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We give an efficient and stable algorithm for computing high-
est weights in a large class of prehomogeneous spaces associ-
ated with the nilpotent orbits of the real Lie algebras E6(6) and
E6(−26). This paper concludes our classification of such pre-
homogeneous spaces for all complex and real reductive Lie al-
gebras. For classical algebras using the fact that the nilpotent
orbits are parameterized by partitions of integers we have given
general formulas in [Jackson and Noël 05a] and [Jackson and

Noël 06]. For complex or inner-type real exceptional algebras
we have given general algorithms and tables in [Jackson and

Noël 05b] and [Jackson and Noël 05c]. The present paper con-
siders the case of real exceptional algebras that are not of inner
type.

1. INTRODUCTION

In this paper, we continue our program begun in [Jackson
and Noël 05a], [Jackson and Noël 06], [Jackson and Noël
05b], and [Jackson and Noël 05c] by describing a fast and
stable algorithm for decomposing modules of a Lie sub-
group of the Levi factor of Jacobson–Morozov parabolic
subgroups defined by nilpotent orbits in simple real Lie
algebras E6(6) and E6(−26). We will solve the problem
by working on the other side of the Kostant–Sekiguchi
correspondence [Sekiguchi 87]. In order to continue we
need some definitions.

Let g be a real semisimple Lie algebra with adjoint
group G and Cartan decomposition g = k ⊕ p relative to
a Cartan involution θ. We will denote by gC the complex-
ification of g. Let σ be the conjugation of gC with respect
to g. Then gC = k

C
⊕pC, where k

C
and pC are obtained by

complexifying k and p respectively. We let K be a max-
imal compact Lie subgroup of G with Lie algebra k, and
KC will be the connected subgroup of the adjoint group
G

C
of gC, with Lie algebra k

C
. It is well known that KC

acts on pC and that the number of nilpotent orbits of KC
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in pC is finite. Furthermore, for a nilpotent e ∈ pC, KC
.e

is a connected component of G
C

.e ∩ pC.

2. THE KOSTANT–SEKIGUCHI CORRESPONDENCE

A triple (x, e, f) in gC is called a standard triple if
[x, e] = 2e, [x, f ] = −2f , and [e, f ] = x. If x ∈ k

C
and

e, f ∈ pC, then (x, e, f) is a normal triple. It is a result
of Kostant and Rallis [Kostant and Rallis 71] that any
nilpotent e of pC can be embedded in a standard normal
triple (x, e, f). Moreover, e is KC-conjugate to a nilpo-
tent e′ inside of a normal triple (x′, e′, f ′) with σ(e′) = f ′;
see [Sekiguchi 87]. The triple (x′, e′, f ′) will be called a
Kostant–Sekiguchi or KS triple, and we will refer to the
element e′ as its nilpositive element.

Every nilpotent E′ in g is G-conjugate to a nilpotent
E embedded in a triple (H,E, F ) in g with the property
that θ(H) = −H and θ(E) = −F ; see [Sekiguchi 87].
Such a triple will also be called a KS triple.

Define a map c from the set of KS triples of g to the
set of normal triples of gC as follows:

x = c(H) = i(E − F ),

e = c(E) =
1
2
(H + i(E + F )),

f = c(F ) =
1
2
(H − i(E + F ))

(where i =
√−1). The triple (x, e, f) is called the Cayley

transform of (H,E, F ). It is easy to verify that the triple
(x, e, f) is a KS triple and that x ∈ ik. The Kostant–
Sekiguchi correspondence [Sekiguchi 87] gives a one-to-
one map between the set of G-conjugacy classes of nilpo-
tents in g and the KC-conjugacy classes of nilpotents in
pC. This correspondence sends the zero orbit to the zero
orbit and the orbit through the nilpositive element of a
KS triple to the one through the nilpositive element of
its Cayley transform. Michèle Vergne [Vergne 95] has
proved that there is in fact a diffeomorphism between a
G-conjugacy class and the k

C
-conjugacy class associated

with it by the Kostant–Sekiguchi correspondence.

3. THE MODULES

In light of the Kostant–Sekiguchi correspondence it
is reasonable to study modules associated with KC-
nilpotent orbits in the symmetric spaces pC in order to
understand real nilpotent orbits. Let e be a nilpotent
element in pC. Without loss of generality we can embed

e in a KS triple (x, e, f). The action of adx determines a
grading

gC =
⊕
i∈Z

gi
C,

where gi
C

= {Z ∈ gC : [x,Z] = iz}.
It is a fact that g0

C
is a reductive Lie subalgebra of

gC. Let G0
C

be the connected subgroup of G
C

such that
Lie(G0

C
) = g0

C
. Then for i �= 0 the vector spaces gi

C
∩ pC

are G0
C
∩ KC-modules. Moreover, a theorem of Kostant

and Rallis [Kostant and Rallis 71] asserts that G0
C
∩KC

admits a Zariski-open and -dense orbit on g2
C
∩ pC; that

is, the pair (G0
C
∩KC, g2

C
∩pC) is a prehomogeneous space

in the sense of Sato and Kimura [Sato and Kimura 77].
This prehomogeneous space plays an important role in
our work, and our effort to better understand it led us to
develop this project. See [Noël 98] for more information.

Let us denote G0
C
∩KC, gi

C
∩ k

C
, and gi

C
∩ pC by K0

C
,

ki
C
, and pi

C
respectively. Then we shall show that for i �=

0, (G0
C
, gi

C
), (K0

C
, ki

C
), and (K0

C
, pi

C
) are prehomogeneous

spaces. We shall need the following lemma from È. B.
Vinberg.

Lemma 3.1. Let H ⊆ GL(U) be a linear algebraic group,
let L be a closed, connected subgroup of H, and let V ⊆ U

be a subspace invariant with respect to L. Suppose that for
any vector v ∈ V ,

h · v ∩ V = l · v.

Then the intersection of any orbit of H with the subspace
V is a smooth manifold, each irreducible component of
which is an orbit of L.

Proof: See [Vinberg 76, p. 469].

