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In earlier papers [Wilson 04, Totaro 04], the S-invariant of a
ternary cubic f was interpreted in terms of the curvature of re-
lated Riemannian and pseudo-Riemannian metrics. This is clar-
ified further in Section 3 of this paper. In the case that f arises
from the cubic form on the second cohomology of a smooth
projective threefold with second Betti number three, the value
of the S-invariant is closely linked to the behavior of this curva-
ture on the open cone consisting of Kähler classes. In this paper,
we concentrate on the cubic forms arising from complete inter-
section threefolds in the product of three projective spaces, and
investigate various conjectures of a combinatorial nature arising
from their invariants.

1. INTRODUCTION

Given a real form f(x1, . . . , xm) of degree d > 2, there is
a pseudo-Riemannian metric, given by the matrix (gij) =
−(∂2f/∂xi∂xj)/d(d − 1), defined on the open subset of
Rm where the determinant h = det(gij) is nonzero. This
metric is referred to by Totaro as the Hessian metric, and
we study it further in the case that f is a real ternary
cubic. Building on previous work in [Wilson 04, Totaro
04], we determine the full curvature tensor of this metric
in terms of h and the S-invariant of f (Theorem 3.3).

Motivated by the geometric background, as summa-
rized below, we are led to consider cubic forms associ-
ated with complete intersection threefolds in the product
of three projective spaces, and from this to study those
cubic forms that arise as follows: we choose positive inte-
gers d1, d2, d3 and r ≥ 0 such that d1 + d2 + d3 = r+ 3,
and set

P = (x1H1 + x2H2 + x3H3)3
r∏

j=1

(ajH1 + bjH2 + cjH3),

with the aj , bj , cj nonnegative, and such that the cu-
bic F (x1, x2, x3), defined by taking the coefficient of the
term in Hd1

1 Hd2
2 Hd3

3 in the above formal product P , is
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nondegenerate. Calculations from [Wilson 04] and the
further discussion provided below suggest various conjec-
tures concerning the invariants of such cubics. In this pa-
per, we shall concentrate mainly on Conjecture 4.1, which
states that with the S-invariant regarded as a polynomial
in the aj , bj , and cj , every coefficient is nonnegative. Ex-
tensive computer investigations are described in support
of this conjecture.

In Section 5, we consider the cofactors Bpq of the
Hessian matrix of F given by the matrix of second par-
tial derivatives. In the specific case under consideration,
these are polynomials in x1, x2, x3 and the aj , bj , cj . We
derive formulas for the coefficients of these polynomials,
and deduce that these coefficients are negative if p = q

and positive if p �= q (Theorem 5.1). From this, we de-
duce that the Hessian determinant H of F , that is, the
determinant of the Hessian matrix, has only positive co-
efficients. This latter result represents a combinatorial
version of the Hodge index theorem.

In the final section, we return to a formula for S, given
in Section 3, in terms of the cofactors Bpq of the Hessian
matrix. The fact that for the cubics F being considered
we have formulas for the coefficients of monomials in the
Bpq enables us to produce a useful algorithm for deter-
mining the coefficient of a given monomial in S. We run
this algorithm for some critical cases, where we check
that the conjectured positivity holds.

2. THE GEOMETRIC BACKGROUND

In this preliminary section, the theory and calculations
of this paper are set in their geometric context, and moti-
vation is given for the conjectures appearing in Section 4.

For a compact Kähler n-fold X, we can consider the
level set in H1,1(X,R) ⊂ H2(X,R) defined by setting
the degree-n form D �→ Dn (given by the cup product) to
be one. The intersection of this level set with the Kähler
cone K ⊂ H1,1(X,R) gives a manifold K1 of dimension
h1,1 − 1, on which there is a natural Riemannian metric.
The tangent space to K1 at a point D may be identified
as {L ∈ H1,1 : Dn−1 ·L = 0}, and the Riemannian metric
specified by

(L1, L2) �→ −Dn−2 · L1 · L2.

This is precisely the restriction to K1 of the Hessian met-
ric (as defined above) associated with the degree-n form
on H1,1(X,R). In [Wilson 04], we initiated the study
of this manifold and its curvature, motivated mainly by
the implications that any restrictions on this curvature
might have concerning the existence and classification of

Calabi–Yau threefolds with a given differentiable struc-
ture.

In the cited paper, we showed that if one assumed the
existence of limit points in complex moduli corresponding
to a certain specified type of degeneration, then the sec-
tional curvatures of K1 were bounded between − 1

2n(n+1)
and 0. In the particular case of complex projective three-
folds with second Betti number 3 and h2,0 = 0, we have
a ternary cubic form F on H2(X,R), and an explicit for-
mula was produced for the curvature of the surface K1,
namely

−9
4

+
1
4

66SF 2

H2
,

where S denotes the S-invariant of F (see Section 3) and
H the Hessian determinant. From this one notes that if
S �= 0 and there exists a point D on the boundary of the
Kähler cone at which H vanishes but F doesn’t, then the
curvature is unbounded on K1.

In the case of a Calabi–Yau threefold, a rational such
point D can be seen to correspond to the contraction of
a surface on X to a point [Wilson 92]. If D lies in the
interior of a codimension-one face of the closure K̄ of the
Kähler cone (recalling from [Wilson 92] that away from
F = 0, the boundary of K̄ is locally rational polyhedral),
then in appropriate coordinates the cubic form may be
written as F = ax3

1 + g(x2, x3), and in particular, S = 0.
If, however, D generates an extremal ray of K̄ (i.e., cor-
responds to a codimension-2 face of K̄), we automatically
have that D is rational. Moreover, we may have that S is
nonzero, although using the classification of contractions
from [Wilson 92], one can show that in this case S must
be nonnegative. There exist examples of such Calabi–
Yau threefolds with S > 0, and hence with the curvature
of K1 unbounded above.

