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In this paper we study elliptic curves that have a number of
points whose coordinates are in arithmetic progression. We first
motivate this Diophantine problem; then we prove some results,
provide a number of interesting examples, and finally point out
open questions that focus on the most interesting aspects of the
problem for us.

1. INTRODUCTION

We will deal with elliptic curves defined over a field K

by a Weierstrass equation:

E : Y 2+a1XY +a3Y = X3+a2X
2+a4X+a6, ai ∈ K.

We will denote, as usual, by E(K) the locus of
the above equation, together with the point at infinity,
O = (0 : 1 : 0).

The changes of variables preserving Weierstrass form
are those given by [Silverman 86]

X ′ = u2X + s, Y ′ = u3Y + rX + t,

and we consider two equations related by such a change
of variables to represent the same curve (equivalently, we
will deal with elliptic curves up to so-called Weierstrass
changes of variables).

Consider P0, . . . , Pn ∈ E(K), with Pi = (xi, yi) such
that x0, . . . , xn is an arithmetic progression. We say that
P0, . . . , Pn are in x-arithmetic progression (x-a.p.) and
also say that E has an x-arithmetic progression of length
n+1. This does not depend on the Weierstrass equation
considered.

The same definition goes for y-arithmetic progressions
(y-a.p.). However, in this case, changes of variables (even
those that preserve Weierstrass equations) can create and
remove y-arithmetic progressions.
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Example 1.1. Let us consider the following equation
over Q:

E : Y 2 − 5
16
XY +

1
64
Y = X3 − 1

64
X2,

with(
1
8
,
−4
128

)
,

(−1
32
,
−3
128

)
,

(
5
64
,
−2
128

)
,

(
1
32
,
−1
128

)
,

(
1
64
, 0
)
,

(
3
64
,

1
128

)
,

(
1
16
,

2
128

)
∈ E(Q).

The reader can easily check that after the change of
variables Y ′ = Y +X, the corresponding points are not
in y-a.p. Hence we can properly talk of x-a.p. in a curve,
but if we speak of y-a.p. in a curve, we must keep in mind
that we are considering a specific equation.

This paper studies elliptic curves that have a simulta-
neous arithmetic progression. First we need a proper def-
inition of these progressions. Let us consider P0, . . . , Pn

as above. If we want both x0, . . . , xn and y0, . . . , yn to
be arithmetic progressions, then the problem is far too
easy, since P0, . . . , Pn must be collinear and hence n ≤ 2.
Many examples can be found with this property; for in-
stance, all curves in the family

E(b) : Y 2 + (2b− 1)XY + bY = X3 − bX2

have the arithmetic progression (0,−b), (b, 0), (2b, b).

Definition 1.2. With the above notation, P0, . . . , Pn de-
fine a simultaneous arithmetic progression (s.a.p.) for
E, or E has a simultaneous arithmetic progression if the
following conditions are satisfied:

(a) x0, . . . , xn are in arithmetic progression (called the
support of the s.a.p.).

(b) There exists a permutation σ in the symmetric group
of n+ 1 elements Sn+1 such that yσ(0), . . . , yσ(n) are
in arithmetic progression.

The definition is clearly symmetric: it is equivalent
(up to point ordering) to saying that y0, . . . , yn are in
arithmetic progression and there exists µ ∈ Sn+1 such
that xµ(0), . . . , xµ(n) are in arithmetic progression, but
our version has proved more useful for computational
purposes.

With this definition, at least three problems arise:

(a) The detection problem: Given an elliptic curve, does
there exist an algorithm for deciding whether it con-
tains an s.a.p. of length n (providing a change of
variables if needed)?

(b) The subsequence problem: Given an s.a.p. of length
n+1 in an elliptic curve, does it contain an s.a.p. of
length n? (Note that this is not at all trivial from
the definition.)

(c) The bound problem: Is there a bound for the possi-
ble lengths of s.a.p. in elliptic curves?

In trying to understand these three problems, we have
developed some computational methods (actually, two
partial answers to the detection problem) whose applica-
tion may shed some light on the matter at hand. Nev-
ertheless, the results achieved can be considered only as
a first step toward a fully satisfactory understanding of
these sequences. We have managed to prove the following
results:

Theorem 1.3. Given an elliptic curve with an x-a.p.,
there exists an algorithm that decides whether the curve
also has an s.a.p. with the given x-a.p. as support.

