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We present a group-theoretic criterion under which one may
verify the Artin conjecture for some (nonmonomial) Galois rep-
resentations, up to finite height in the complex plane. In partic-
ular, the criterion applies to S5 and A5 representations. Under
more general conditions, the technique allows for the possi-
bility of verifying the Riemann hypothesis for Dedekind zeta
functions of nonabelian extensions of Q.

In addition, we discuss two methods for locating zeros of
arbitrary L-functions. The first uses the explicit formula and
techniques developed in [Booker and Strömbergsson 07] for
computing with trace formulas. The second method general-
izes that of Turing for verifying the Riemann hypothesis. In
order to apply it we develop a rigorous algorithm for comput-
ing general L-functions on the critical line via the fast Fourier
transform.

Finally, we present some numerical results testing Artin’s
conjecture for S5 representations, and the Riemann hypothe-
sis for Dedekind zeta functions of S5 and A5 fields.

1. INTRODUCTION

1.1 Artin’s Conjecture

Let K/Q be a Galois extension and ρ : Gal(K/Q) →
GLn(C) a nontrivial, irreducible representation of its Ga-
lois group. In [Artin 30], Artin associated to this data an
L-function L(s, ρ), defined initially for �(s) > 1, which
he conjectured to continue to an entire function and
satisfy a functional equation. By a theorem of Brauer
[Brauer 47], one now knows the meromorphic continua-
tion and functional equation of Artin’s L-functions. The
question remains whether they can have poles in the crit-
ical strip 0 < �(s) < 1.

Artin established his conjecture for the monomial rep-
resentations, those induced from a 1-dimensional repre-
sentation of a subgroup; this of course includes all 1-
dimensional ρ, in which case L(s, ρ) = L(s, χ) for a
Dirichlet character χ. Although the conjecture has not
been decided in any dimension greater than or equal
to 2, more evidence is provided in dimension 2 by the
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Langlands–Tunnell theorem [Langlands 80, Tunnell 81],
which affirms the conjecture for those representations
whose image in PGL2(C) is isomorphic to A4 (tetrahe-
dral) or S4 (octahedral); only the A5 (icosahedral) case
remains. When ρ is an odd icosahedral representation,
meaning det ρ determines an odd Dirichlet character, in-
finitely many examples of Artin’s conjecture are known
from the work of Taylor et al. [Buzzard et al. 01, Tay-
lor 03].

Moreover, in the odd 2-dimensional case, there is an
algorithm for verifying the conjecture, as follows. By
a construction of Deligne and Serre [Deligne and Serre
74], given a holomorphic modular form f of weight 1,
one may associate an odd 2-dimensional representation
ρ such that L(s, f) = L(s, ρ). Conversely, every odd 2-
dimensional ρ such that L(s, ρ) is entire arises from the
Deligne–Serre construction. For any particular ρ, one can
search for the associated form; once it has been found,
comparing the representation constructed by Deligne–
Serre to ρ via an effective version of the Čebotarev den-
sity theorem allows one to deduce the conjecture for ρ.
This and other related techniques have been carried out
in a number of cases; see [Buhler 78, Kiming 94, Jehanne
and Müller 00, Buzzard and Stein 02].

On the other hand, if one considers even 2-dimensional
representations, the situation is somewhat different.
There as well the conjecture has been established for all
but the icosahedral cases. However, the correspondence
is not with holomorphic forms, but rather Maass forms
of eigenvalue 1

4 . Unfortunately, no analogue of the result
of Deligne and Serre is known in that setting. Moreover,
computation of the associated forms remains elusive; ex-
isting techniques (see, e.g., [Booker et al. 06]) allow one
to calculate Maass forms only to within a prescribed pre-
cision, never exactly. Thus at present, this approach does
not yield an algorithm for verifying Artin’s conjecture.

The apparent difference between these two cases leads
naturally to the following question: Given a Galois rep-
resentation ρ, is there an algorithm that will decide in
finite time, with proof, whether L(s, ρ) is entire? Note
that like the Riemann hypothesis, Artin’s conjecture is
falsifiable, i.e., it may be disproved by observing a coun-
terexample, in this case a pole. The challenge is thus to
find a way of demonstrating the conjecture in cases in
which it is true.