The simplest examples here are provided by general
Weierstrass fibrations over P1 × P1 or over the Hirze-
bruch surfaces F1 and F2. In the non-Calabi–Yau case,
an even simpler example is provided by taking the cone
(in P4) on a smooth quadric surface in P3, and blowing
up in the singular point; the first of the Calabi–Yau ex-
amples given above is closely related to this one. In the
examples above, the curvature is in fact strictly positive
on K1, but there are a number of examples of Calabi–
Yau hypersurfaces in weighted projective 4-space, with
second Betti number three, where the curvature tends
to infinity as one approaches some extremal ray on the
boundary, but with it being negative at other points of
K1. It follows, however, from the above discussion, at
least in the case of Calabi–Yau threefolds with second
Betti number 3 and h2,0 = 0, that the curvature of the
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surface K1 is bounded below, and in the case in which
it is not bounded above, this lower bound will be − 9

4 ,
or in other words, the S-invariant of the ternary cubic is
nonnegative.

The ideas in [Wilson 04] were motivated in the case
of Calabi–Yau n-folds by a mirror-symmetry argument
relating the curvature on K1 to the curvature of the
Weil–Petersson metric on the complex moduli space of
the mirror. Known results on the curvature of the
Weil–Petersson metric in fact involve the Ricci curva-
ture rather than sectional curvatures and only in general
provide a lower bound; for 3-folds and 4-folds one can,
however, construct from the Weil–Petersson metric and
its Ricci curvature an associated metric, the Hodge met-
ric, and there are then both upper and lower bounds for
the sectional curvatures of this metric [Lu 01, Lu and Sun
04].

Thus one should not perhaps be surprised by the ex-
amples given above in which the curvature of K1 is posi-
tive; this is expected in the mirror to imply that the cur-
vature of the Weil–Petersson metric is not semi-negative
(in any neighborhood of the large complex limit point).
One should, however, expect a lower bound for the Ricci
curvature of the metric on K1, and in the Calabi–Yau
case the author conjectures this to be −(n

2 )2(h1,1 − 2).
In fact, using calculations from [O’Neill 83, p. 211] and
the interpretation of the Hessian metric in terms of a
warped product [Totaro 04, Lemma 2.1], this conjecture
may be checked to be equivalent to the semi-Riemannian
Hessian metric on K having nonnegative Ricci curvature
(compare also with the explicit formula produced in The-
orem 3.3). This latter rather attractive conjecture lends
itself to being verified by computer, and has been checked
by the author to hold for all the standard examples given
in [Wilson 04], and also for certain Calabi–Yau three-
folds with rather larger values of b2, one such example
corresponding to a hypersurface of degree 13 in weighted
projective space P(1, 2, 3, 3, 4), a Calabi–Yau threefold
with b2 = 5.

Thus for Calabi–Yau threefolds with b2 = 3 and
h2,0 = 0, the above expectation corresponds to K1 having
curvature bounded below by − 9

4 , or equivalently to the
S-invariant of the ternary cubic form being nonnegative.
This has been extensively checked against available lists
of Calabi–Yau threefolds with b2 = 3. It should be noted
that the nonnegativity of S is known to fail in general for
complex projective threefolds with b2 = 3 and h2,0 = 0
[Wilson 04]. However, in the case of complex projective
threefolds admitting the specific type of degeneration de-
scribed in [Wilson 04], the author expects that the lower

bound will again be − 9
4 rather than the −3 as proved

there; for higher values of b2, the lower bound of −3 on
the sectional curvature can be achieved. In the case, for
instance, of abelian threefolds, the lower bound of −3 on
the sectional curvature is attained, although one checks
easily that the sharper lower bound of −9(h1,1 − 2)/4
holds for the Ricci curvature.

For the general case of complete intersection three-
folds in the product of three projective spaces, one has
b2 = 3 and h2,0 = 0, and one can degenerate the defining
polynomials into products of polynomials on the three
factors, and each of these polynomials may be assumed
to be the product of distinct linear forms. The author ex-
pects (but it will be nontrivial to prove) that the general
such degeneration will be of the type described in [Wil-
son 04], with the product of harmonic two-forms being
approximately harmonic. The conjectures introduced in
Section 4 will be closely related to the conjecture that the
curvature of K1 for such threefolds is bounded between
− 9

4 and zero.
The case of complete intersection threefolds in the

product of three projective spaces therefore represents an
important test case for the above conjectures and specu-
lations. We shall see that they lead to rather striking pos-
itivity conjectures of a combinatorial nature, involving
the classical invariants of ternary cubic forms, for which
extensive computational evidence will be presented.

3. THE S -INVARIANT AND CURVATURE

We consider a general nondegenerate ternary cubic form
with real coefficients

f = a300x
3
1 + a030x

3
2 + a003x

3
3 + 3a210x

2
1x2 + 3a201x

2
1x3

+ 3a120x1x
2
2 + 3a021x

2
2x3 + 3a102x1x

2
3 + 3a012x2x

2
3

+ 6a111x1x2x3.

Associated with f , we have two basic invariants S and
T , one of degree 4 in the coefficients and one of degree
6 [Aronhold 58, Sturmfels 93]. The S-invariant is given
explicitly [Sturmfels 93, p. 167] by an expression in the
coefficients with 25 terms

S = a300a120a021a003 − a300a120a
2
012 − a300a111a030a003

+ a300a111a021a012 + · · · + a201a111a102a030

+ a2
120a

2
102 − 2a120a

2
111a102 + a4

111.

As indicated above, this invariant is closely associated
with curvature. We define the index cone in R3 to con-
sist of the points at which f is positive and the indefinite
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metric defined by the matrix fij = ∂2f/∂xi∂xj is of sig-
nature (1, 2). The restriction of gij = − 1

6fij to the level
set M given by f = 1 in the index cone is then a Rie-
mannian metric, whose curvature at any point is given
by the formula

−9
4

+
1
4
Sf2

h2
,

where h = det(gij) = −H/63, with H denoting the Hes-
sian determinant of f [Wilson 04, Theorem 5.1]. Strictly
speaking, we do not need to include the f2 in this for-
mula, since by definition it has value one on the level
set; however for any point in the index cone, the formula
given provides the curvature at the unique point of M on
the corresponding ray. This formula was both extended
to higher degrees and clarified further in [Totaro 04].

Consider now the pseudo-Riemannian metric defined
by the matrix gij = − 1

6fij on a suitable open subset
of R3. In the case of cubics, [Totaro 04, Theorem 3.1]
reduces to the following statement: if U is an open subset
of R3 on which the Hessian H is nonzero, and M denotes
the level set in U given by f = 1, then the sectional
curvature of U on the tangent 2-plane to M at a point is
just

66Sf

H2
=
Sf

h2
.