Theorem 1.4. There are integers n, and examples of
curves with s.a.p. of length n, that do not contain any
s.a.p. of length n− 1.

Theorem 1.5. There are no elliptic curves defined over Q

with s.a.p. of length 7. There are only finitely many non-
isomorphic curves defined over Q with s.a.p. of length 6.

We will finish this introduction with a word on moti-
vation. At first, our interest was drawn to this subject
by the articles of Bremner–Silverman–Tzanakis [Brem-
ner et al. 00] and Bremner [Bremner 99b]. Apparently,
these papers had their starting point in the relationship
between x-a.p. and Latin square problems (see more on
this in [Bremner 99a, Bremner 01]). However, highly
interesting results were sketched in both papers around
the interplay between the existence of arithmetic progres-
sions on a certain elliptic curve and its rank. In this same
direction, Campbell [Campbell 03] has pointed out far-
reaching questions, probably too difficult for the current
state of the art.

The history of the problem, though, can be traced
back considerably further, since (for the specific case of
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Mordell curves) it was treated previously by S. P. Mo-
hanty [Mohanty 75], who studied x- and y-a.p. sepa-
rately, and by Lee and Vélez [Lee and Vélez 92], who
first treated s.a.p., if only in the naive form mentioned
above, with no permutations involved. The motivation
for these first works was, as has been the case many other
times in number theory, purely Diophantine.

We became interested in this specific problem while
trying to improve Bremner’s record of longest x-a.p. by
narrowing the search.1 Our first attempts were shown
in [Garćıa-Selfa and Tornero 05], using a specific kind of
s.a.p. that allowed us to find examples of s.a.p. of length
5. These methods were not at all exhaustive, as was
accurately pointed out by Bremner in his MathSciNet
review. After this work, we feel that some of the posed
problems are worth a closer look, and the setup remains
challenging. As Bremner points out in [Bremner 99b],
“Questions in number theory that interrelate two group
structures are easily posed, but often lead to intractable
problems.”

2. THE DETECTION PROBLEM

Let us consider a set of points P0 = (x0, y0), . . . , Pn =
(xn, yn) on an elliptic curve, defined overK by the Weier-
strass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

with ai ∈ K. Let us suppose the points P0, . . . , Pn ∈
E(K) to be in x-a.p. We are interested in finding, if there
exist any, a change of variables preserving the Weierstrass
form of E that transforms Pi = (xi, yi) into P ′

i = (x′i, y
′
i),

so that P ′
0, . . . , P

′
n is an s.a.p. for the corresponding equa-

tion E′. This change of variables must be of the form

X ′ = u2X + s, Y ′ = u3Y + rX + t.

If xi = a+ i · d, and we want y′σ(0), . . . , y
′
σ(n) to be an

arithmetic progression for some σ ∈ Sn+1, then we must
have

x′i = u2(a+ id) + s,

y′i = b+ σ(i)d′, for i = 0, . . . , n.

We can take, with no loss of generality, u = 1, s =
0, t = 0. This involves simply choosing an appropriate

1The longest x-a.p. found in an elliptic curve has 8 terms [Brem-
ner 99b]; for y-a.p. the record is 7 so far [Garćıa-Selfa and Tornero
05].

reference system by translation and scaling (which would
not affect s.a.p. in any case). Then we want

x′i = xi = a+ id,

y′i = yi − r(a+ id) = b+ σ(i)d′, for i = 0, . . . , n,

for some b, d′ ∈ K.
These latter identities can be written as a system of

n+ 1 linear equations in r, b, and d′, with matrix

A∗ =

⎛⎜⎜⎜⎝
a+ 0d 1 σ(0) y0
a+ 1d 1 σ(1) y1

...
...

...
...

a+ nd 1 σ(n) yn

⎞⎟⎟⎟⎠ .

Note that the y-sequence y0, . . . , yn is not an arith-
metic progression if and only if the first, second, and
fourth columns are independent, equivalently, if

∃s ∈ {2, . . . , n} such that
−0 1 y0
−1 1 y1
−s 1 ys

�= 0.