Using the previous lemma we prove the following
proposition (the case of (G0

C
, gi

C
) appears in [Vinberg 75]

and [Rubenthaler 92], and the case of (K0
C
, p2

C
) appears

in [Ohta 91]):

Proposition 3.2. For i �= 0, the modules (G0
C
, gi

C
),

(K0
C
, ki

C
), and (K0

C
, pi

C
) have only finitely many or-

bits; hence they are prehomogeneous spaces. Moreover,
(G0

C
, g2

C
) and (K0

C
, p2

C
) are regular; that is, the comple-

ments of the open dense orbits in g2
C

and p2
C

(the singular
loci) are hypersurfaces.

Proof: To prove that (G0
C
, gi

C
) is a prehomogeneous space

we identify G
C
, G0

C
, gC, and gi

C
with H, L, U , and V

respectively in the preceding lemma. Hence we need to
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show only that for any v ∈ gi
C
,

gC · v ∩ gi
C = g0

C · v.

Clearly, g0
C
· v ⊆ gC · v ∩ gi

C
. Let u ∈ gC be such that

[u, v] ∈ gi
C
. Since u =

∑
j uj with uj ∈ gj

C
, it follows that

[u, v] =
∑

j [uj , v] and [uj , v] ⊆ gi+j
C

. Hence [uj , v] = 0 for
j �= 0, and we must have [u, v] = [u0, v] and gC · v ∩ gi

C
⊆

g0
C
· v. The result follows.
To prove that (K0

C
, pi

C
) is a prehomogeneous space we

identify G0
C
, K0

C
, gi

C
, and pi

C
with H, L, U , and V re-

spectively in the preceding lemma. We need to show only
that for any v ∈ pi

C
,

g0
C · v ∩ pi

C = k0
C
· v.

Clearly k0
C
· v ⊆ g0

C
· v ∩ pi

C
. Let u ∈ g0

C
be such that

[u, v] ∈ pi
C
. Since x = xk + xp with xk ∈ k

C
and xp ∈ pC,

it follows that [x, v] = [xk, v]+[xp, v] with [xk, v] ∈ pi
C

and
[xp, v] ∈ ki

C
. Since [x, v] ∈ pi

C
, we must have [xp, v] = 0.

Hence g0
C
· v ∩ pi

C
⊆ k0

C
· v.

To prove that (K0
C
, ki

C
) is a prehomogeneous space we

have only to repeat the previous argument, replacing pi
C

by ki
C
.

From [Rubenthaler 92, Theorem 1.4.4], in order to
show that (G0

C
, g2

C
) and (K0

C
, p2

C
) are regular, we need to

show only that the centralizers (G0
C
)e and (K0

C
)e of e in

G0
C

and K0
C

are reductive Lie subgroups. For G0
C

this was
done by Springer and Steinberg in [Springer and Stein-
berg 70]. The K0

C
case was settled by Ohta [Ohta 91].

The reader may wonder whether (K0
C
, k2

C
) is regular in

general. Here is a counterexample. Let g = FI, the split
real form of F4. Consider Orbit 20, labeled (204 4) in
[̄Doković 88a]. Then k2

C
is a two-dimensional representa-

tion of K0
C
. The singular locus is {0} and therefore is not

a hypersurface.
Our goal is to describe the irreducible components of

the K0
C
-modules pi

C
and ki

C
with i �= 0 for all nilpotent

orbits of the Lie group KC in the symmetric space pC.

4. ROOT DECOMPOSITION

Let h be a fundamental Cartan subalgebra of g. Then h

= t ⊕ s, where t is a Cartan subalgebra of k and s ⊆ p.
Let Ic be the set of compact imaginary roots, let In be
the set of noncompact imaginary roots, and let C be
the set of complex pairs of roots. We have the following
decompositions in the root spaces of gC generated by the

roots of h
C
:

k
C

= t
C
⊕
∑
α∈Ic

CXα ⊕
∑

(α,θα)∈C

C(Xα + θ(Xα)),

pC = s
C
⊕
∑
α∈In

CXα ⊕
∑

(α,θα)∈C

C(Xα − θ(Xα)).

Here Xα is a nonzero vector of the root space gα
C
. An

imaginary root α is compact (noncompact) if its root
space gα

C
lies in k

C
(pC). See [Knapp 02] for more details.

We have considered the real classical algebras in [Jack-
son and Noël 06] and the real exceptional algebras of in-
ner type in [Jackson and Noël 05c]. It remains to consider
real exceptional algebras that are not of inner type. The
only such algebras are E6(−26) and E6(6), which we now
consider in turn. We begin by summarizing some results
of D̄oković [̄Doković 88b]:

4.1 The Algebra E6(−26)

Let gC = E6 and let ∆ = {α1, α2, . . . , α6} be the Bour-
baki simple roots of gC. Define an involution θ on ∆ as
follows:

θ(α1) = α6, θ(α2) = α2, θ(α3) = α5,

θ(α4) = α4, θ(α5) = α3, θ(α6) = α1.

Furthermore, we require that

θ(Xα1) = Xα6 , θ(Xα2) = Xα2 , θ(Xα3) = Xα5 ,

θ(Xα4) = Xα4 , θ(Xα5) = Xα3 , θ(Xα6) = Xα1 .

It is well known [Knapp 02, D̄oković 88b] that k
C

is of
type F4 and pC is the symmetric space associated with the
real form E6(−26) of E6. Let h

C
be the Cartan subalgebra

of gC associated with the root system generated by ∆.
Then t

C
= h

C
∩ k

C
is a Cartan subalgebra of k

C
. The

simple roots of (k
C
, t

C
) are

β1 = α2, β2 = α4, β3 =
α3 + α5

2
, β4 =

α1 + α6

2
.

We should also point out that E6(−26) has no noncom-
pact imaginary roots. The compact imaginary roots are
given in Table 1.

4.2 The Algebra E6(6)

Let gC, {α1, . . . , α6}, and {β1, . . . , β4} be as above. De-
fine

β0 = −β1 − 2β2 − 3β3 − 2β4.