This proves again the formula given above for the cur-
vature of the restricted metric to M and generalizes in
a natural way to forms f of arbitrary degrees greater
than 2 [Totaro 04, Theorem 3.1]. It should be noted here
that for ternary cubics f , the Clebsch version S(f) of
the S-invariant (as used in Totaro’s paper) is the Aron-
hold S-invariant (as used in this paper) multiplied by the
factor 64.

One point that I wish to emphasize in this section is
that once one knows the S-invariant and the Hessian de-
terminant H, the whole curvature tensor of the above
pseudo-Riemannian metric is given very simply by The-
orem 3.3, thus extending in this case Totaro’s Theorem
3.1 cited above.

Throughout this paper, we shall denote by B the ad-
joint matrix to A = (fij), with entries the cofactors of A.
We shall need the following identity, proved by classical
invariant theory.

Lemma 3.1. With notation as above,

1
2

∑
p,q

Bpq
∂2Bij

∂xp∂xq
= 64Sxixj . (3–1)

Proof: If we apply the Clebsch polarization operator∑
yi ∂/∂xi to f twice, we obtain a mixed concomitant

S3V ∗ → S2V ∗⊗V ∗ (where V denotes the 3-dimensional
real vector space), which in coordinates may be written
as

f �→
∑
i,j

yi yj
∂2f

∂xi ∂xj
.

Passing to the dual quadratic form (scaled by H(x)), we
obtain a mixed concomitant S3V ∗ → S2V ∗⊗S2V , which
in coordinates may be written as

f �→
∑
p,q

Bpq(x)
∂

∂yp

∂

∂yq
.

Taking a convolution of two such concomitants and
contracting out a factor S2V ⊗ S2V ∗, we obtain a con-
comitant S3V ∗ → S2V ∗⊗S2V , which in coordinates may
be written as

f �→
∑
i,j

(∑
p,q

Bpq(x)
∂2Bij(x)
∂xp ∂xq

)
∂

∂zi

∂

∂zj
.

We can check easily on the Hesse cubic x3
1 +x3

2 +x3
3 +

6λx1x2x3 that

1
2

∑
p,q

Bpq(x)
∂2Bij(x)
∂xp ∂xq

= 64S xixj ,

where S = λ(λ3 − 1) in the S-invariant, and hence we
deduce that the two concomitants

∑
i,j

1
2

(∑
p,q

Bpq(x)
∂2Bij(x)
∂xp ∂xq

)
∂

∂zi

∂

∂zj

and ∑
i,j

64S xixj
∂

∂zi

∂

∂zj

are identical, since clearly they also transform in the same
way under the operation of scaling the coordinates. Thus
we deduce the result claimed.

Remark 3.2. If we now express the cofactors Bpq in terms
of the fij , and then operate on both sides of (3–1) by
∂2/∂xi∂xj , we get formulas for S analogous to those
given in [Aronhold 58, page 116]. From Lemma 3.1, it
follows immediately that for any i, j,

1
2

∑
p,q

∂2Bpq

∂xi∂xj

∂2Bij

∂xp∂xq
= 64(1 + δij)S.
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It is shown in [Totaro 04] that the curvature tensor of
the pseudo-Riemannian metric defined above has compo-
nents

Rijkl = − 1
144

∑
p,q

gpq(fjlpfikq − filpfjkq),

where (gpq) denotes the inverse matrix to (gij). Thus,
for instance, if we let h = det(gij) = −H/63, then

−4hR1212 = 6−4
∑
p,q

Bpq(f11pf22q − f12pf12q).

We now observe that

(f11pf22q + f11qf22p − 2f12pf12q) =
∂2(f11f22 − f2

12)
∂xp∂xq

=
∂2B33

∂xp∂xq
,

and so

− 4h 64R1212

=
1
2

∑
p

Bpp
∂2B33

∂xp∂xp
+
∑
p<q

Bpq
∂2B33

∂xp∂xq

=
1
2

∑
p,q

Bpq
∂2B33

∂xp∂xq
.

Hence we deduce from Lemma 3.1 that −4hR1212 = Sx2
3.

In Lemma 3.1, we can also take (i, j) = (1, 2). Since
B12 = f13f23 − f12f33, for any given (p, q) we have

∂2B12

∂xp∂xq
= f13pf23q + f13qf23p − f12pf33q − f12qf33p.

The formula for curvature then implies that

1
2
6−4

∑
p,q

Bpq
∂2B12

∂xp∂xq
= 4hR1323,

and so we deduce from Lemma 3.1 that Sx1x2 =
4hR1323 = −4hR1332 = −4hR3123.

Theorem 3.3. All components of the curvature tensor of
the Hessian metric on U ⊂ R3, where U is the open sub-
set given by the nonvanishing of H, are given simply in
terms the invariant S and the Hessian of f , and are all
of the form ± 1

4S xixj/h for appropriate i, j and choice
of sign. Moreover, given tangent vectors ξ =

∑
λi ∂/∂xi

and η =
∑
µj ∂/∂xj, the corresponding value of the cur-

vature tensor satisfies

−4hR(ξ, η, ξ, η) = S (λ1µ2x3 + λ2µ3x1 + λ3µ1x2

− λ2µ1x3 − λ3µ2x1 − λ1µ3x2)2.

Proof: Since we have formulas for R1212 and R1323, we
have the analogous formulas for Rijij and Rijkj . We now
use the general fact that the curvature tensor is invariant
under exchanging the first pair of indices with the second
pair of indices, and is anti-invariant under exchanging
the first pair (or second pair) of indices; in our particular
case, these symmetries are clear from the above formula
for the curvature tensor, taken from [Totaro 04]. In this
way, we obtain expressions of the required form for all the
components of the curvature tensor. Finally, we deduce
that

− 4hR(ξ, η, ξ, η)

= −4h
∑
i<j
p<q

(λiµj − λjµi)(λpµq − λqµp)Rijpq

= S (λ1µ2x3 + λ2µ3x1 + λ3µ1x2 − λ2µ1x3 − λ3µ2x1

− λ1µ3x2)2,

which completes the proof.