Our first detection algorithm uses that the existence
of a solution to our system (that is, the existence of an
s.a.p.) is equivalent to A∗ having rank 3. The formal
algorithm goes like this:

Algorithm 2.1.

Input Data: E, x0, . . . , xn (equivalently E, x0, n, d).

Step 0. For all sets {y0, . . . , yn} such that (xi, yi) ∈
E(K), do

Step 1. (Foolproof checking) Check whether {y0, . . . , yn}
is an arithmetic progression. If so, we are done; if not,
find s, 2 ≤ s ≤ n, as above.

Step 2. For every σ ∈ Sn and every i ∈ {2, . . . , n}, i �= s,
compute the minor formed by the first, second, sth, and
ith rows of A∗.

Step 3. If for some σ ∈ Sn the n − 2 minors are null,
solve the system to find r, b, and d′. If not, go to step 0.

The main inconvenience of this procedure is the neces-
sity for 2n+1(n + 1)!(n − 2) determinant computations,
since there are (n+ 1)! possibilities for σ and 2 possibil-
ities for each yi. So we will try to find a more efficient
procedure, although this setup will prove useful later on.

Consider the affine points Q0 = (0, y0, σ(0)), . . . , Qn =
(nd, yn, σ(n)) ∈ A3(K). Note that P0, . . . , Pn are an
s.a.p. if and only if Q0, . . . , Qn lie in the same plane.
This is the basis for our algorithm, whose input data and
steps 0 and 1 are those of Algorithm 2.1.
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y0 y1 y2 y3 σ y′
0 y′

1 y′
2 y′

3

28 −20 4 4 (1023) 4 −20 28 52
(0213) −44/3 −20 −52/3 −68/3

−28 −20 −4 4 (1032) −18 −20 −14 −16
(1302) −84/5 −20 −76/5 −92/5
(0213) 44/3 20 52/3 68/3

28 20 4 −4 (1032) 18 20 14 16
(1302) 84/5 20 76/5 92/5

−28 20 −4 −4 (1023) −4 20 −28 −52

TABLE 1. Four of the 24 y-sequences lead to simulta-
neous arithmetic progressions.

Algorithm 2.2.

Step 2. For each {i, j, k} ⊂ {0, 1, . . . , n}, we consider the
plane

πijk = 〈(0, y0, i), (d, y1, j), (sd, ys, k)〉.

Step 3. For l = 2, . . . , n and l �= s, we intersect the plane
πijk with the line x = ld, y = yl.

Step 4a. If any of these intersections gives a point
(ld, yl, zl) such that zl /∈ {0, 1, . . . , n} or zl is equal to
another zl′ , then {z0, . . . , zn} does not correspond to
{σ(0), . . . , σ(n)} for any σ ∈ Sn+1. Go to step 2, change
the plane, and repeat the process or go to step 0 if all
planes have been exhausted.

Step 4b. If we find a set of points Q0 =
(x0, y0, z0), . . . , Qn = (xn, yn, zn) with zi = σ(i) for
i = 0, . . . , n and σ ∈ Sn+1, then σ yields a solution r,
b, d′ of our system.

As for the computational complexity, note that we
have (n+1)n(n− 1)/6 possibilities for πijk, and for each
plane we have at most n−2 intersections. This, together
with the 2n+1 possibilities for the sets y0, . . . , yn, means
a saving of around (n− 3)! computations.

The implementation of both algorithms shows that the
time difference is not huge (n does not go very far), but
it is already significant for n ≥ 5.

From now on, we will denote σ ∈ Sn+1 by σ =
(a0 . . . an), meaning σ(0) = a0, . . . , σ(n) = an.

Example 2.3. The curve Y 2 = X3 − 112X + 400, de-
fined over Q, has the following x-arithmetic progression
of length 4:

xk : −4, 0, 4, 8.

And four of the 24 y-sequences lead to simultaneous arith-
metic progressions, as shown in Table 1.

This x-arithmetic progression can be extended to one
of length 5,

xk : −4, 0, 4, 8, 12,

and two of the 25 possible y-sequences lead to simultane-
ous arithmetic progressions, as shown in Table 2.