By computing the entries {〈βi, βj〉}i,j∈{0,2,3,4} of the Car-
tan matrix, one can verify that

∆′ = {β0, β4, β3, β2}
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1. ±α2

2. ±α4

3. ±(α2 + α4)

4. ±(α3 + α4 + α5)

5. ±(α2 + α3 + α4 + α5)

6. ±(α2 + α3 + 2α4 + α5)

7. ±(α1 + α3 + α4 + α5 + α6)

8. ±(α1 + α2 + α3 + α4 + α5 + α6)

9. ±(α1 + α2 + α3 + 2α4 + α5 + α6)

10. ±(α1 + α2 + 2α3 + 2α4 + 2α5 + α6)

11. ±(α1 + α2 + 2α3 + 3α4 + 2α5 + α6)

12. ±(α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6)

TABLE 1. Compact imaginary roots of E6(−26).

1. ±α4

2. ±(α3 + α4 + α5)

3. ±(α1 + α3 + α4 + α5 + α6)

4. ±(α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6)

TABLE 2. Compact imaginary roots of E6(6).

is a system of simple roots in a root system of type C4.
There is a unique involution θ of gC that coincides with
the Cartan involution of E6(−26) on simple roots except
that θ(Xα2) = −Xα2 , and with respect to this new in-
volution the system ∆′ is a system of simple roots for k

C

[̄Doković 88b, pp. 197–199]. In this new decomposition
k

C
is of type C4, and pC is the symmetric space associ-

ated with the split real form E6(6) of E6. Furthermore,
the new involution retains t

C
as Cartan subalgebra of k

C
.

Tables 2 and 3 contain the compact and noncompact
imaginary roots of E6(6). Observe that θ defines the same
Vogan diagram as that given in [Knapp 02, p. 361], where
Proposition 6.104 allows us to decide which imaginary
roots are compact or noncompact.

1. ±α2

2. ±(α2 + α4)

3. ±(α2 + α3 + α4 + α5)

4. ±(α2 + α3 + 2α4 + α5)

5. ±(α1 + α2 + α3 + α4 + α5 + α6)

6. ±(α1 + α2 + α3 + 2α4 + α5 + α6)

7. ±(α1 + α2 + 2α3 + 2α4 + 2α5 + α6)

8. ±(α1 + α2 + 2α3 + 3α4 + 2α5 + α6)

TABLE 3. Noncompact imaginary roots of E6(6).

5. THE ALGORITHM

We now describe an algorithm for computing the high-
est weights of the prehomogeneous spaces (K0

C
, pd

C
) and

(K0
C
, kd

C
) associated with a KS triple (h, e, f). We need

the following notation:

1. (α1, α2, α3, α4, α5, α6) are simple roots of E6 in the
usual Bourbaki system.

2. α0 = α1 −α2 −2α3 −2α4 −α5 −α6 and α7 = θ(α0).

3. Relative to t
C
, the Cartan subalgebra of k

C
, we have

the following root restrictions:

β0 = α0|t
C

= α7|t
C
,

β1 = α2|t
C
,

β2 = α4|t
C
,

β3 = α3|t
C

= α5|t
C
,

β4 = α1|t
C

= α6|t
C
.

4. Let

(γ1, γ2, γ3, γ4) =

{
(β1, β2, β3, β4) if g = E6(−26),

(β0, β4, β3, β2) if g = E6(6) .

5. Define a map φ = (φ1, φ2) on the simple roots of k
C

as follows:

(2, 2) (4, 4) (3, 5) (1, 6)

�
1

��

�
2

��

> �
3

��

�
4

��

if g = E6(−26)

and

(0, 7) (1, 6) (3, 5) (4.4)

�
1

��

�
2

��

�
3

��

< �
4

��

if g = E6(6) .

We will usually write φj(i) in place of φj(γi); for
example, φ2(3) = 5 when g = e6(−26).

6. Let

Xγi
= Xαφ1(i) + θXαφ1(i) = Xαφ1(i) + εXαφ2(i) ,

where

ε =

{
−1 if g = E6(6) and i = 1,
1 otherwise.
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5.1 Description of the Algorithm

In this section we describe an algorithm that calculates
K0

C
-highest weights of pd

C
(respectively kd

C
).

Input: γi(h) for (i = 1, 2, 3, 4)

Step 1. Compute αi(h) for (i = 1, 2, 3, 4, 5, 6)

Step 2. Make a list L of all roots δ of E6 such that
δ(h) = d

Step 3. For each δ ∈ L do

• if δ is complex set Yδ = Xδ − θ(Xδ) (respectively
Yδ = Xδ + θ(Xδ)) and delete θ(δ) from L

• if δ is noncompact (respectively compact) imaginary
set Yδ = Xδ

• if δ is compact (respectively noncompact) imaginary
delete δ from L

[Now {Yδ}δ∈L is a basis for pd
C

(respectively kd
C
)]

Step 4. For each δ ∈ L check whether [Xγi
, Yδ] = 0 for

all i such that γi(h) = 0
if not delete δ from L

[Now L is the list of K0
C
-highest weights in pd

C
expressed

in the (α1, . . . , α6) basis]

Step 5. Restrict to t
C

expressing the highest weights in
the basis (γ1, . . . , γ4).

Step 6. Use the Cartan matrix of k to express the highest
weights in the fundamental basis (ω1, . . . , ω4)

End

5.2 Correctness of the Algorithm

Observe that Step 4 is the most important part of the
algorithm. The next lemma gives us a proof of correct-
ness.

Lemma 5.1. Maintaining the above notation, [Xγi
, Yδ] =

0 if and only if αφj(i) + δ is not a root or is a compact
(respectively noncompact) imaginary root for j = 1, 2.