4. CONJECTURAL POSITIVITY OF S FOR
CERTAIN CUBICS

In [Wilson 04, Section 5], we were interested in the cu-
bics that occur as intersection forms for 3-dimensional
complete intersections in the product of three projective
spaces. We can, however, formalize this into a purely al-
gebraic problem. Suppose a ternary cubic is obtained as
follows: We choose positive integers d1, d2, d3 and r ≥ 0
such that d1 + d2 + d3 = r + 3, and set

P = (x1H1 + x2H2 + x3H3)3
r∏

j=1

(ajH1 + bjH2 + cjH3),

with the aj , bj , and cj nonnegative, and such that the
cubic F (x1, x2, x3) defined by taking the coefficient of
the term in Hd1

1 Hd2
2 Hd3

3 in the above formal product
P is nondegenerate. To relate this to the geometry,
note that if the aj , bj , cj take nonnegative integer values,
then we may consider the complete intersection projec-
tive threefolds X in Pd1 × Pd2 × Pd3 given by r general
trihomogeneous polynomials, with tridegrees (aj , bj , cj)
for j = 1, . . . , r. The cubic we have defined above is
then the intersection form on the rank-three sublattice
of H2(X,Z) generated by the pullbacks of hyperplane
classes from the three factors; by Lefshetz-type argu-
ments, this is usually the whole of H2(X,Z).

As in Section 3, we denote the coefficients of the
ternary cubic F by aijk, where i + j + k = 3. These
coefficients are themselves polynomials in the aj , bj , cj ,
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homogeneous of degree r in each such set of variables.
We let S denote the S-invariant of F , and H the Hessian
determinant of F .

Conjecture 4.1. Regarding S as a polynomial in the
aj , bj , cj, every coefficient of this polynomial is nonnega-
tive.

Conjecture 4.2. Regarding 9H2 − 66SF 2 as a polynomial
in the aj , bj , cj and x1, x2, x3, every coefficient of this
polynomial is also nonnegative.

These conjectures imply their (weaker) geometric
counterparts, in the case of X being a complete intersec-
tion threefold in the product of three projective spaces,
with second Betti number three, and F being its inter-
section form. Here, we have taken specific nonnegative
integral values for the degrees aj , bj , cj . With the no-
tation as in Section 2, these weaker conjectures may be
interpreted, for X as given, as saying that the curvature
of the surface K1 is bounded between − 9

4 and zero. The
previous theoretical and computational evidence for such
conjectures to be true was outlined in Section 2. Recall
also that the first of these conjectures is equivalent to the
statement that the semi-Riemannian Hessian metric on
K associated with F has nonnegative Ricci curvature.

Conjecture 4.3. The intersection form of X has nonneg-
ative S-invariant.

Conjecture 4.4. The polynomial 9H2 − 66SF 2 in x1, x2,
x3 takes nonnegative values on the Kähler cone of X,
given by x1 > 0, x2 > 0, x3 > 0.

Considered as a polynomial in the aj , bj , cj , we have
that S is homogeneous of degree 4 in any given set
(aj , bj , cj), and hence of total degree 4r = 4(d1 + d2 +
d3) − 12. In fact, by inspection of the given formula
for S, we see that S is of degree 4d1 − 4 in the variables
(a1, . . . , ar), of degree 4d2−4 in the variables (b1, . . . , br),
and of degree 4d3 − 4 in the variables (c1, . . . , cr).

As explained above, the conjectures arose out of the
theory developed in [Wilson 04]; moreover, there is now
extensive computational evidence in their favor. In par-
ticular, Conjecture 4.1 has been checked using Mathe-
matica for all di ≤ 5. One can of course reduce to the case
in which all the di equal some d, namely the maximum
of the di, by introducing 3d− d1 − d2 − d3 extra factors
(akH1 + bkH2 + ckH3) into the product P , and by con-
sidering the monomials in S, respectively 9H2 − 66SF 2,

that are of maximum possible degree 4 (respectively 6)
in the appropriate variable ak, bk, or ck (and not there-
fore involving the other two). For instance, for d− d1 of
the extra factors, the monomial considered should be of
maximum degree in ak and not involve bk or ck.

To give a flavor of these calculations, I can report that
in the case d = 3 there are 209,520 nonzero terms in S,
all with positive coefficients, and that a simple-minded
check of this took some two hours of computer time.
However, there is a very large number of symmetries, and
taking such symmetries into account, the calculation was
reduced to less than a couple of minutes. For larger d,
therefore, one should factor out by these symmetries. For
d = 4 the conjecture was checked in a couple of hours,
and for d = 5 in about four days. The formula for S given
in Section 3 in terms of cofactors turns out to be slightly
more efficient computationally than the formula in terms
of the coefficients of the cubic.1 The programs were run
on a Sun V880 at the Max-Planck-Institut für Mathe-
matik in Bonn, with eight CPUs and 16 GB of main
memory theoretically available (although only a fraction
of this would have been used). The case d = 6 seems to
be beyond the range of standard computers. The author
has not carried out as many calculations on Conjecture
4.2, but it has been verified for d1 = 3, d2 = d3 = 2, and
there are strong theoretical reasons in support of its ge-
ometric version, Conjecture 4.4, as outlined in Section 2.

In this paper, however, we shall concern ourselves
mainly with the problem of Conjecture 4.1, that S has
only nonnegative coefficients, and results closely related
to this.

For the case d = 3, one can obtain very precise infor-
mation using Mathematica about the coefficients. The
monomials appearing in any of the 25 terms in S all
appear in the expansion of a4

111. There are two types
of monomial that appear in a4

111 but not in S (be-
cause the coefficients cancel out). Examples of these are
a4
1b

4
2c

4
3a

2
4b

2
4b

2
5c

2
5a

2
6c

2
6 and a4

1b
4
2c

4
3a

2
4b4c4a5b

2
5c5a6b6c

2
6. If one

considers the exponents as forming a 3× 6 matrix, these
monomials may be denoted rather more clearly as⎡⎣ 4 0 0 2 0 2

0 4 0 2 2 0
0 0 4 0 2 2

⎤⎦ and

⎡⎣ 4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

⎤⎦ .
Matrices differing from each other by permutations of the
rows and/or columns are regarded as being of the same
type. There are then three types with coefficient 1 in S,

1The programs used by the author for these checks may be
found on his home page: http://www.dpmms.cam.ac.uk/∼pmhw/
S invariant calculations.



