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We use a computer procedure to determine a basis of the ele-
ments of degree 5 in the nucleus of the free alternative algebra.
In order to save computer memory, we do our calculations over
the field Z103. All calculations are made with multilinear iden-
tities. Our procedure is also valid for other characteristics and
for determining nuclear elements of higher degree.

1. INTRODUCTION

Alternative algebras are nonassociative algebras satisfy-
ing the identities

(a, a, b) = 0, (1–1)

(a, b, b) = 0. (1–2)

(The associator (x, y, z) is defined by (x, y, z) = (xy)z −
x(yz).) In an alternative algebra, the associator is an al-
ternating function of its three arguments. The most fa-
miliar example of an alternative algebra is the octonions,
which appear as distant generalizations of the reals in the
chain

Reals ⊂ Complexes ⊂ Quaternions ⊂ Octonions.

Cayley–Dickson algebras are eight-dimensional alter-
native algebras that generalize the octonions. See
[Zhevlakov et al. 82, Chapter 2].

We shall assume that all algebras are over a field F

of characteristic zero or of characteristic greater than the
degree of the identities in question. We can therefore
limit our discussion to multilinear identities (see the dis-
cussion of linearization in Chapter 1 of [Zhevlakov et al.
82]). The linearized forms of (1–1) and (1–2) are

(a, b, c) + (b, a, c) = 0, (1–3)

(a, b, c) + (a, c, b) = 0. (1–4)

Definition 1.1. The nucleus of a nonassociative algebra
A is the set

N(A) = {p ∈ A | (p, x, y) = (x, p, y) = (x, y, p) = 0,

∀x, y ∈ A}.
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In [Kleinfeld 53a], Kleinfeld showed that for any x

and y in an alternative algebra, the element [x, y]4 is
in the nucleus. (The commutator [x, y] is defined by
[x, y] = xy − yx.) This element was used by Kleinfeld
to prove that a simple alternative algebra is associative
or a Cayley–Dickson algebra [Zhevlakov et al. 82, Chap-
ter 7]. Kleinfeld’s element is of degree 8. The elements
of degree 5 that are known to be in the nucleus of an
alternative algebra are

[[a, b][a, b], a] (1–5)

and

[[[[b, a], c], a], a] − [[[[b, a], a], c], a] + 2 [[[b, a], [c, a]], a].
(1–6)

We state now our first main result.

Theorem 1.2. The following elements of degree 5 are in
the nucleus of an alternative algebra:

([a, b][a, c])a− (a[a, b])[a, c], (1–7)

[[[a, b], [a, c]], a] − 2([a, b], [a, c], a), (1–8)

and

a(b(a(ac))) + a(a(b(ca))) + b(a(c(aa)))

− a(a(b(ac))) − b(a(a(ca))) − a(b(c(aa))). (1–9)

There are two traditional approaches to finding ele-
ments of the nucleus. One approach is to use a Cayley–
Dickson algebra for initial screening of nuclear elements.
One looks for all elements of the free alternative algebra
that evaluate into the nucleus of a Cayley–Dickson alge-
bra. Then one looks among these elements to find those
that are also in the nucleus of the free alternative alge-
bra. The other approach [Zhevlakov et al. 82, Chapter
7, Lemma 3]) is to use the identity

(ab, c, d) + (a, b, [c, d]) = a(b, c, d) + (a, c, d)b, (1–10)

which is a consequence of (1–2) [Kleinfeld 53b]. From this
identity we see that if (x, c, d) = 0 for all x, then [c, d] is
in the nucleus. This allows one to work with expressions
of lower degree, but it also limits the results to nuclear
elements that are expressible as sums of commutators.
It would not be expected to pick up the nuclear element
(1–9).

Any alternative algebra satisfies the identity
([a, b][a, b], a, c) = 0 [Zhevlakov et al. 82, Chapter
13, Lemma 15]. Therefore it follows from (1–10) that

(1–5) is in the nucleus. From a lemma in [Filippov 75]
we obtain that

([[[b, a], c], a] − [[[b, a], a], c] + 2 [[b, a], [c, a]], a, d) = 0.

