(T ) <
logT
2π
− log 2π

2π
+

1
4πT

+ |e(T + 1)|+ |e(T )|

<
logT
2π
− log 2π

2π
+

1
4πT

+ 0.137
(

2 logT + log
(

1 +
1
T

))
+ 0.886 log log(T + 1) + 8.70 (T ≥ 2).
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Using the upper bound log(1 + 1
T ) < 1

T and evaluating the constants, this gives

N(T + 1)−N(T ) < 0.433 154 943 logT + 0.886 log log(T + 1) + 8.407 492 780

+
0.216 577 472

T
.

(3.2)
It can be easily seen that

0.886 log log(T + 1) ≤ α logT for α := 0.134 874 935 (T ≥ 3 · 108),(3.3)

and

8.407 492 780 ≤ β logT for β := 0.430 727 320 (T ≥ 3 · 108).(3.4)

Thus, inserting the bounds of (3.3) and (3.4) in (3.2) gives

N(T + 1)−N(T ) < 0.998 757 198 logT +
0.216 577 472

T
< logT (T ≥ 3 · 108),(3.5)

which is the desired result of (2.3) of Lemma 2.1. 2
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[1] R. J. Backlund,Über die Nullstellen der Riemannschen Zetafunktion,Acta Math. 41 (1918),
pp. 345-375.

[2] N. C. de Bruijn The roots of trigonometric integrals, Duke J. Math 17 (1950), pp. 197-226.
[3] G. Csordas, T. S. Norfolk, and R. S. Varga, A lower bound for the de Bruijn-Newman

constant Λ, Numer. Math 52 (1988), pp. 483-497.
[4] G. Csordas, W. Smith, and R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman

constant Λ, and the Riemann Hypothesis, Constr. Approx., 1994 (to appear).
[5] J. van de Lune, H. J. J. te Riele, and D. T. Winter, (1986): On the zeros of the Riemann

zeta function in the critical strip, IV, Math. Comp. 46 (1986), pp. 667-681.
[6] C. M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976),

pp. 245-251.
[7] A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. of

Comp. 48 (1987), pp. 273-308.
[8] A. M. Odlyzko, The 1020-th Zero of the Riemann Zeta Function and 175 Million of its

Neighbors, to be published.
[9] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Second ed. (revised by D.R.

Heath-Brown), Oxford University Press, Oxford, 1986.