Wilson: Some Geometry and Combinatorics for the S-Invariant of Ternary Cubics 485

represented by matrices⎡⎣ 4 0 0 4 0 0
0 4 0 0 4 0
0 0 4 0 0 4

⎤⎦ ,
⎡⎣ 4 0 0 3 0 1

0 4 0 1 3 0
0 0 4 0 1 3

⎤⎦ ,
and ⎡⎣ 4 0 0 0 2 2

0 4 1 1 2 0
0 0 3 3 0 2

⎤⎦ .
A similar feature occurs for higher coefficients, namely
that there is rather a small number of types. For instance,
the largest coefficients that occur are 356, 280, 214, 176,
164, 128, 106, . . . , all of which correspond to only one
type. The highest coefficient, 356, corresponds to type⎡⎣ 2 1 1 2 1 1

1 2 1 1 2 1
1 1 2 1 1 2

⎤⎦ .
It makes more sense, however, if we ignore all monomi-

als containing fourth powers, on the grounds that these
correspond to cases with the di smaller. With this con-
vention, the corresponding matrices do not have 4 in any
entry. In the case d1 = d2 = d3 = 3 as above, the
smallest coefficients are then 4, 6, and 9, corresponding
(respectively) to matrices⎡⎣ 3 0 1 3 0 1

1 3 0 1 3 0
0 1 3 0 1 3

⎤⎦ ,
⎡⎣ 3 3 0 0 2 0

1 1 3 1 0 2
0 0 1 3 2 2

⎤⎦ ,
and ⎡⎣ 3 0 1 3 0 1

1 3 0 0 1 3
0 1 3 1 3 0

⎤⎦ .
We shall also denote the first of these by

(d− 1)

⎡⎣ 3 0 1
1 3 0
0 1 3

⎤⎦ ,
where d = 3.

If we now move on to the cases d1 = d2 = d3 = d > 3,
we may ask about the coefficients corresponding to

(d− 1)

⎡⎣ 3 0 1
1 3 0
0 1 3

⎤⎦ ;

for d = 4, the coefficient may be calculated as 40, and for
d = 5 as 652. For d = 4 and 5, a computer check verifies
that this is the smallest nonzero coefficient (assuming no
fourth powers) and the unique type of monomial corre-
sponding to it, and one would conjecture that a similar

statement is true for arbitrary values of d > 2. A for-
mula for this coefficient for arbitrary d will be produced
in Section 6.

Computer calculations suggest also a result that the
cofactors Bpq that appeared in Section 3 satisfy the con-
dition that Bpq, considered as a polynomial in the ai, bj ,
ck and x1, x2, x3, has only positive coefficients if p �= q,
and has only negative coefficients if p = q. In the ge-
ometric situation of a three-dimensional complete inter-
section in the product of three projective spaces, with the
(aj , bj , cj) being assigned specific nonnegative integral
values, the negativity of Bpp corresponds to the Hodge
index theorem on the surface cut out by Hp = 0. We
shall prove these properties of the cofactors in the next
section.

5. COFACTORS OF THE HESSIAN MATRIX

In this section, we study further the cofactors Bpq of the
Hessian matrix of our ternary cubic F , where it will be
more convenient here to denote the variables by x1, x2, x3

rather than x, y, z. Recall that these cofactors were re-
lated to the S-invariant by means of various expressions
for S described in Section 3; we shall return to this aspect
in Section 6. In particular, for the special type of cubics
we have studied in the last two sections, the Bpq may be
considered as polynomials in the aj , bj , cj and x1, x2, x3.
In this section, we confirm the expectations, mentioned
in Section 4, concerning the signs of their coefficients;
this in turn will show that the Hessian determinant H
has only positive coefficients, Theorem 5.2. This latter
fact might be expected because of the Hodge index the-
orem, which implies the weaker statement that H takes
nonnegative values for nonnegative values of its variables.

Theorem 5.1. The polynomials Bpp have only negative
coefficients, and the polynomials Bpq for p �= q have only
positive coefficients.

Proof: For the first part, we may consider B33 = f11f22−
f2
12. For a general cubic f , we have

1
36
B33 = (a300x1 + a210x2 + a201x3)

× (a120x1 + a030x2 + a021x3)

− (a210x1 + a120x2 + a111x3)2.

The fact that in our particular case this polynomial is
nonpositive for all nonpositive values of the variables fol-
lows from the Hodge index theorem again. However, we
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prove the more precise result that the coefficients are all
negative.

Let us consider for instance the term in x1x2; we prove
that its coefficient

a300a030 − a210a120,

considered as a polynomial in the ai, bj , ck, has only
negative coefficients. Without loss of generality, we can
assume that d1 = d2 = d3 = d, and we set s = d − 1.
Then the polynomial in question is of degree 2 in each set
of variables (aj , bj , cj), and is of degree 2s− 1 in the ai,
degree 2s− 1 in the bj , and degree 2s+ 2 in the ck. On
the other hand, a300 (respectively, a210) is of degree s−2
(respectively, s− 1) in the ai, degree s+ 1 (respectively,
s) in the bj , and degree s+ 1 (respectively, s+ 1) in the
ck, with analogous statements for a030 and a120.

Let us now consider a monomial of the appropriate de-
grees in the (aj , bj , cj) and ask about its coefficient as a
term in a300a030 − a210a120. We suppose that the mono-
mial in question consists of p1, respectively p2, p3, oc-
currences (for various j) of a2

j , respectively b2j , c
2
j , and ũ,

respectively ṽ, w̃, occurrences of ajbj , respectively ajcj ,
bjcj . We shall see that only the mixed cases will be of rel-
evance. Note that 2p1+ũ+ṽ = 2s−1, 2p2+ũ+w̃ = 2s−1,
and 2p3 + ṽ + w̃ = 2s+ 2.

The coefficient of the monomial in a300a030 is given
by counting the number of ways of expressing it as a
monomial in a300 times a monomial in a030, and similarly
for its coefficient in a210a120. To obtain the first factor in
the former case involves choosing s−p1−2 = 1

2 (ũ+ ṽ−3)
of the ajbj and ajcj appearing for which we choose the
aj , s − p2 + 1 = 1

2 (ũ + w̃ + 3) of the ajbj and bjcj for
which we choose the bj , and s− p3 + 1 = 1

2 (ṽ+ w̃) of the
ajcj and bjcj for which we choose the cj . Note here the
necessary parity condition that either ũ is odd and ṽ, w̃

are even, or the other way round. We shall deal with the
first case; the other case follows similarly.