Proof: For simplicity we shall give a proof for the pC case.
The proof of the k

C
case is similar. We consider two cases:

1. δ is a complex root. Then

[Xγi
, Yδ] = [Xγi

,Xδ − θXδ]

= [Xαφ1(i) + θXαφ1(i) ,Xδ − θXδ]

= [Xαφ1(i) ,Xδ] − [θXαφ1(i) , θXδ]

+ [θXαφ1(i) ,Xδ] − [Xαφ1(i) , θXδ]

= [Xαφ1(i) ,Xδ] − θ[Xαφ1(i) ,Xδ]

+ [θXαφ1(i) ,Xδ] − θ[θXαφ1(i) ,Xδ]

= [Xαφ1(i) ,Xδ] − θ[Xαφ1(i) ,Xδ]

+ ε([Xαφ2(i) ,Xδ] − θ[Xαφ2(i) ,Xδ]).

If φ1(i) = φ2(i) then ε = 1 and [Xγi
, Yδ] vanishes if

and only if [Xαφ1(i) ,Xδ] ∈ k
C
.

If φ1(i) �= φ2(i), then [Xαφ1(i) ,Xδ] − θ[Xαφ1(i) ,Xδ]
and [Xαφ2(i) ,Xδ] − θ[Xαφ2(i) ,Xδ] belong to independent
subspaces of gC, so [Xγi

, Yδ] vanishes if and only if
[Xαφj(i) ,Xδ] ∈ k

C
for j = 1, 2.

2. δ is noncompact imaginary. Then

[Xγi
, Yδ] = [Xγi

,Xδ] = [Xαφ1(i) ,Xδ] + ε[Xαφ2(i) ,Xδ].

If φ1(i) = φ2(i), then ε = 1 and αφ1(i) is compact
imaginary, so αφ1(i) + δ is not a compact imaginary root,
and [Xγi

, Yδ] vanishes if and only if αφ1(i) + δ is not a
root.

If φ1(i) �= φ2(i), then αφj(i) +δ is not a compact imag-
inary root, and [Xγi

, Yδ] vanishes if and only if αφj(i) + δ

is not a root for j = 1, 2.

6. RELATIVE INVARIANTS

Let (G,V ) be a prehomogeneous space. A relative invari-
ant of (G,V ) is a polynomial f ∈ C[V ] that transforms
by a character of G:

f(g−1
v) = χ(g)f(
v).

Since the open orbit is dense, a relative invariant is deter-
mined up to scalar multiplication by its character. Evi-
dently any relative invariant is fixed by the action of the
commutator subgroup [G,G]. Conversely, if G is reduc-
tive, then any [G,G]-invariant polynomial is a sum of
relative invariants:

∗C[V ][G,G] =
⊕

χ

Fχ,

where Fχ is the space of relative invariants of character
χ. If Fχ �= 0, then dimC F

χ = 1.
Let M be the set of all characters χ with Fχ �= 0.

Then M is a submonoid of the character group of G,
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and C[V ][G,G] is M -graded. Indeed, the ring of invari-
ants C[V ][G,G] is isomorphic to the monoid ring C[M ].
Since C[V ] has unique factorization and [G,G] is con-
nected, C[V ][G,G] also has unique factorization and M is
a free commutative monoid. We call the generators of
M the fundamental characters of (G,V ). Fundamental
characters and their associated relative invariants can be
calculated using methods from classical invariant theory;
see [Jackson and Noël 05a] and [Jackson and Noël 06] for
details.

7. PREHOMOGENEOUS SPACES ASSOCIATED WITH
E6(6) AND E6(−26)

In the tables below, we give for each nilpotent orbit O
the “labeled Dynkin diagram” of O, which is the Dynkin
diagram of k

C
with the integers γi(x) attached to the

corresponding nodes.
Since k0

C
contains t, it is a sum of root spaces. More-

over, because the γi(x) are nonnegative, a positive root
space Xα lies in k0

C
if and only if α is a sum of simple

roots with label 0. Consequently, the Dynkin diagram of
k0

C
is obtained from that of k

C
by deleting the nodes with

positive labels, and the dimension of the center Z(k0
C
) is

the number of deleted nodes.

For each nilpotent orbit O, we list those i > 0 for
which pi

C
�= 0 (respectively ki

C
�= 0), and give the

K0
C
-highest weights of these prehomogeneous spaces ex-

pressed on the basis of the fundamental weights of KC in
the Bourbaki order. When interpreting the results given
in the table, one should keep in mind that the action of
the semisimple part of k0

C
on pi

C
(respectively ki

C
) is com-

pletely determined by those coefficients associated with
the nodes of Dynkin–Kostant label 0; the other coeffi-
cients affect only the action of the center of k0

C
, which in

any case must act by scalars on each irreducible compo-
nent of pi

C
(respectively ki

C
).

We also give the irreducible decomposition of pi
C

(re-
spectively ki

C
) as a [K0

C
,K0

C
]-module in the notation of

[Kac 80]; we use the name of a classical group to denote
its standard representation. Usually, context makes it
clear whether the group or the module is intended. When
[K0

C
,K0

C
] contains more than one factor isomorphic to a

given classical group, we number the factors with su-
perscripts. The symbol C denotes the trivial module;
Spin7 means the spin representation of the twofold cover
of SO7.

The last column of each table contains the degrees of
the fundamental relative invariants corresponding to the
prehomogeneous spaces. Details about computing such
degrees are found in [Jackson and Noël 05a].