Therefore by (1–10) the element (1–6) is in the nucleus.
We want to make precise what is meant by an ele-

ment of the nucleus of the free alternative algebra. In the
free alternative algebra on two generators, any element
is in the nucleus because the free alternative algebra on
two generators is associative. We do not want to find
the nucleus of a particular algebra, or an algebra with
a prescribed number of generators. Rather, we want el-
ements that evaluate into the nucleus in all alternative
algebras over any field of characteristic 0 or sufficiently
large characteristic.

Let p be an element of the free nonassociative algebra
F [X] in generators X = {x1, x2, . . . , xn}. We say that p
is an element of the nucleus of the free alternative algebra
in generatorsX if in the free alternative algebra on gener-
ators X ∪{xn+1, xn+2} one has that (p, xn+1, xn+2) = 0.

We show that the minimal degree of the nonzero el-
ements in the nucleus of the free alternative algebra is
5. We find a basis of the nuclear elements of degree 5 of
the free alternative algebra. Our calculations are done
in Z103 (see Section 6). It does not guarantee that there
are not elements of degree less than 5 for all finite char-
acteristics.

The nuclear elements that we found were checked by
the computer program ALBERT [Jacobs et al. 96] for
various finite characteristics, but we do not have a de-
pendency relation over the integers that would show that
the elements are in the nucleus for all but a finite number
of characteristics.

We state more precisely our second main result.

Theorem 1.3. In the free alternative algebra over Z103 on
generators {a, b, c, d, e} we have the following:

(i) There are no nonzero nuclear elements of degree
less than 5.

(ii) All the nuclear elements of degree 5 are conse-
quences of the alternative identities of degree 5
(i.e., the identities of degree 5 implied by the al-
ternative identities of degree 3) and ([a, b][a, c])a −
(a[a, b])[a, c].

In the last section, we use our computer procedure to
verify that the first four elements, in a series of nuclear el-
ements in the free alternative algebra, are nonzero. This
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series of nuclear elements is defined in [Shestakov and
Zhukavets 06a]. All the nuclear elements in this series
are proved to be nonzero in [Shestakov and Zhukavets
06b].

2. REPRESENTATION OF ALGEBRAIC EXPRESSIONS

Let X = {x1, . . . , xn} be a set of variables. We con-
struct the set M [X] of (noncommutative and nonasso-
ciative) monomials inductively as follows: X ⊂M [X]; if
xi, xj ∈ X then xixj ∈ M [X]; if u, v ∈ M [X] −X then
xi(u), (u)xi, (u)(v) ∈M [X].

An association type of degree n is a way to put paren-
theses in a product of degree n. The number of associa-
tion types of degree n is given by the Catalan number

cat[n] =
1
n

(
2n− 2
n− 1

)
.

Here are some Catalan numbers:

n 1 2 3 4 5 6 7 8 9 10
cat[n] 1 1 2 5 14 42 132 429 1430 4862

A term is a scalar multiple of a monomial. To each
monomial or term corresponds a unique association type.
The ordering on the association types is given by the
following rules. For terms of different degree,

A < B if and only if deg(A) > deg(B).

For terms of the same degree we proceed lexicographi-
cally on the factors. Thus

AB < CD if A < C or if A = C and B < D.

Let

F [X] =
{ n∑

i=1

αi ui | n ∈ IN, αi ∈ F, ui ∈M [X]
}

be the vector space over F spanned by M [X]. The ele-
ments of F [X] are called (nonassociative) polynomials in
the variables xi. We define in F [X] a multiplication by
the following rules:

xi.xj = xixj , xi.u = xi(u),

u.xi = (u)xi, u.v = (u)(v),

and ( n∑
i=1

αiui

)
.
( m∑

j=1

βjvj

)
=

n,m∑
i,j=1

αiβjui.vj ,

where xi, xj ∈ X, u, ui, vj ∈M [X]−X. We obtain then
an algebra called the free nonassociative algebra gener-
ated by X. We also denote this algebra by F [X] (or
F [x1, . . . , xn]). An element

∑n
i=1 αiui ∈ F [X] is called

multilinear of degree k if the ui’s are monomials in the
set of variables {xt1 , . . . , xtk

} ⊂ X and xtj
(j = 1, . . . , k)

appears exactly once in ui (i = 1, . . . , n).
A polynomial f = f(x1, x2, . . . , xn) ∈ F [X] is called

an identity of an algebra A if f(a1, a2, . . . , an) = 0 for all
a1, a2, . . . , an ∈ A. When f is an identity of A we say
also that A satisfies f = 0.