We set ũ = 2u+ 1, ṽ = 2v, and w̃ = 2w. The possible
factorizations are then given by choosing k of the 2u+ 1
occurrences of ajbj for which we choose the aj , choosing
u+ v− 1− k occurrences of ajcj for which we choose the
aj , and finally w − u + 1 + k occurrences of the bjcj for
which we choose the bj , the rest then being determined.
Thus the number of ways of doing this, and hence the
coefficient of the monomial in a300a030, is

2u+1∑
k=0

(
2u+ 1
k

)(
2v

v + u− (k + 1)

)(
2w

w + u− (k + 1)

)
.

Similarly, the coefficient of the monomial in a210a120 is
seen to be

2u+1∑
k=0

(
2u+ 1
k

)(
2v

v + u− k

)(
2w

w + u− k

)
.

Thus we need to verify the negativity of

2u+1∑
k=0

(
2u+ 1
k

)[(
2v

v + u− (k + 1)

)(
2w

w + u− (k + 1)

)
−
(

2v
v + u− k

)(
2w

w + u− k

)]
.

However, this sum may be rearranged as

−
(

2v
v + u

)(
2w
w + u

)
+
(

2v
v + u+ 2

)(
2w

w + u+ 2

)
−

2u+1∑
k=1

(
2v

v + u− k

)(
2w

w + u− k

)
×
[(

2u+ 1
k

)
−
(

2u+ 1
k − 1

)]
.

The first line of this rearranged sum is now clearly non-
positive. In the summation, the term

((
2u+1

k

)− (2u+1
k−1

))
is antisymmetric about u+ 1, and in fact equals

2(u+ 1 − k)
2u+ 2

(
2u+ 2
k

)
.

If we therefore pair these antisymmetric terms, and use
the fact that for j > 0, we have(

2v
v + j − 1

)
≥
(

2v
v + j + 1

)
and (

2w
w + j − 1

)
≥
(

2w
w + j + 1

)
,

the claimed inequality follows.
For the term in x1x3, we need to show that the poly-

nomial a300a021 + a201a120 − 2a210a111 has only nega-
tive terms. In fact, we prove this for the two polyno-
mials a300a021 − a210a111 and a201a120 − a210a111. Let
us consider a particular monomial appearing in these
polynomials; with the notation as above, the parities
on ũ, ṽ, and w̃ will differ from what they were before.
Since 2p1 + ũ + ṽ = 2s − 1, 2p2 + ũ + w̃ = 2s, and
2p3 + ṽ+ w̃ = 2s+1, we have either ṽ odd and ũ, w̃ even,
or the other way round. Considering, for instance, the
case ṽ = 2v+1, ũ = 2u, and w̃ = 2w, we can run through
a similar argument to that given above, and find that the
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coefficient of the given monomial in a300a021 − a210a111

is
2v+1∑
k=0

(
2v + 1
k

)(
2w

w + v − k

)
×
[(

2u
u+ v − (k + 1)

)
−
(

2u
u+ v − k

)]
.

We now observe that the bracket in this summation
is antisymmetric about k = v − 1

2 , and then pairing off
terms proves the result in an analogous way to that given
previously. Similarly, the coefficient of the given mono-
mial in a201a120 − a210a111 is

2v+1∑
k=0

(
2v + 1
k

)(
2u

u+ v − k

)
×
[(

2w
w + v − (k + 1)

)
−
(

2w
w + v − k

)]
,

and the same argument goes through, switching the roles
of u and w.

For the term in x2
1, we need to show that the polyno-

mial a300a120−a2
210 has only negative terms. For a mono-

mial to appear in this polynomial, we have yet another
parity condition, namely that ũ, ṽ, and w̃ all be even,
or all be odd. The reader is left to check the negativity.
By symmetry, the only other term we need to consider is
that in x2

3; here we need the polynomial a201a021 − a2
111

to have only negative terms. The parity condition here
is the same as for x2

1, and the reader is left to verify the
details of the negativity.

We now need to consider the cofactors Bpq with p �= q.
We shall explicitly verify only the x2

3 terms here, and
leave the others to the reader. Note in passing that in
the formula for 64Sx2

3 from Section 3, we may consider
instead the identity given simply by the terms in x2

3, and
so it will be the x2

3 terms in the above cofactors that will
occur in the algorithm we describe in Section 6. We check
these terms for B12 and B13, the rest then following from
considerations of symmetry. Let us start with 1

36B12,
which is

1
36

(f13f23 − f12f33)

=
[
(a201x1 + a111x2 + a102x3)

× (a111x1 + a021x2 + a012x3)

− (a210x1 + a120x2 + a111x3)

× (a102x1 + a012x2 + a003x3)
]
,

whose term in x2
3 is

a102a012 − a111a003.

For 1
36B13 = 1

36 (f12f23 − f13f22), we have instead the
polynomial

a111a012 − a102a021.

The latter has only positive terms, as we already know
from our calculations on the x1x3 term for B33, where
we saw that the polynomial a201a120 − a210a111 has only
negative terms (simply switch the first and last indices).
For a given monomial to appear in the first polynomial,
we need parities that ũ is odd and ṽ, w̃ even, or the other
way round. For the monomial to appear in the second
polynomial, we need parities that ṽ is odd and ũ, w̃ even,
or the other way round.

For the former, namely a102a012 − a111a003, the by
now familiar calculation shows that the coefficient of our
monomial, say in the case ũ = 2u + 1 odd and ṽ = 2v,
w̃ = 2w even, is the sum

2u+1∑
k=0

(
2u+ 1
k

)(
2v

v + u− k

)
×
[(

2w
w + u− k

)
−
(

2w
w + u− (k − 1)

)]
.

The bracketed term is now antisymmetric about
k = u + 1

2 , and pairing the terms again, we see that
the sum is positive.

Theorem 5.2. For the cubics under consideration, the
Hessian determinant H is a polynomial in the aj, bj, cj
and x1, x2, x3, all of whose coefficients are positive.

Proof: Recall that for any n × n matrix A with n > 2,
we have Adj (AdjA) = det(A)A. Applying this, with
A = (Fij), we deduce that

F12H = −B33B12 +B23B13.