The equation for both cases is

Y 2 − 20
3
XY = X3 − 100

9
X2 − 112X + 400.

If we try to repeat the procedure for length 6 with

xk : −4, 0, 4, 8, 12, 16,

we find that none of the 26 possible y-sequences leads to
a simultaneous arithmetic progression.

Open Problem 2.4. Find a procedure for deciding
whether an elliptic curve has an x-a.p. of given length.

The most interesting results in this direction are the
parameterizations by Bremner [Bremner 99b], which will
be used later in this paper. However, they are still far
from being useful from a computational point of view.

3. THE SUBSEQUENCE PROBLEM

The algorithms described in the previous section (espe-
cially the second one) were of great help, both in test-
ing the examples we created with the techniques shown
in [Garćıa-Selfa and Tornero 05] and in creating new
ones. The counterexamples announced in Theorem 1.4
appeared within the framework of these extensive calcu-
lations. Here we present the simplest one.

Counterexample 3.1. Consider the following elliptic
curve over Q, in Tate normal form:

E

(
25
21
,
−2
7

)
: Y 2 +

25
21
XY − 2

7
Y = X3 +

2
7
X2.

This curve has an x-arithmetic progression of length 5:

xk :
−6
7
,

−4
7
,

−2
7
, 0,

2
7
.

Using the above procedure we obtain a y-sequence that
gives the simultaneous arithmetic progression

yk :
4
7
,

16
147

,
92
147

, 0,
4
21
.

There is only one permutation σ that passes Algorithm
2.2 and thus allows a change of variables, namely σ =
(20413). The y′-arithmetic progression is

y′k :
8
49
,

−8
49
,

24
49
, 0,

16
49
,
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y0 y1 y2 y3 y4 σ y′
0 y′

1 y′
2 y′

3 y′
4

−28 −20 −4 4 28 (13240) −44/3 −20 −52/3 −68/3 −12

28 20 4 −4 −28 (13240) 44/3 20 52/3 68/3 12

TABLE 2. Two of the 25 possible y-sequences lead to simultaneous arithmetic progressions.

for the equation

Y 2 +
5
21
XY − 2

7
Y = X3 +

92
147

X2 − 20
147

X.

In this way we have found a simultaneous arithmetic
progression of length 5 containing no simultaneous arith-
metic progressions of length 4, because the permutation
involved is not the extension of an S4 permutation. In
our many calculations these are atypical cases: first of
all, the permutation found is seldom unique, and among
the collected ones, we usually find an extension of some
S4 permutation. These counterexamples mean an addi-
tional difficulty for arguments involving induction.

Interestingly, in the above example there are other
suitable s.a.p. of length 5 with the same support (that
is, other choices for the yi) that happen to have subse-
quences of length 4.

Open Problem 3.2. Given an elliptic curve with an s.a.p.
of length n, prove or disprove that there is always an
s.a.p. of length n − 1 whose support is contained in the
support of the given one.

We have found no counterexamples to this problem.
If it is true, note that it could serve as a weak induction
result.

4. THE BOUND PROBLEM

As was pointed out by Bremner [Bremner 99b], this kind
of problem tends to become unmanageable quite quickly.
From our many attempts, we will describe here the most
successful, which relies on a parameterization of curves
with x-a.p. due to Bremner [Bremner 99b] (here slightly
changed for our purposes). In what follows we will as-
sume K = Q. Note that the previous arguments do not
rely on the base field at all.

First of all, we will parameterize elliptic curves in short
Weierstrass form

Y 2 = X3 +AX +B

with four points in x-a.p.:

P0 = (a, y0), P1 = (a+ d, y1), P2 = (a+ 2d, y2),

P3 = (a+ 3d, y3).