We say that an ideal I of F [X] is a T-ideal if ψ(I) ⊂ I

for all homomorphisms ψ : F [X] → F [X].
Let Alt[X] denote the ideal of F [X] generated by the

elements (f1, f1, f2), (f2, f1, f1) (f1, f2 ∈ F [X]). This
ideal is a T-ideal called the T-ideal of F [X] generated by
(1–1) and (1–2). We denote by Altn[X] the subspace of
multilinear elements of degree n in Alt[X].

Definition 2.1. The free alternative algebra generated by
X is the quotient algebra

ALT[X] = F [X]/Alt[X].

Let A be an alternative algebra over F . Let φ : X → A
be a mapping. Then there is a unique homomorphism
φ : ALT[X] → A such that φ(x) = φ(x) for all x ∈ X.
If p(x1, . . . , xn) ∈ N(ALT[X]) and a1, . . . , an ∈ A, then
p(a1, . . . , an) ∈ N(A).

A major decision was to represent the association type
by an integer. The association types are listed in order
for degrees 1 through 5. The “x” is a placeholder. Here,
we are interested only in how the terms are associated,
not the particular generators from which the product is
made:

Degree 1: T1 Degree 2: T1 Degree 3: T1 T2

x xx (xx)x x(xx)
Degree 4:

T1 T2 T3 T4 T5

((xx)x)x (x(xx))x (xx)(xx) x((xx)x) x(x(xx))

Degree 5:

T1 T2 T3 T4

(((xx)x)x)x ((x(xx))x)x ((xx)(xx))x (x((xx)x))x

T5 T6 T7 T8

(x(x(xx)))x ((xx)x)(xx) (x(xx))(xx) (xx)((xx)x)

T9 T10 T11 T12

(xx)(x(xx)) x(((xx)x)x) x((x(xx))x) x((xx)(xx))

T13 T14

x(x((xx)x)) x(x(x(xx)))
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Having given a theoretical discussion on terms, we now
discuss data structures in the computational implemen-
tation. The representation of a term A has four parts:
A.c is the coefficient, A.d is the degree, A.t is the type,
and A.x is the string of generators that are multiplied
together to get A. For example, the term 3((ca)(bd))e is
represented by A, where A.c = 3, A.d = 5, A.t = 3, and
A.x = cabde.

The computer procedure to multiply terms concate-
nates the terms to be multiplied. It then computes how
many association types of the same degree come at or
before the association type of the resulting term in the
listing of all association types.

The computer procedure to factor a term first estab-
lishes the degree of the separate factors, and then estab-
lishes the actual association types of the factors. Each
term has a unique factorization. For example, the factors
of the term ((ab)c)d are (ab)c and d.

We study the free nonassociative algebra F [X] on gen-
erators X. We need to represent elements of F [X] and to
recognize all elements in the T-ideal Alt[X]. The basic
unit of the elements of F [X] is the term. We have ways to
represent terms, ways to multiply terms, and ways to fac-
tor terms. These basic processes can then be combined
to create the T-ideal Alt[X].

3. CREATING THE T-IDEAL

Computing the multilinear alternative identities for a
particular degree n (i.e., the consequences in that degree
of the alternative identities in degree 3) is done in two
steps. We first create what we shall call the type identi-
ties of degree n. The subspace Altn[X] of multilinear ele-
ments of degree n of the T-ideal Alt[X] is spanned by the
set of type identities after that set has been augmented
to include the additional (but equivalent) identities ob-
tained by permuting their arguments in all possible ways.

The type identities of degree n are created in the fol-
lowing manner: For each association type of degree n we
find the n− 2 possible ways that the term could be reas-
sociated. This gives n− 2 buried associators. For exam-
ple, ((ab)c)d can be reassociated as (a(bc))d and (ab)(cd).
This gives the buried associators (a, b, c)d and (ab, c, d).
Using (1–1) and (1–2), each associator creates two iden-
tities. We attempt to avoid duplicating the same identity
as much as possible. It does no harm to have a particular
identity more than once, but when done to excess, it can
make the process too big to run.