Nilpotent orbits in E6(6) (type EI)

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

1.
�
0

�
0

�
0

< �
1

1 10 (0, 0, 2,−1) S2(SL4) (4)
2 1 (0, 0, 0, 1) C (1)

2.
�
0

�
1

�
0

< �
0

1 8 (1,−1, 1, 0) SL2 ⊗Sp4 (2)
2 5 (0, 0, 0, 1) SO5 (2)

3.
�
1

�
0

�
0

< �
1

1 9
(−1, 0, 1, 0)
(0, 2, 0,−1) SL∗

3 ⊕S2(SL3)
(2, 1)
(0, 3)

2 6 (0, 0, 2,−1) S2(SL∗
3) (3)

3 1 (0, 0, 0, 1) C (1)

4.
�
0

�
0

�
0

< �
2

2 10 (0, 0, 2,−1) S2(SL4) (4)
4 1 (0, 0, 0, 1) C (1)

5.
�
2

�
0

�
0

< �
0

2 14 (0, 0, 0, 1) ∧3(Sp6)/Sp6 (4)

(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

6.
�
0

�
2

�
0

< �
0

2 8 (1,−1, 1, 0) SL2 ⊗Sp4 (2)
4 5 (0, 0, 0, 1) SO5 (2)

7.
�
0

�
1

�
0

< �
2

1 4 (1, 0, 1,−1) SL1
2 ⊗SL2

2 (2)

2 4
(0, 2, 0,−1)
(2,−2, 0, 1) C ⊕ S2(SL1

2)
(1, 0)
(0, 2)

3 4 (1,−1, 1, 0) SL1
2 ⊗SL2

2 (2)
4 3 (0, 0, 2,−1) S2(SL2

2) (2)
6 1 (0, 0, 0, 1) C (1)

8.
�
0

�
1

�
0

< �
1

1 7
(1, 0, 1,−1)
(2,−2, 0, 1)

(SL1
2 ⊗SL2

2)
⊕S2(SL1

2)
(2, 0)
(0, 2)

2 5
(1,−1, 1, 0)
(0, 2, 0,−1) (SL1

2 ⊗SL2
2) ⊕ C

(2, 0)
(0, 1)

3 3 (0, 0, 2,−1) S2(SL2
2) (2)

4 1 (0, 0, 0, 1) C (1)

9.
�
0

�
2

�
0

< �
2

2 7
(1, 0, 1,−1)
(2,−2, 0, 1)

(SL1
2 ⊗SL2

2)
⊕S2(SL1

2)
(2, 0)
(0, 2)

4 5
(1,−1, 1, 0)
(0, 2, 0,−1) (SL1

2 ⊗SL2
2) ⊕ C

(2, 0)
(0, 1)

6 3 (0, 0, 2,−1) S2(SL2
2) (2)

8 1 (0, 0, 0, 1) C (1)

10.
�
1

�
0

�
1

< �
0

1 6
(−1, 1,−1, 1)
(1, 1,−1, 0)

(SL1
2 ⊗SL2

2)
⊕SL1

2

(2, 0)

2 7
(−1, 0, 1, 0)
(0, 2,−2, 1)

C ⊕ (S2(SL1
2)

⊗SL2
2)

(1, 0)
(0, 4)

3 2 (0, 1, 0, 0) SL1
2 ∅

4 2 (0, 0, 0, 1) SL2
2 ∅

11.
�
1

�
1

�
0

< �
1

1 6
(−1, 1, 1,−1)
(0,−1, 0, 1)
(2,−2, 2,−1)

SL2 ⊕C

⊕S2(SL2)

(2, 0, 1)
(0, 1, 0)
(0, 0, 2)

2 5
(−1, 0, 1, 0)
(1, 0, 1,−1)
(2,−2, 0, 1)

SL2 ⊕SL2 ⊕C
(1, 1, 0)
(0, 0, 1)

3 3
(1,−1, 1, 0)
(0, 2, 0,−1) SL2 ⊕C (0, 1)

4 3 (0, 0, 2,−1) S2(SL2) (2)
5 1 (0, 0, 0, 1) C (1)

12.
�
2

�
0

�
0

< �
2

2 9
(−1, 0, 1, 0)
(0, 2, 0,−1) SL∗

3 ⊕S2(SL3)
(2, 1)
(0, 3)

4 6 (0, 0, 2,−1) S2(SL∗
3) (3)

6 1 (0, 0, 0, 1) C (1)

13.
�
2

�
0

�
0

< �
4

2 7
(−2, 0, 0, 1)
(0, 2, 0,−1) C ⊕ S2(SL3)

(1, 0)
(0, 3)

4 3 (−1, 0, 1, 0) SL∗
3 ∅

6 6 (0, 0, 2,−1) S2(SL∗
3) (3)

10 1 (0, 0, 0, 1) C (1)
(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

14.
�
1

�
2

�
1

< �
1

1 3
(0,−1, 2,−1)
(−2, 0, 0, 1)
(2,−1, 0, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

2 3
(−1, 2,−1, 0)
(0,−1, 0, 1)
(2,−2, 2,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

3 3
(−1, 1, 1,−1)
(2,−2, 0, 1)
(1, 1,−1, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

4 2
(−1, 1,−1, 1)
(1, 0, 1,−1) C ⊕ C

(1, 0)
(0, 1)

5 2
(−1, 0, 1, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

6 2
(1,−1, 1, 0)
(0, 2, 0,−1) C ⊕ C

(1, 0)
(0, 1)

7 1 (0, 2,−2, 1) C (1)
8 1 (0, 1, 0, 0) C (1)
9 1 (0, 0, 2,−1) C (1)
10 1 (0, 0, 0, 1) C (1)

15.
�
1

�
0

�
1

< �
1

1 5
(−1, 1, 1,−1)
(−2, 0, 0, 1)
(1, 1,−1, 0)

SL2 ⊕C ⊕ SL2
(1, 0, 1)
(0, 1, 0)

2 5
(−1, 1,−1, 1)
(0, 2, 0,−1) SL2 ⊕S2(SL2)

(2, 1)
(0, 2)

3 4
(−1, 0, 1, 0)
(0, 2,−2, 1) C ⊕ S2(SL2)

(1, 0)
(0, 2)

4 2 (0, 1, 0, 0) SL2 ∅
5 1 (0, 0, 2,−1) C (1)
6 1 (0, 0, 0, 1) C (1)

16.
�
1

�
1

�
1

< �
1

1 4

(−1, 2,−1, 0)
(0,−1, 2,−1)
(−2, 0, 0, 1)
(2,−1, 0, 0)

C ⊕ C

⊕C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

2 4

(−1, 1, 1,−1)
(0,−1, 0, 1)
(1, 1,−1, 0)
(2,−2, 2,−1)

C ⊕ C

⊕C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

3 3
(−1, 1,−1, 1)
(1, 0, 1,−1)
(2,−2, 0, 1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