Consider the four polynomials F0, . . . , F3 in
Q[y0, y1, y2, y3, a, d, A,B] given by

Fi = y2
i − (a+ id)3 −A(a+ id) −B,

and compute a Gröbner basis of the ideal 〈F0, . . . , F3〉.
The tdeg ordering in Maple V gives a basis of ten el-
ements that can be used for computing a,A,B taking
d, y0, . . . , y3 as parameters:

A =
−1
62d4

(
y4
0 − 9y2

0y
2
1 + 6y2

2y
2
0 + y2

3y
2
0 + 21y4

1 − 39y2
2y

2
1

+ 6y2
3y

2
1 + 21y4

2 − 9y2
3y

2
2 + y4

3

)
= −P/36d4,

B =
1

63d6

(
y4
3y

2
0 + 4y4

3y
2
1 + y4

3y
2
2 − 9y2

3y
4
2 − 8y2

3y
2
2y

2
0

+ 24y2
3y

4
1 − 8y2

3y
2
0y

2
1 − 12y2

3y
2
2y

2
1 + y2

3y
4
0

+ y4
0y

2
1 − 9y2

0y
4
1 + 20y6

1 − 21y4
1y

2
2 + 4y4

0y
2
2

+ 20y6
2 − 21y2

1y
4
2 + 24y2

0y
4
2 − 12y2

0y
2
2y

2
1

)
= Q/63d6,

a =
−1
6d2

(−2y2
0 + 5y2

1 − 4y2
2 + y2

3

)
= −R/6d2.

In addition, the first member of the basis is

−y2
3 + 6d3 + y2

0 − 3y2
1 + 3y2

2 .

Setting u = 6d we obtain the following parameteriza-
tion:

Curve: Y 2 = X3 − 62PX + 63Q,
First term: 36d2a = −6R,
Difference: 36d3 = 6y2

3 − 6y2
0 + 18y2

1 − 18y2
2 .

We will rename our parameters and use from now on
A and B for −62P and 63Q, respectively, with a and d

for the new first term and difference. It is interesting to
note that the points in x-a.p. are now

Pi = (a+ id, ±6yid), for i = 0, . . . , 3.

We will try to produce curves with an s.a.p. of given
length with a variant of Algorithm 2.1, which we will il-
lustrate with the case of length 6. In fact, using this pro-
cedure we might compute all curves with such an s.a.p.,
in contrast to the lack of exhaustiveness of [Garćıa-Selfa
and Tornero 05]. If we want points P4 = (a+4d, z4) and
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P5 = (a + 5d, z5) to be on the curve, then the following
must hold:

z4 = ±36
√

4y2
3 + 4y2

1 − y2
0 − 6y2

2

× (−y2
3 + y2

0 − 3y2
1 + 3y2

2),

z5 = ±36
√

−4y2
0 − 20y2

2 + 15y2
1 + 10y2

3

× (−y2
3 + y2

0 − 3y2
1 + 3y2

2).

Hence, for the sake of consistency, we will set

y2
4 = 4y2

3 + 4y2
1 − y2

0 − 6y2
2 ,

y2
5 = −4y2

0 − 20y2
2 + 15y2

1 + 10y2
3 ,

and our new points will then be Pi = (a + id, ±6yid)
for i = 4, 5.

Example 4.1. We will show how to proceed using σ =
(120345). By the above arguments, we may use the ma-
trix

M =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 y0
1 1 2 y1
2 1 0 y2
3 1 3 y3
4 1 4 y4
5 1 5 y5

⎞⎟⎟⎟⎟⎟⎟⎠ ,

instead of the original matrix A∗ from Algorithm 2.1,
and require M to have rank 3, since we are assuming
d �= 0. Note that {y0, . . . , y5} are not the y-coordinates
of P0, . . . , P5. All the minors are linear polynomials on
y0, . . . , y5, and we also have two quadratic relations. It
is not surprising that the complete solutions are two lin-
ear varieties, actually a plane and a line, given by the
following parameterizations:{

y0,
y4 + 3y0

4
,
y4 + y0

2
,

3y4 + y0
4

, y4,
5y4 − y0

4

}
and {

y0,
7y0
19

,
y0
19
,
−15y0

19
,
−27y0

19
,
−39y0

19

}
,

where the first one contains only points yielding d = 0
and therefore must be discarded. In fact, these trivial so-
lutions appear in all cases, and this is clearly a byproduct
of our previous assumptions.

Now we make the substitutions induced by the second
parameterization, obtaining

A =
−7840512
130321

y4
0 , B =

8449090560
47045881

y6
0 ,

a =
1536
361

y2
0 , d =

48
361

y2
0 ,

and the linear system given by A∗ has solution

r =
−60y0

19
, b =

98208y3
0

193
, d′ =

−576y3
0

193
.