The computer procedure to create the type identities
of degree n is recursive. We run through each of the

cat[n] association types of degree n. Let the term A

represent an association type. If deg(A) is 1, there are
no type identities. If deg(A) is greater than 1, then factor
A = BC. Now the type identities from A contain those
of B multiplied on the right by C as well as those of C
multiplied on the left by B. Furthermore, if B = B1B2,
we add the identities

(B1, B2, C) + (B2, B1, C) (if B1 ≤ B2),

(B1, B2, C) + (B1, C,B2) (if B2 ≤ C).

This gives us the type identities with a minimum of dupli-
cation. Any instance of the alternative identities expands
to four terms. We capture this particular type identity
when we create the identities for the term (or perhaps
terms) of smallest type of the four.

As an example we compute the type identities of de-
gree 4. Let A = ((ab)c)d be a term with association type
1. We factor A as A = BC, where B = ((ab)c) and
C = d. Now B = B1B2 with B1 = (ab) and B2 = c.
Association type 1 gives the following type identities:

(a, b, c)d+ (b, a, c)d = 0, (a, b, c)d+ (a, c, b)d = 0,

(ab, c, d) + (c, ab, d) = 0, (ab, c, d) + (ab, d, c) = 0.

The association type 2 gives

(a, bc, d) + (a, d, bc) = 0.

The association type 3 gives

(a, b, cd) + (b, a, cd) = 0.

The association type 4 gives

a(b, c, d) + a(c, b, d) = 0, a(b, c, d) + a(b, d, c) = 0.

The association type 5 gives no type identities.

4. GROUP REPRESENTATION APPROACH

No effective basis is known for the free alternative alge-
bra ALT[X]. This leads to complicated calculations. One
way to reduce the size of the calculations is to apply the
theory of superalgebras. The calculations are done in the
free alternative algebra in one generator. For an applica-
tion of this technique see [Shestakov and Zhukavets 06b].
Another technique is the group representation approach
that we describe in this section.

With the base field any field of characteristic 0 or
greater than n, the symmetric group algebra on n letters
FSn is isomorphic to a direct sum of complete matrix
algebras [James and Kerber 81].
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We use this isomorphism to replace computations in-
volving permutations with computations involving matri-
ces. Since the two systems are isomorphic, any compu-
tations done in one system can be done in the other sys-
tem. The character of the computations is usually quite
different. What might be a trivial computation in one
system would involve a tremendous amount of computa-
tion in the other. If we show that something is true in
the matrix system, the corresponding proof in the group
algebra notation may involve linear combinations of huge
numbers of terms, which would not be possible even to
display, much less publish. The traditional way to prove
something is to calculate the rank of the subspace of mul-
tilinear elements of degree k in a T-ideal. Then one adds
the hypothetical identity of degree k to this subspace and
checks the rank again. If the rank remains the same, the
hypothetical identity is true. If the rank increases, the
hypothetical identity is false.

The origins of this method of using the representa-
tions of the symmetric group can be found in the papers
by Malcev [Malcev 50] and Specht [Specht 50]. Starting
in the 1970s, the method was further developed by Regev
[Regev 88]. As a computer technique to study polynomial
identities in nonassociative algebras, the method was in-
troduced by Hentzel [Hentzel 77]. The method to calcu-
late the representation matrices was simplified by Clifton
[Clifton 81]. This makes the computation of the matrices
easy to program in a computer.

There are three significant reasons for introducing the
representation technique. The first is that the size of the
problem is reduced considerably. In the group-algebra
approach, the elements are expressed in terms of n! cat[n]
different terms. In the matrix approach, the n! is re-
placed by the size of the representation. The maximal
representation is of size at most

√
n! [McKay 76]. These

differences are significant. In degree 6 the maximal rep-
resentation size is 16. If we work in the group algebra,
we have to work with a matrix of identities having 30240
columns (30240 = 42×6!, where 42 = cat[6]). In the ma-
trix approach, the largest matrix we have to deal with
has 672 columns, where 672 = 42 × 16. Of course, the
matrix technique has to be done one time for each rep-
resentation, but this is acceptable.

The second advantage is that the basic unit in the
matrix approach is the identity, rather than all permuta-
tions of the arguments into the identity. When there is
one identity, you find one identity, rather than the whole
set of equivalent identities. In other words, we work with
a set of module generators for the Sn-module of identi-

ties, rather than a set of basis vectors for the vector space
of identities.