Theorem 5.1 then implies that F12H, a polynomial in
the aj , bj , cj and x1, x2, x3, has only positive coefficients,
where we may without loss of generality assume that F12

is nontrivial.
However, an easy argument shows that if f, g are poly-

nomials in a finite set of variables, with f nontrivial,
such that f and fg have only positive coefficients, then
the same is true for g. To see this, choose an order for
the variables, and then order the monomials lexicographi-
cally. Now pick the largest monomial in f , and the largest
monomial (if it exists) whose coefficient in g is negative;
the product of these terms would yield a monomial in fg
with negative coefficient. Applying this, since F12 has
only positive coefficients, we deduce that the same holds
for H.
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Remark 5.3. Once we know that H has only positive
coefficients, the above argument shows that the same is
true for all entries of Adj (B), for instanceB11B22−B2

12 =
F33H.

6. COMBINATORICS OF THE S -INVARIANT

The fact that we have explicit formulas for the coefficients
in both the polynomials ∂2B33/∂xp∂xq and ∂2Bpq/∂x

2
3

provides an explicit recipe for calculating the coefficients
in S directly. From Remark 3.2, we know that

1
4

∑
p,q

∂2Bpq

∂x2
3

∂2B33

∂xp∂xq
= 64S.

If we denote the tridegree (in the ai, bj and ck) of
the terms in ∂2B33/∂xp∂xq by npq, then n11 = (2s −
2, 2s, 2s+2), n22 = (2s, 2s−2, 2s+2), n33 = (2s, 2s, 2s),
n12 = n21 = (2s − 1, 2s − 1, 2s + 2), n13 = n31 =
(2s − 1, 2s, 2s + 1) and n23 = n32 = (2s, 2s − 1, 2s + 1).
The tridegrees of the terms in the entries of the ma-
trix (∂2Bpq/∂x

2
3) are then given by (4s, 4s, 4s) − npq;

for instance the tridegree of the terms in ∂2B12/∂x
2
3 is

(2s+ 1, 2s+ 1, 2s− 2).
The recipe for calculating the coefficient of a given

allowable monomial M is now clear. Consider all factor-
izations M = M1M2 of M , where the Mi are quadratic
in each set of variables (aj , bj , cj), and where M2 has one
of the tridegrees listed above for ∂2B33/∂xp∂xq, with M1

having the complementary tridegree. The Mi give rise to
numbers ũi, ṽi, w̃i, where i = 1, 2, from which we have an
explicit expression for the coefficient of Mi in the relevant
entry of the matrix in question. Adding the products of
these two coefficients as we range over the factorizations
gives us the coefficient of M in S.

We illustrate this with an example. We consider the
case s = 3t (and so d = 3t + 1) and M a monomial
with matrix of exponents having 4t columns of the form(

3
1
0

)
, 4t columns of the form

(
0
1
3

)
, and t columns of the

form
(

0
4
0

)
. Note that for all factorizations M = M1M2,

we have ṽ1 = 0 = ṽ2. A factorization is determined
by specifying for how many of the a3

jbj one takes a2
j in

M1, and for how many of the bjc3j one takes c2j ; if these
numbers are denoted by k, l respectively, then ũ1 = 4t−k,
w̃1 = 4t − l, ũ2 = k, w̃2 = l. Note that M2 then has
tridegree (8t − k, 2t + k + l, 8t − l). Thus the only pairs
(k, l) of relevance will be (2t, 2t), (2t, 2t− 1), (2t, 2t− 2),
(2t+ 1, 2t− 1), (2t+ 1, 2t− 2), and (2t+ 2, 2t− 2). We
consider each pair in turn; the fact that ṽ = 0 simplifies
the algebra considerably. The case (2t, 2t) corresponds

to the x2
3 term in B33; the coefficient of the monomial in

B33/36 is checked to simplify to(
2t
t

)[(
2t
t− 1

)
−
(

2t
t

)]
.

The case (2t, 2t−1) corresponds to the x2x3 term in B33;
the relevant coefficient is

2
(

2t− 1
t

)[(
2t
t− 1

)
−
(

2t
t

)]
.

The case (2t, 2t − 2) corresponds to the x2
2 term in B33;

the relevant coefficient is(
2t− 2
t− 1

)[(
2t
t− 1

)
−
(

2t
t

)]
.

The case (2t + 1, 2t − 1) corresponds to the x1x3 term;
the relevant coefficient is(

2t− 1
t

)[(
2t+ 1
t− 1

)
−
(

2t+ 1
t

)]
.

The case (2t + 1, 2t − 2) corresponds to the x1x2 term;
the relevant coefficient is(

2t− 2
t− 1

)[(
2t+ 1
t− 1

)
−
(

2t+ 1
t

)]
.

The case (2t+ 2, 2t− 2) corresponds to the x2
1 term; the

relevant coefficient is(
2t− 2
t− 1

)[(
2t+ 2
t

)
−
(

2t+ 2
t+ 1

)]
.

Now we need the corresponding x2
3 terms in Bpq. We

already know that (k, l) = (2t, 2t) corresponds to the x2
3

term in B33 with coefficient of the monomial in B33/36
being (

2t
t

)[(
2t
t− 1

)
−
(

2t
t

)]
.

We check that (2t, 2t− 1) corresponds to the x2
3 term in

B23 = f12f13 − f11f23, namely 36(a111a102 − a201a012),
and that the coefficient required is(

2t+ 1
t

)[(
2t
t

)
−
(

2t
t− 1

)]
;

the pair (2t, 2t− 2) corresponds to the x2
3 term of B22 =

f11f33 − f2
13, namely 36(a201a003 − a2

102), and the coeffi-
cient is (

2t
t+ 1

)(
2t+ 2
t+ 2

)
−
(

2t
t

)(
2t+ 2
t+ 1

)
;
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the pair (2t + 1, 2t − 1) corresponds to the x2
3 term of

B13 = f12f23 − f13f22, namely 36(a111a012 − a102a021),
and the coefficient is(

2t− 1
t− 1

)(
2t+ 1
t+ 1

)
−
(

2t− 1
t− 1

)(
2t+ 1
t

)
= 0;

the pair (2t + 1, 2t − 2) corresponds to the x2
3 term of

B12 = f13f23 − f12f33, namely 36(a102a012 − a111a003),
and the coefficient is(

2t− 1
t− 1

)[(
2t+ 2
t+ 1

)
−
(

2t+ 2
t+ 2

)]
;

finally (2t + 2, 2t − 2) corresponds to the x2
3 term of

B11 = f22f33 − f2
23, namely 36(a021a003 − a2

012), and the
coefficient is(

2t− 2
t− 1

)[(
2t+ 2
t

)
−
(

2t+ 2
t+ 1

)]
.