This gives, after the corresponding substitution, the
equation

Y 2 − 120y0
19

XY = X3 − 3600y2
0

361
X2 − 7840512y4

0

130321
X

+
8449090560y6

0

47045881
,

which has the following s.a.p.:(
1536y2

0

192
,
97632y3

0

193

)
,

(
1584y2

0

192
,
97056y3

0

193

)
,(

1632y2
0

192
,
98208y3

0

193

)
,

(
1680y2

0

192
,
96480y3

0

193

)
,(

1728y2
0

192
,
95904y3

0

193

)
,

(
1776y2

0

192
,
95328y3

0

193

)
.

All these curves are isomorphic to the one given by
the case y0 = 19/2,

Y 2 − 60Y X = X3 − 900X2 − 490032X + 132017040,

having the sequence {(384, 12204), (396, 12132),
(408, 12276), (420, 12060), (432, 11988), (444, 11916)}.

We have not computed all curves with s.a.p. of length
6, although we have bounded the number of curves by
19200, using the previous computations with all possible
sign and permutation choices, counting only the number
of possible solutions, that is, cases in which the line does
not induce d = 0.

To be precise, only half of the sign choices have to be
considered, since every arithmetic progression of differ-
ence d is also an arithmetic progression of difference −d,
and hence every curve appears at least twice, for a pair
of inverse choices of signs and permutations.

Even so, not all of these cases are nonisomorphic ellip-
tic curves; there might be isomorphic curves among them
as well as genus-0 curves. We have computed some ex-
plicit data for the first 100 curves found with this method,
in which repeated curves already appear [Garćıa-Selfa
and Tornero 06a, Garćıa-Selfa and Tornero 06b] (in fact,
there are only 56 nonisomorphic curves).

As a side remark, we note that the distribution of pos-
sible curves is extremely regular. For every sign choice in
y0, . . . , y5, there are 600 permutations giving d �= 0. In
addition, for a fixed permutation, all possible sign choices
usually lead to the same solution of the linear system.
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This, together with the repeated cases shown in the sup-
plement, gives a heuristic estimation of only around 350
nonisomorphic curves, but filling in the details of such a
list is beyond our computational possibilities so far.

As for length 7, our procedure shows that there are
no solutions, since all possible ones yield d = 0. This
case exhausts the possibilities of computer checking, at
least with these methods, since it took around 20 hours
of CPU time (which implied four days in real time) and,
more constraining, 211 MB of stack memory. To extend
this method of attack to length 8, these figures should
be multiplied by at least 16 (there are 8 times as many
permutations, and twice as many minors), and that is
without considering the additional difficulty of adding a
new quadratic polynomial to the system, the effect of
which is not easy to measure.

Open Problem 4.2. Find a universal bound for the length
of an s.a.p. on elliptic curves over Q.

Note that an affirmative answer to Open Problem 3.2
would mean that 6 is the answer to Open Problem 4.2.

5. FINAL REMARKS

A supplement containing 100 curves with s.a.p. of length
6 as well as their rank computations can be found in
[Garćıa-Selfa and Tornero 06a, Garćıa-Selfa and Tornero
06b].

We will finish with a comment on ranks. As Bremner
noticed in [Bremner 99b], points in arithmetic progres-
sion seem to have a tendency to be independent. If we
take into account only the ranks actually computed in
[Garćıa-Selfa and Tornero 06a, Garćıa-Selfa and Tornero
06b], we get an average greater than 4, when in fact, the
average for random curves is known to be much smaller
[Young 06].

It should be noted that example 039 from [Garćıa-Selfa
and Tornero 06a], given by the equation

Y 2 − 720Y X + 129600X2 −X3 + 9969629720832X

− 13778174775900128256,

is a remarkable case. As far as we know, it is the first
curve with an x-a.p. of length 6 and rank one.

(See the final remark of [Bremner 99b], and [Bremner et
al. 00] shows why this is so uncommon.) The relation, if
any, between the rank and the length of s.a.p. (or x-a.p.)
seems definitely a much harder problem to tackle.
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Tornero. Supplement to this article. Available online
(www.expmath.org/expmath/volumes/15/15.4/tornero/
list6ap.txt).
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