The third advantage is that the problem is converted
into a standard matrix problem in which the computa-
tional techniques are already well established. The iden-
tities implied by a system of identities correspond to the
row space of a matrix. Two sets of identities are equiva-
lent if they have the same row space. One set of identities
implies another if the row space of one contains the row
space of the other.

We refer to [Hentzel 77] and [Hentzel and Peresi 97] for
more details on the theory behind these computational
methods.

4.1 The Identification of Multilinear Elements in F [X]
with Elements in FSn

Let p be a multilinear element of F [X] of degree n. We
sort the terms of p by association type:

T1 T2 . . . Tcat[n]

p = p1 + p2 + . . . + pcat[n]

Within each association type, the terms differ only by
their coefficients and the permutation of their (distinct)
arguments. Suppose that

pi =
∑

π∈Sn

ciπ (x1x2 . . . xn)π.

All the terms are associated according to association type
Ti, and π represents the permutation of the elements that
arranges them as they appear in the term of pi. The
permutation π applies to the position, not the subscript.
Thus

(x1x2x3)(123) = x3x1x2.

This is not xπ(1)xπ(2)xπ(3) = x2x3x1. The representation
of pi as an element of the group algebra is

pi =
∑

π∈Sn

ciππ.

For example, the identity (ab, c, d) + (c, ab, d) = 0 be-
comes

T1 T3 T2 T4

((ab)c)d −(ab)(cd) +(c(ab))d −c((ab)d)

T1 T3 T2 T4

I −I +(123) −(123)
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Representation Partition Rank

1 3 1

2 21 2

3 111 0

TABLE 1. Alternative laws.

The identity (ab, cd, e) + (cd, ab, e) = 0 becomes

T3 T8

((ab)(cd))e −(ab)((cd)e)
((cd)(ab))e −(cd)((ab)e)

T3 T8

I + (13)(24) −I − (13)(24)

Representing the alternative identities (1–3) and (1–4)
by matrices, and reducing to row canonical form, we ob-
tain the ranks given in Table 1.

In Section 3 we obtained the 8 type identities of degree
4. The ranks given by these identities are displayed in
Table 2.

Representation Partition Rank
1 4 4
2 31 12
3 22 8
4 211 10
5 1111 2

TABLE 2. Type identities of degree 4.

5. NUCLEAR ELEMENTS OF DEGREE n

To show that an element p of F [x1, x2, . . . , xn] is in the
nucleus, we have to show that (p, xn+1, xn+2) is in the T-
ideal Alt[x1, x2, . . . , xn+2] generated by (1–1) and (1–2)
on the generators {x1, x2, . . . , xn, xn+1, xn+2}.

The process of finding the nuclear elements of degree
n requires setting up a matrix with

repsize
(

cat[n+ 2]
(
n+ 2

2

)
+ cat[n]

)
columns, where repsize is the size of the representation.
This matrix is obtained from the group algebra expres-
sions of Table 3 by replacing each element by its repre-
sentation matrix.

T1 . . . T
cat[n+2]

(
n+2

2

) (T ′
1, xn+1, xn+2) . . . (T ′

cat[n], xn+1, xn+2)

Augmented type iden-
tities of degree n + 2

Zero matrix

Expansion of associa-
tors

Identity matrix

TABLE 3. Nuclear elements.

We will now explain the various steps used to create
this matrix.

1. We create all the type identities of degree
n+ 2. These type identities and the identi-
ties obtained by applying all possible permuta-
tions of their entries form a spanning set of the
subspace Altn+2[x1, x2, . . . , xn+2] of the T-ideal
Alt[x1, x2, . . . , xn+2]. We work the problem using
the group algebra FSn on n symbols, not n+2 sym-
bols. Since the group algebra FSn does not include
permutations involving the symbols xn+1 and xn+2,
we have to include those permutations separately.

2. In each type identity, we interchange xn+1 and xn+2

with the elements in all possible ways. Because the
associator (p, xn+1, xn+2) is skew-symmetric in the
letters xn+1 and xn+2, we can assume that all ex-
pressions we work with are also skew-symmetric in
xn+1 and xn+2. When we specify the positions of
xn+1 and xn+2 in a term, there will automatically
be a second term that has the positions of xn+1 and
xn+2 reversed and the sign changed. This is done to
keep the space required for the computations man-
ageable.