We now have all the information we need to calculate S
from the formula given at the start of the section, where
of course for a given (k, l) we shall need to weight the
contribution by

(
4t
k

)(
4t
l

)
. Putting all this together, we get

a formula for the relevant coefficient of the S-invariant
as a function of t. With the aid of Mathematica, one can
then simplify the formula to the surprisingly simple form

(4t)!2
(

t!
(t− 1)!(t+ 1)!

− 1
t!2

)4

.

In particular, one notes that it is positive. Evalu-
ating this formula for t taking values 0, 1, 2, 3, 4, . . . ,
one obtains values for the coefficient of the monomial
in the S-invariant to be 1, 36, 78400, 533610000,
6363107150400, . . . . The first two of these values coincide
with previously calculated numbers (established using a
simple-minded method).

The author has checked positivity of the coefficient for
other cases of a similarly general type. Apart from the
computer calculations described in Section 4, perhaps the
most telling evidence for the positivity of all the coeffi-
cients is provided by calculating what was conjectured in
Section 4 to be the smallest coefficient.

Example 6.1. We consider therefore the case in which
s = d−1 and the monomial M has a matrix of exponents

(d− 1)

⎡⎣ 3 0 1
1 3 0
0 1 3

⎤⎦ .
The coefficient was calculated for d ≤ 5 in Section 4, and
the monomial was conjectured to have the smallest coef-
ficient (assuming no fourth powers) for any given value

of s. For this reason, it is an obvious crucial case in
which to verify our main conjecture. In a factorization
M = M1M2, we suppose that for precisely k of the a3

jbj
we have taken a2

j in M1, for precisely l of the ajc
3
j we

have taken c2j in M1, and for precisely m of the b3jcj we
have taken b2j .

Consideration of tridegrees shows that the only pairs
(k − l,m − l) of relevance are (0, 0), (0, 1), (0, 2), (1, 1),
(1, 2), and (2, 2). For a given choice of (k, l,m), the
corresponding triple (ũ, ṽ, w̃) associated with M2 is just
(k, l,m). Because the ṽ is no longer zero in general, the
formula for the coefficient (as a function of s) that we ob-
tain involves triple summations. The rather complicated
formula (occupying a page) that results may be found in
an appendix to this paper.2

Although Mathematica does not reduce this formula
to any simple form, it is nevertheless an explicit for-
mula, which has been checked to give positive values for
s ≤ 501. The proof of positivity for general s presumably
follows by suitable rearrangement of the sums that occur
in the formula. The values for s = 1, 2, 3, 4, 5, 6, 7, 8 are
respectively 1, 4, 40, 652, 13174, 308464, 8158021, and
23830660; the first four of these correspond to the previ-
ously calculated values.

The fact that the numbers generated tend to have
large prime factors (for instance, 8158021 is prime) sug-
gests that there is no simple form of the formula. We
should also comment that the cofactor formula for S that
we are using expresses the coefficient of the given mono-
mial as the sum of six terms. By taking, for instance,
s = 4 in this example and evaluating these terms, each
of the terms has modulus greater than the sum of the
terms; so although the sum is positive, it does involve
significant cancellations.

A proof of the positivity of the coefficient for the case
of a general monomial still seems some way off, at least
using the recipe given above. I restrict myself to the
comment that the formulas we derived for the coefficients
of monomials in the cofactors can all be expressed as the
difference between two reasonably simple hypergeometric
series of the form 3F2. In some of the special cases worked
out, they were the differences of even simpler terms. The
theory of hypergeometric series may therefore feature in a
proof of the conjectures and in possible alternative proofs
of the results from Section 5.

It might be observed that there are other relatively
simple formulas that yield S, apart from those in Sec-

2The appendix is available online (http://www.expmath.org/
expmath/volumes/15/15.4/Wilson/WilsonApp.pdf).
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tion 3. By a similar method of proof to that of Lemma
3.1, one can, for instance, show that

1
2

∑
Bij

∂2H

∂xi∂xj
= 65SF.

If one could prove positivity of the coefficients for this
polynomial, then the desired result would follow for S.
With the methods described above, however, the expres-
sion for S that we have used is simpler to analyze than
this one.

7. CONCLUDING REMARKS

We summarized in Section 2 the theoretical evidence for
the geometric Conjectures 4.3 and 4.4 that for complete
intersection threefolds in the product of three projective
spaces (assuming b2 = 3, h2,0 = 0), the curvature of the
surface K1 is bounded between − 9

4 and 0. These conjec-
tures were set in the more general context of threefolds
admitting certain specific types of degeneration, and for
b2 ≥ 3 they can be rephrased in an illuminating way in
terms of Ricci curvatures. In the Calabi–Yau case, there
was further evidence via mirror symmetry from known re-
sults on the Weil–Petersson metric on the complex mod-
uli space of the mirror.

However, even if we knew that Conjectures 4.3 and
4.4 held, it is unclear whether this would help in a proof
of their combinatorial versions, Conjectures 4.1 and 4.2.
An illustration of this is that the geometric version of
Theorem 5.2 follows from the Hodge index theorem, but
this does not seem to help in a proof of the combinatorial
result, or in a proof of Theorem 5.1. If one could produce
a proof of Theorem 5.1 that depended less on explicit
combinatorial manipulations than the proof given here,
I believe that this might suggest alternative approaches
to proofs of Conjectures 4.1 and 4.2.

The experimental evidence for Conjecture 4.1 is, I be-
lieve, very strong indeed. Not only has it been checked in
all cases up to and including d = 5, this involving a prodi-
gious amount of calculation, but it has also been checked
in the case of the predicted minimum coefficient up to
enormous values of d. The computational evidence for
Conjecture 4.2 is not as extensive, although still strong,
but there is more theoretical evidence in the geometric
case for the precise value of the upper bound. Should one
want further experimental evidence for Conjecture 4.2, it
should be feasible to extend the previous computations
at least to include all cases up to and including d = 3.
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