4 3
(−1, 0, 1, 0)
(1, 0,−1, 1)
(0, 2, 0,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

5 2
(1,−1, 1, 0)
(0, 2,−2, 1) C ⊕ C

(1, 0)
(0, 1)

6 1 (0, 1, 0, 0) C (1)
7 1 (0, 0, 2,−1) C (1)
8 1 (0, 0, 0, 1) C (1)

(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

17.
�
1

�
1

�
1

< �
2

1 3
(−1, 2,−1, 0)
(0,−1, 2,−1)
(2,−1, 0, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

2 4

(−1, 1, 1,−1)
(−2, 0, 0, 1)
(1, 1,−1, 0)
(2,−2, 2,−1)

C ⊕ C

⊕C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

3 2
(0,−1, 0, 1)
(1, 0, 1,−1) C ⊕ C

(1, 0)
(0, 1)

4 3
(−1, 1,−1, 1)
(0, 2, 0,−1)
(2,−2, 0, 1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

5 2
(−1, 0, 1, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

6 2
(1,−1, 1, 0)
(0, 2,−2, 1) C ⊕ C

(1, 0)
(0, 1)

7 1 (0, 1, 0, 0) C (1)
8 1 (0, 0, 2,−1) C (1)
10 1 (0, 0, 0, 1) C (1)

18.
�
2

�
2

�
2

< �
2

2 4

(−1, 2,−1, 0)
(0,−1, 2,−1)
(−2, 0, 0, 1)
(2,−1, 0, 0)

C ⊕ C

⊕C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

4 4

(−1, 1, 1,−1)
(0,−1, 0, 1)
(1, 1,−1, 0)
(2,−2, 2,−1)

C ⊕ C

⊕C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

6 3
(−1, 1,−1, 1)
(1, 0, 1,−1)
(2,−2, 0, 1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

8 3
(−1, 0, 1, 0)
(1, 0,−1, 1)
(0, 2, 0,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

10 2
(1,−1, 1, 0)
(0, 2,−2, 1) C ⊕ C

(1, 0)
(0, 1)

12 1 (0, 1, 0, 0) C (1)
14 1 (0, 0, 2,−1) C (1)
16 1 (0, 0, 0, 1) C (1)

19.
�
2

�
2

�
0

< �
2

2 6
(−1, 1, 1,−1)
(0,−1, 0, 1)
(2,−2, 2,−1)

SL2 ⊕C

⊕S2(SL2)

(2, 0, 1)
(0, 1, 0)
(0, 0, 2)

4 5
(−1, 0, 1, 0)
(1, 0, 1,−1)
(2,−2, 0, 1)

SL2 ⊕SL2 ⊕C
(1, 1, 0)
(0, 0, 1)

6 3
(1,−1, 1, 0)
(0, 2, 0,−1) SL2 ⊕C (0, 1)

8 3 (0, 0, 2,−1) S2(SL2) (2)
10 1 (0, 0, 0, 1) C (1)

(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

20.
�
4

�
2

�
2

< �
4

2 4

(−1, 2,−1, 0)
(0,−1, 2,−1)
(−2, 0, 0, 1)
(2, 0,−2, 1)

C ⊕ C

⊕C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

4 2
(−1, 1, 1,−1)
(2,−1, 0, 0) C ⊕ C

(1, 0)
(0, 1)

6 3
(0,−1, 0, 1)
(1, 1,−1, 0)
(2,−2, 2,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

8 2
(−1, 1,−1, 1)
(1, 0, 1,−1) C ⊕ C

(1, 0)
(0, 1)

10 3
(−1, 0, 1, 0)
(0, 2, 0,−1)
(2,−2, 0, 1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

12 1 (1, 0,−1, 1) C (1)

14 2
(1,−1, 1, 0)
(0, 2,−2, 1) C ⊕ C

(1, 0)
(0, 1)

16 1 (0, 1, 0, 0) C (1)
18 1 (0, 0, 2,−1) C (1)
22 1 (0, 0, 0, 1) C (1)

21.
�
2

�
2

�
0

< �
4

2 6
(−1, 1, 1,−1)
(−2, 0, 0, 1)
(2,−2, 2,−1)

SL2 ⊕C

⊕S2(SL2)

(2, 0, 1)
(0, 1, 0)
(0, 0, 2)

4 3
(0,−1, 0, 1)
(1, 0, 1,−1) C ⊕ SL2 (1, 0)

6 4
(−1, 0, 1, 0)
(0, 2, 0,−1)
(2,−2, 0, 1)

SL2 ⊕C ⊕ C
(0, 1, 0)
(0, 0, 1)

8 2 (1,−1, 1, 0) SL2 ∅
10 3 (0, 0, 2,−1) S2(SL2) (2)
14 1 (0, 0, 0, 1) C (1)

22.
�
0

�
2

�
2

< �
0

2 8
(2,−2, 0, 1)
(1, 1,−1, 0)

(S2(SL1
2)

⊗SL2
2) ⊕ SL1

2

(4, 0)
(2, 2)

4 4 (1, 0,−1, 1) (SL1
2 ⊗SL2

2) (2)

6 4
(1,−1, 1, 0)
(0, 2,−2, 1) SL1

2 ⊕SL2
2 (1, 1)

8 1 (0, 1, 0, 0) C (1)
10 2 (0, 0, 0, 1) SL2

2 ∅
23.