This means that each identity generates
(
n+2

2

)
(equivalent) identities. After our type identities have
been augmented to include these permutations in-
volving xn+1 and xn+2, all possible permutations
are obtained using only permutations among the el-
ements x1, . . . , xn. We call this augmentation of the
set of type identities the augmented type identities.

The positions of xn+1 and xn+2 give each association
type of degree n+2 a system of

(
n+2

2

)
variations. We

assign a single number to identify the association
type and the positions of xn+1 and xn+2. There
are now cat[n+ 2]

(
n+2

2

)
types, and each term of the

augmented type identities can be expressed in terms
of these new types.

3. We assign a new type number that identifies the
degree-(n + 2) association type as well as the posi-
tion of the elements xn+1 and xn+2. We then drop
the letters xn+1 and xn+2 from the listing of factors,
giving us n elements in our list of factors.

These augmented type identities along with all the
permutations of the arguments x1, . . . , xn give the
elements of the subspace Altn+2[x1, x2, . . . , xn+2] of
the T-ideal Alt[x1, x2, . . . , xn+2]. The next task
is to see whether any of the elements in the row
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space of this matrix can be written in the form
(p, xn+1, xn+2), where p is in F [x1, x2, . . . , xn]. Such
an element p is in the nucleus. We will now show
how to pick such elements, and we will later show
how to determine which are not zero in the free
alternative algebra ALT[x1, x2, . . . , xn]. To locate
p in F [x1, x2, . . . , xn] such that (p, xn+1, xn+2) is
zero, we add cat[n] new types on the right side
of the matrix. These types represent each of the
cat[n] nonassociative types of degree n (denoted
by T ′

i ) in {x1, x2, . . . , xn} inside an associator. Fi-
nally, each associator (T ′

i , xn+1, xn+2) is expanded as
(T ′

ixn+1)xn+2−T ′
i (xn+1xn+2) and encoded in terms

of the cat[n+2]
(
n+2

2

)
types of the left-hand portion.

4. We expand the cat[n] expressions (T ′
i , xn+1, xn+2) in

terms of the types on the left-hand side. Now when
we reduce the entire system to row canonical form,
any stairstep one (i.e., a leading 1 of a row of the row
canonical form of the matrix) that appears on the
right-hand side of the matrix indicates an element p
such that (p, xn+1, xn+2) = 0, i.e., an element in the
nucleus.

5. We reduce the matrix to row canonical form and
print out those rows in which the leading stairstep
one appears under the types on the right-hand side.
Naturally, any identity of ALT[x1, x2, . . . , xn] ap-
pears on the right-hand side, since such elements are
zero and certainly are in the nucleus. But we can lo-
cate those that are not zero by simply computing
Altn[x1, x2, . . . , xn] in F [x1, x2, . . . , xn] and looking
for stairstep ones on the right-hand side that are
not identities for ALT[x1, x2, . . . , xn]. These are the
nonzero nuclear elements.

6. We create the row canonical form for the type iden-
tities of degree n and record any stairstep ones for
the right-hand side that are not consequences of the
type identities. The next chore is to find out what
the nuclear elements look like. We have their ma-
trix form, but we would like to have them expressed
in notation involving associators, commutators, and
nonassociative products. This is most easily done
by taking the elements from the literature and seeing
whether in total they explain all the nuclear elements
found. This is done by converting these elements to
matrix form and adding them to the identities of
ALT[x1, x2, . . . , xn] and reducing it to row canoni-
cal form. If the new rows that appear are the exact
new rows that appeared on the right-hand side, then

the element used is the nuclear element we are look-
ing for.

7. We test whether the nuclear elements are already
known by adding the known elements to the identities
of ALT[x1, x2, . . . , xn] and checking the row canoni-
cal form to see whether the additional rows they pro-
duce are linear combinations of the nonzero nuclear
elements of the right-hand side.

6. THE ACTUAL CALCULATIONS

All of our calculations are done modulo the prime 103.
We chose 103 because it is only one byte in length, so
the matrix storage is small, and also we avoid integer
overflow. It is also larger than the degree of any identities
we are likely to be working with. Therefore the group
algebra is semisimple and the identities are equivalent to
their linearized forms.

