| [BB]
 |  R. Brockett and C. Byrnes, 
   Multivariable Nyquist criteria,
  root loci and pole placement: A geometric viewpoint , IEEE
  Trans. Automat. Control., AC-26 (1981), 271-284.
 | 
| [BFZ]
 | A. Berenstein, S. Fomin, and A. Zelevinsky,  
   Parametrizations of canonical bases and totally
  positive matrices. 
     Adv. Math., 122 (1996), 49-149. 
 | 
| [By]
 |  C. Byrnes,  
   Pole assignment by output feedback, in
  Three   Decades of Mathematical Systems Theory, H. Nijmeijer and
  J. M. Schumacher, eds., 
  vol. 135 of Lecture Notes in Control and Inform. Sci., Springer-Verlag,
  Berlin, 1989, pp. 31-78.
 | 
| [D]
 |  P. Deitmaier,  
  The Stewart-Gough platform of general geometry can
  have  40 real postures, in Advances in Robot Kinematics:
  Analysis and Control,  Jordan Lenancic, and Manfred Husty, eds., Kluwer,
1998, pp. 1-10.
 | 
| [EH]
 |  D. Eisenbud and J. Harris,  
   Divisors on general curves and cuspidal
  rational curves, Invent. Math., 74 (1983), pp. 371-418.
 | 
| [EG]
 |  A. Eremenko and A. Gabrielov,  
   Rational functions with real critical points and
  B. and M. Shapiro conjecture in real enumerative geometrys,
  Mss., December 1999.
 | 
| [FRZ]
 |  J.-C. Faugère, Fabrice Rouillier, and Paul Zimmermann,
   Private communication, 1998.
 | 
| [Fu]
 |  W. Fulton,  
   Introduction to Intersection Theory in Algebraic
  Geometry, CBMS 54, AMS, 1996.  second edition.
 | 
| [G-VRRT]
 |  L. Gonzalez-Vega, F. Rouillier,  M.F. Roy, and G. Trujillo,  
  Symbolic Recipes for Real Solutions, 
  in Some Tapas of Computer Algebra,
A.M. Cohen, H. Cuypers, and H. Sterk, eds., Springer-Verlag, 1999.
pp. 34-65.
 | 
| [HP]
 |  W.V.D. Hodge and D. Pedoe,  
  Methods of Algebraic Geometry, Volume
II, Cambridge University Press, 1952.
 | 
| [HSS]
 |  B. Huber, F. Sottile, and B. Sturmfels, 
Numerical Schubert Calculus, 
J. Symb. Comp., 26 (1998), pp. 767-788.
 | 
| [Kh]
 |  V. Kharlamov,  
  Private communication.
 | 
| [Kl]
 |  S. Kleiman,  
  The transversality of a general translate, 
Comp. Math.,   28 (1974), pp. 287-297.
 | 
| [Lö]
 |  C. Löwner,  
  On totally positive matrices, 
math. Zeitschr.,  63 (1955), pp. 266-267.
 | 
| [RTV]
 |  F.Ronga, A.Tognoli, and T.Vust,  
   The number of conics tangent to 5
  given conics: the real case, Rev. Mat. Univ. Complut. Madrid,
  10 (1997),   pp. 391-421.
 | 
| [RS]
 |  J. Rosenthal and F. Sottile, 
Some remarks on real
and complex output feedback, Sys. and Control Lett., 33 (1998),
pp. 73-80.  
Documentation of the
system we found that is not 
controllable with real output feedback
 | 
| [Sc]
 |  H. Schubert,  
  Beziehungen zwischen den linearen Räumen
  auferlegbaren charakteristischen Bedingungen, 
  Math. Ann., 38 (1891),   pp. 588-602.
 | 
| [So94]
 | F. Sottile,  
  Real Enumerative Geometry for the Grassmannian of Lines
in Projective Space, Ph.D. Thesis, University of Chicago, 1994.
 | 
| [So96]
 |         
        , 
Pieri's
formula for flag manifolds and Schubert polynomials,
Annales de l'Institut Fourier,   46  (1996), pp. 89-110.
 | 
| [So97a]
 |         
        , 
Enumerative
geometry for the real Grassmannian of lines in projective space,
Duke Math. J., 87 (1997), 
pp. 59-85. 
 | 
|  [So97b]
 |          
        , 
 Real enumerative
geometry and effective algebraic equivalence, J. Pure
Appl. Alg., 117 & 118    (1997), pp. 601-615. Proc., MEGA'96.
 
 | 
|  [So97c]
 |          
        , 
  Enumerative
 geometry for real  varieties, in Algebraic 
  Geometry, Santa Cruz 1995, J. Kollár, R. Lazarsfeld, and D. Morrison,
  eds., vol. 62, Part 1 of Proc. Sympos. Pure Math., Amer. Math. Soc., 1997,
  pp. 435-447.
 | 
|  [So99]
 |          
        , 
 The Special
 Schubert calculus is  real, 
 ERA of the AMS, 5 (1999), 35-39.
 | 
|  [So00]
 |          
        , 
 
 
 Real Scubert
 calculus: Polynomial  systems and 
 a conjecture of Shapiro  and Shapiro, Experimental
 Mathematics 9:2 (2000), pp. 161-182. 
 | 
|  [So00a]
 |          
        , 
 Real Rational
 Curves in Grassmannians,  
 J. Amer. Math. Soc.
     13 (2000), 333-341. 
 | 
|  [So00b]
 |          
        , 
 Some real and unreal enumerative geometry for flag
 manifolds, Michigan Math.J., to appear, 2000.
 | 
|  [St]
 |  B. Sturmfels,  
   Polynomial equations and convex polytopes, 
 Amer. Math. Monthly, 105, (1998), 907--922.
 | 
|  [V]
 |  J. Verschelde,  
   Numerical evidence for a conjecture in real
  algebraic geometry, 
 Experimental Mathematics, to appear. 1998.
 |