�
0

�
0

�
2

< �
0

2 12 (0, 2,−2, 1) (S2(SL3) ⊗ SL2) (12)
4 3 (0, 1, 0, 0) SL3 ∅
6 2 (0, 0, 0, 1) SL2 ∅

Nilpotent orbits in E6(6) (type EI)

Orbit KC diagram i dim gi
C
∩ k

C

Highest weights
of gi

C
∩ k

C

Prehomogeneous
space

Fundamental
characters

1.
�
0

�
0

�
0

< �
1

1 10 (2, 0, 0, 0) S2(SL4) (4)

2.
�
0

�
1

�
0

< �
0

1 8 (1,−1, 1, 0) SL2 ⊗Sp4 (2)

(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ k

C

Highest weights
of gi

C
∩ k

C

Prehomogeneous
space

Fundamental
characters

2 3 (2, 0, 0, 0) S2(SL2) (2)

3.
�
1

�
0

�
0

< �
1

1 9
(−2, 2, 0, 0)
(1, 0, 1,−1) S2(SL3) ⊕ SL∗

3
(1, 2)
(3, 0)

2 3 (0, 1, 0, 0) SL3 ∅
3 1 (2, 0, 0, 0) C (1)

4.
�
0

�
0

�
0

< �
2

2 10 (2, 0, 0, 0) S2(SL4) (4)

5.
�
2

�
0

�
0

< �
0

2 6 (0, 1, 0, 0) Sp6 ∅
4 1 (2, 0, 0, 0) C (1)

6.
�
0

�
2

�
0

< �
0

2 8 (1,−1, 1, 0) SL2 ⊗Sp4 (2)
4 3 (2, 0, 0, 0) S2(SL2) (2)

7.
�
0

�
1

�
0

< �
2

1 4 (1, 0, 1,−1) SL1
2 ⊗SL2

2 (2)

2 3 (0,−2, 2, 0) S2(SL2
2) (2)

3 4 (1,−1, 1, 0) SL1
2 ⊗SL2

2 (2)
4 3 (2, 0, 0, 0) S2(SL1

2) (2)

8.
�
0

�
1

�
0

< �
1

1 7
(0,−2, 2, 0)
(1, 0, 1,−1)

S2(SL2
2)⊕

(SL1
2 ⊗SL2

2)
(2, 0)
(0, 2)

2 4 (1,−1, 1, 0) SL1
2 ⊗SL2

2 (2)
3 3 (2, 0, 0, 0) S2(SL1

2) (2)

9.
�
0

�
2

�
0

< �
2

2 7
(0,−2, 2, 0)
(1, 0, 1,−1)

S2(SL2
2)⊕

(SL1
2 ⊗SL2

2)
(2, 0)
(0, 2)

4 4 (1,−1, 1, 0) SL1
2 ⊗SL2

2 (2)
6 3 (2, 0, 0, 0) S2(SL1

2) (2)

10.
�
1

�
0

�
1

< �
0

1 6
(−1, 1,−1, 1)
(1, 1,−1, 0)

(SL1
2 ⊗SL2

2)
⊕SL1

2

(2, 0)

2 5
(−2, 2, 0, 0)
(1, 0,−1, 1) S2(SL1

2) ⊕ SL2
2 (2, 0)

3 2 (0, 1, 0, 0) SL1
2 ∅

4 1 (2, 0, 0, 0) C (1)

11.
�
1

�
1

�
0

< �
1

1 6
(−1, 1, 1,−1)
(0,−2, 2, 0)
(2,−1, 0, 0)

SL2 ⊕
S2(SL2) ⊕ C

(2, 1, 0)
(0, 2, 0)
(0, 0, 1)

2 4
(−1, 0, 1, 0)
(1, 0, 1,−1) SL2 ⊕SL2 (1, 1)

3 3
(−2, 2, 0, 0)
(1,−1, 1, 0) C ⊕ SL2 (1, 0)

4 1 (0, 1, 0, 0) C (1)
5 1 (2, 0, 0, 0) C (1)

12.
�
2

�
0

�
0

< �
2

2 9
(−2, 2, 0, 0)
(1, 0, 1,−1) S2(SL3) ⊕ SL∗

3
(1, 2)
(3, 0)

4 3 (0, 1, 0, 0) SL3 ∅
6 1 (2, 0, 0, 0) C (1)

13.
�
2

�
0

�
0

< �
4

2 3 (1, 0, 1,−1) SL∗
3 ∅

4 6 (−2, 2, 0, 0) S2(SL3) (3)
6 3 (0, 1, 0, 0) SL3 ∅
8 1 (2, 0, 0, 0) C (1)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ k

C

Highest weights
of gi

C
∩ k

C

Prehomogeneous
space

Fundamental
characters

14.
�
1

�
2

�
1

< �
1

1 3
(0,−1, 2,−1)
(0, 0,−2, 2)
(2,−1, 0, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

2 2
(−1, 2,−1, 0)
(0,−1, 0, 1) C ⊕ C

(1, 0)
(0, 1)

3 3
(−1, 1, 1,−1)
(0,−2, 2, 0)
(1, 1,−1, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

4 2
(−1, 1,−1, 1)
(1, 0, 1,−1) C ⊕ C

(1, 0)
(0, 1)

5 2
(−1, 0, 1, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

6 1 (1,−1, 1, 0) C (1)
7 1 (−2, 2, 0, 0) C (1)
8 1 (0, 1, 0, 0) C (1)
9 1 (2, 0, 0, 0) C (1)

15.
�
1

�
0

�
1

< �
1

1 5
(0, 0,−2, 2)
(−1, 1, 1,−1)
(1, 1,−1, 0)

C ⊕ SL2 ⊕SL2
(1, 0, 0)
(0, 1, 1)

2 3
(−1, 1,−1, 1)
(1, 0, 1,−1) SL2 ⊕C (0, 1)

3 4
(−2, 2, 0, 0)
(1, 0,−1, 1) S2(SL2) ⊕ C

(0, 1)
(2, 0)

4 2 (0, 1, 0, 0) SL2 ∅
5 1 (2, 0, 0, 0) C (1)

16.
�
1

�
1

�
1

< �
1

1 4

(−1, 2,−1, 0)
(0,−1, 2,−1)
(0, 0,−2, 2)
(2,−1, 0, 0)

C ⊕ C⊕
C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

2 3
(−1, 1, 1,−1)
(0,−1, 0, 1)
(1, 1,−1, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

3 3
(−1, 1,−1, 1)
(0,−2, 2, 0)
(1, 0, 1,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