The explanatory Section 5 on the method is valid for
characteristic zero, or a large-enough prime. But in this
section we work only with the prime 103. We considered
doing the calculations for several characteristics, but we
decided against it. No matter how many characteristics
we checked, there would still be the open question about
all those we did not check. Our goal is to find the nuclear
elements of smallest degree. This is degree 5 over Z103.
We find all degree-5 nuclear elements modulo 103. Our
work does not show that the minimal degree is 5 in all
characteristics.

We do not have an integral dependency relation that
displays how an associator containing our elements is a
linear combination of elements in the T-ideal generated
by (1–1) and (1–2). With such a dependency relation,
we would know that the element is in the nucleus, ex-
cept possibly for prime factors of the coefficient of the
associator.

The first instance for a nuclear element occurs in de-
gree 5. There are 61 type identities from (1–1) and 61
type identities from (1–2). Altogether, there are 122 type
identities.

The number of augmented type identities is 122×(72) =
2562. The number of extended types is 132×(72) = 2772.
There are 14 types on the right-hand side of the matrix
in Table 3. The dimensions of the matrix that we have to
reduce for each representation depends on the size of the
representation. The dimensions of the irreducible repre-
sentations of S5 are 1, 4, 5, 6, 5, 4, 1. The largest matrix
we have to reduce is
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Representation Partition Type
identities

Nuclear
elements

1 5 13 13
2 41 52 52
3 32 65 66
4 311 75 76
5 221 63 63
6 2111 46 46
7 11111 10 10

TABLE 4. Rank of the matrices.

{(
122 ×

(
7
2

)
+ 14

)
× 6
}
×
{(

132 ×
(

7
2

)
+ 14

)
× 6
}

= 15456 × 16716.

The matrix is sparse, with no more than four nonzero
entries in each row. We use sparse-matrix techniques.
That is, we use a data structure in which only the nonzero
entries are stored.

The portion of the row canonical form with the leading
ones in the right-hand portion of the matrix is identical
to the row canonical form of the degree-5 type identities
except for two of the representations. In each of these two
representations there is exactly one more leading one. See
Table 4.

The rows with the new leading ones occur in repre-
sentations 3 and 4 and are located under type 14 in both
representations. Type 14 is x(x(x(xx))). This means
that there is a nuclear element for which all the terms
are associated as in type 14. See Table 5.

Each of these rows represents a nonzero nuclear el-
ement. One could find an element of the group alge-
bra FS5 that maps exactly to them, using the isomor-
phism of FS5 to a direct sum of complete matrix alge-
bras. This would most likely be an element involving a
nonzero coefficient for each possible permutation of the
letters x1, x2, x3, x4, x5 associated as type 14. One usu-
ally tries to write the element with a minimal number of
terms.

There are many equivalent ways to express an element.
One needs only an element that when added to the type
identities gives the additional rows in the row canoni-
cal form for representations 3 and 4, and no additional

Representation Partition Type 14 Nuclear
element

3 32 x(x(x(xx))) 10111

4 311 x(x(x(xx))) 1 0 –1 –3
–1 2

TABLE 5. Nonzero nuclear elements of degree 5.

rows in representations 1, 2, 5, 6, 7. An element with that
property is (1–9). It has the fewest terms of any element
in the nucleus found so far. Using alternative identities,
one can rewrite this element (1–9) as element (1–7). This
last element actually has eight terms, but it is compactly
written with the commutators.

Element (1–5) is the nuclear element in representation
3, and (1–6) is the nuclear element in representation 4.

6.1 Additional Checking Using ALBERT

We checked that elements (1–5) through (1–9) are in the
nucleus using the computer program ALBERT [Jacobs
et al. 96]. Furthermore, we checked that:

(i) Element (1–7) is equivalent to (1–9).

(ii) Element (1–6) is equivalent to (1–8).

(iii) Element (1–7) implies (1–5), (1–6), and (1–8).

(iv) Element (1–7) is equivalent to the set of elements
{(1–5), (1–6)}.

Here two elements are equivalent if we can verify, using
consequences of the alternative identities, that each im-
plies the other.