4 2
(−1, 0, 1, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

5 2
(−2, 2, 0, 0)
(1,−1, 1, 0) C ⊕ C

(1, 0)
(0, 1)

6 1 (0, 1, 0, 0) C (1)
7 1 (2, 0, 0, 0) C (1)

17.
�
1

�
1

�
1

< �
2

1 3
(−1, 2,−1, 0)
(0,−1, 2,−1)
(2,−1, 0, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

2 3
(0, 0,−2, 2)
(−1, 1, 1,−1)
(1, 1,−1, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

3 2
(0,−1, 0, 1)
(1, 0, 1,−1) C ⊕ C

(1, 0)
(0, 1)

(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ k

C

Highest weights
of gi

C
∩ k

C

Prehomogeneous
space

Fundamental
characters

4 2
(−1, 1,−1, 1)
(0,−2, 2, 0) C ⊕ C

(1, 0)
(0, 1)

5 2
(−1, 0, 1, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

6 2
(−2, 2, 0, 0)
(1,−1, 1, 0) C ⊕ C

(1, 0)
(0, 1)

7 1 (0, 1, 0, 0) C (1)
8 1 (2, 0, 0, 0) C (1)

18.
�
2

�
2

�
2

< �
2

2 4

(−1, 2,−1, 0)
(0,−1, 2,−1)
(0, 0,−2, 2)
(2,−1, 0, 0)

C ⊕ C⊕
C ⊕ C

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

4 3
(−1, 1, 1,−1)
(0,−1, 0, 1)
(1, 1,−1, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

6 3
(−1, 1,−1, 1)
(0,−2, 2, 0)
(1, 0, 1,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

8 2
(−1, 0, 1, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

10 2
(−2, 2, 0, 0)
(1,−1, 1, 0) C ⊕ C

(1, 0)
(0, 1)

12 1 (0, 1, 0, 0) C (1)
14 1 (2, 0, 0, 0) C (1)

19.
�
2

�
2

�
0

< �
2

2 6
(−1, 1, 1,−1)
(0,−2, 2, 0)
(2,−1, 0, 0)

SL2 ⊕
S2(SL2) ⊕ C

(2, 1, 0)
(0, 2, 0)
(0, 0, 1)

4 4
(−1, 0, 1, 0)
(1, 0, 1,−1) SL2 ⊕SL2 (1, 1)

6 3
(−2, 2, 0, 0)
(1,−1, 1, 0) C ⊕ SL2 (1, 0)

8 1 (0, 1, 0, 0) C (1)
10 1 (2, 0, 0, 0) C (1)

20.
�
4

�
2

�
2

< �
4

2 2
(−1, 2,−1, 0)
(0,−1, 2,−1) C ⊕ C

(1, 0)
(0, 1)

4 3
(0, 0,−2, 2)
(−1, 1, 1,−1)
(2,−1, 0, 0)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

6 2
(0,−1, 0, 1)
(1, 1,−1, 0) C ⊕ C

(1, 0)
(0, 1)

8 3
(−1, 1,−1, 1)
(0,−2, 2, 0)
(1, 0, 1,−1)

C ⊕ C ⊕ C

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

10 1 (−1, 0, 1, 0) C (1)

12 2
(−2, 2, 0, 0)
(1, 0,−1, 1) C ⊕ C

(1, 0)
(0, 1)

14 1 (1,−1, 1, 0) C (1)
16 1 (0, 1, 0, 0) C (1)
20 1 (2, 0, 0, 0) C (1)

(continued on next page)
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Nilpotent orbits in E6(6) (type EI) (continued)

Orbit KC diagram i dim gi
C
∩ k

C

Highest weights
of gi

C
∩ k

C

Prehomogeneous
space

Fundamental
characters

21.
�
2

�
2

�
0

< �
4

2 3
(−1, 1, 1,−1)
(2,−1, 0, 0) SL2 ⊕C (0, 1)

4 5
(0,−2, 2, 0)
(1, 0, 1,−1) S2(SL2) ⊕ SL2

(2, 0)
(1, 2)

6 2 (−1, 0, 1, 0) SL2 ∅
8 3

(−2, 2, 0, 0)
(1,−1, 1, 0) C ⊕ SL2 (1, 0)

10 1 (0, 1, 0, 0) C (1)
12 1 (2, 0, 0, 0) C (1)

22.
�
0

�
2

�
2

< �
0

2 4
(0,−1, 0, 1)
(1, 1,−1, 0) SL2

2 ⊕SL1
2 (1, 1)

4 5
(0,−2, 2, 0)
(1, 0,−1, 1) C ⊕ (SL1

2 ⊗SL2
2)

(1, 0)
(0, 2)

6 2 (1,−1, 1, 0) SL1
2 ∅

8 3 (2, 0, 0, 0) S2(SL1
2) (2)

23.
�
0

�
0

�
2

< �
0

2 6 (1, 0,−1, 1) SL3 ⊗SL2 ∅
4 6 (2, 0, 0, 0) S2(SL3) (3)

Nilpotent orbits in E6(−26) (type EIV)

Orbit KC diagram i dim gi
C
∩ pC

Highest weights
of gi

C
∩ pC

Prehomogeneous
space

Fundamental
characters

1.
�
0

�
0

> �
0

�
1

1 8 (0, 0, 1,−1) Spin7 (2)
2 1 (0, 0, 0, 1) C (1)

2.
�
0

�
0

> �
0

�
2

2 8 (0, 0, 1,−1) Spin7 (2)
4 1 (0, 0, 0, 1) C (1)

Nilpotent orbits in E6(−26) (type EIV)

Orbit KC diagram i dim gi
C
∩ k

C

Highest weights
of gi

C
∩ k

C

Prehomogeneous
space

Fundamental
characters

1.
�
0

�
0

> �
0

�
1

1 8 (0, 0, 1,−1) Spin7 (2)
2 7 (1, 0, 0, 0) SO7 (2)

2.
�
0

�
0

> �
0

�
2

2 8 (0, 0, 1,−1) Spin7 (2)
4 7 (1, 0, 0, 0) SO7 (2)
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