ALBERT is the code of the algorithm described in
detail in [Hentzel and Jacobs 91]. As examples we explain
how ALBERT verifies that (1–7) is in the nucleus and
how (1–6) implies (1–8).

To verify that (1–7) is in the nucleus we need to verify
that

(([a, b][a, c])a− (a[a, b])[a, c], d, e) = 0 (6–1)

is an identity in the free alternative algebra
ALT[a, b, c, d, e]. ALBERT constructs a finite di-
mension algebra that is a homomorphic image of
ALT[a, b, c, d, e]. Then ALBERT verifies that (6–1) is an
identity in this finite dimension algebra. As proved in
[Hentzel and Jacobs 91], this implies that (6–1) is an
identity in ALT[a, b, c, d, e].

To verify that (1–6) implies (1–8) we have to verify
that (1–8) is an identity in the free algebra F [a, b, c]/I,
where I is the T-ideal generated by (1–1), (1–2), and
(1–6). ALBERT constructs a finite dimension algebra
that is a homomorphic image of F [a, b, c]/I. Then AL-
BERT verifies that (1–8) is an identity in this finite di-
mension algebra.
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7. A SERIES OF ELEMENTS IN THE NUCLEUS

Shestakov and Zhukavets [Shestakov and Zhukavets 06a,
Corollary 5.2] proved that the elements

an =
∑

π

sgn(π)([[. . . [[[x1, x2], x3], x4],

. . . , xn], [xn+1, xn+2]])π

are in the center (hence in the nucleus) of the free al-
ternative algebra, and are nonzero in the free Malcev
algebra, for n = 4k (k > 1) and n = 4k + 1 (k > 0),
over a field of characteristic zero. They asked the ques-
tion whether the an are nonzero in the free alternative
algebra. In [Hentzel and Peresi 03] we already proved
that a5 is nonzero. Shestakov and Zhukavets [Shestakov
and Zhukavets 06b, Corollary 4.6] proved that the an

are nonzero over a field of characteristic different from 2
and 3.

Using our computer procedure we prove that the ele-
ments an, for n = 4k, k = 2, 3, and n = 4k + 1, k = 1, 2,
are nonzero in the free alternative algebra ALT[X]. It
follows that they are nonzero elements in the center of
ALT[X]. That is, an �= 0 and

(an,ALT[X],ALT[X]) = [an,ALT[X]] = 0.

The question is whether an is in the T-ideal gen-
erated by (1–1) and (1–2) in F [X], where X =
{x1, x2, . . . , xn+2}. To decide this we compute the rank
of the type identities of degree n + 2 in F [X]. Then we
add an to the type identities and compute the rank again.
If the rank stays the same, then an = 0 in ALT[X]. If the
rank increases, then an �= 0 in ALT[X]. Our calculations
are done over the field Z103.

Because an is skew-symmetric, its representation is
easy to compute. It has zero representation in all of the
representations except the last one. In the last represen-
tation, if we know the representation of

p = [[. . . [[[x1, x2], x3], x4], . . . , xn], [xn+1, xn+2]],

then the representation of an is (n+ 2)! times the repre-
sentation of p. Therefore it is sufficient to calculate just
the last representation and just the representation of p.
Because the last representation has size 1, it is possible
to carry the calculations up to degree 14.

In Table 6, type I occurs when n = 4k (k > 1), and
type II occurs when n = 4k + 1 (k > 0). The col-
umn labeled “alternative” gives the rank of the subspace
Altn+2[x1, x2, . . . , xn+2] generated by type identities of
degree n + 2. The column an gives the rank after the

n n + 2 k Type Alternative an an is
1 3 0 1 nonzero
2 4 2 2 zero
3 5 10 10 zero
4 6 36 37 nonzero
5 7 1 II 123 124 nonzero
6 8 418 418 zero
7 9 1418 1418 zero
8 10 2 I 4848 4849 nonzero
9 11 2 II 16779 16780 nonzero
10 12 58767 58767 zero
11 13 207992 207992 zero
12 14 3 I 742878 742879 nonzero

TABLE 6. Elements an.

T-ideal is augmented by the element an. Notice that the
rank increases when n = 1, 4, 5, 8, 9, 12.

Therefore a5, a8, a9, a12 are nonzero over Z103.
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