Although we are unable to provide a definitive answer
to this question, one approach, at least for 2-dimensional
representations, is suggested by a theorem from [Booker
03]: If a given 2-dimensional ρ is not associated with a
holomorphic or Maass form as above, then L(s, ρ) has

infinitely many poles. In particular, once L(s, ρ) has at
least one pole, it must have infinitely many. Unfortu-
nately, the result is ineffective, in the sense that it does
not predict where the first pole must occur. A natural
question, therefore, is whether an effective version of this
theorem exists. First, however, we must consider exactly
what that would mean; since the only handle that we
have on an Artin L-function in the critical strip is as the
ratio of entire functions given by Brauer’s theorem, it is
not immediately clear that we can check its holomorphy
at a zero of the denominator without knowing a priori a
lower bound on the residue of any poles.

In this paper we address precisely this issue, in Sec-
tion 2. There we present a criterion that when satisfied,
yields an algorithm for verifying the holomorphy of an
Artin L-function up to a given height in the critical strip.
In particular, we give the first direct evidence (as far as
we are aware) of holomorphy in the critical strip of an L-
function for which the conjecture cannot be established
through the methods mentioned above. Although our
criterion is not always satisfied, we are in general able
to deduce partial information, such as a bound on the
multiplicities and residues of possible poles. Moreover,
the limitations of the information that we obtain give an
idea of the hypotheses that one would have to impose in
any effective version of the converse theorem in order to
make the above approach work.

1.2 Turing’s Method and the Riemann Hypothesis

One application of our criterion is to the Riemann hy-
pothesis for Dedekind zeta functions. Turing [Turing
53] devised a method for checking the hypothesis in
a bounded region for the Riemann ζ-function.1 The
method depends on the simplicity of the zeros of ζ. Be-
cause of that, it is directly extendable only to Dedekind
zeta functions of nonnormal extensions of small degree
(see [Tollis 97]) or abelian extensions, for which it is more
natural to verify the hypothesis for the associated Dirich-
let L-functions instead (see [Rumely 93]).

Similarly, for a nonabelian extension one can factorize
the zeta function into Artin L-functions of irreducible
representations. Since these are also expected to have
simple zeros, Turing’s method applies, provided one as-
sumes the Artin conjecture. However, combining our
criterion with Turing’s method, we will in some cases
be able to deduce the Riemann hypothesis and holomor-

1Reading Turing’s paper on the subject, which was one of his
last, one marvels at what he accomplished with the limited com-
putational resources of the day. His method was truly ahead of its
time.
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phy of the relevant Artin L-functions simultaneously. In
fact, as we will see, there are even cases in which we
may check the Riemann hypothesis without being able
to verify Artin’s conjecture. We carry out the necessary
generalization of Turing’s method in Section 4.

1.3 Rigorous Zero Computations

In order to implement these ideas, we develop, in Sections
3 and 5, two methods of locating zeros of L-functions.
The first uses the explicit formula and techniques de-
veloped for the Selberg trace formula in [Booker and
Strömbergsson 07]. If one assumes the Riemann hypothe-
sis, this method may be used with our criterion, in place
of Turing’s method, for verifying the Artin conjecture.
More importantly, the explicit formula is clean to im-
plement and yields estimates for low zeros quickly. It
can thus serve as a check for later computations, or to
fine-tune the parameters of Turing’s method for greater
speed.

The second method is a technique for fast, rigorous
computations of L-functions on the critical line. This is
a hard problem in general, basically because of the diffi-
culty of providing uniform, effective bounds for the rele-
vant Mellin transforms. By making use of the fast Fourier
transform, our technique allows one to compute many
values of the same L-function simultaneously, which is
particularly appropriate for Turing’s method. In doing
so, we need consider only a single Mellin transform, mak-
ing rigorous computation more practical. In addition, the
method has complexity comparable to that of computing
a single value by the approximate functional equation.

Although our primary interest is in Artin L-functions,
we carry out the details of Sections 3, 4, and 5 for arbi-
trary L-functions L(s), in the hope that the results may
be useful outside of the present context. More precisely,
we make the following assumptions, notation, and con-
ventions, which will be used throughout the paper:

• L(s) is given by an Euler product of degree r:

L(s) =
∏

p prime

1
(1 − αp,1p−s) · · · (1 − αp,rp−s)

,

(1–1)
where the αp,j are complex parameters satisfying the
individual bound |αp,j | ≤ p1/2, and the product is
absolutely convergent for �(s) > 1. Further, for all
but finitely many p, there is a pairing α �→ α′ such
that |αp,jα

′
p,j | = 1. For the exceptional p, such a

pairing exists for a subset of the αp,j , and those not
in the subset satisfy |αp,j | ≤ 1.

• Define

ΓR(s) := π−s/2Γ
(s

2

)
,

γ(s) := εN
1
2 (s− 1

2 )
r∏

j=1

ΓR(s+ µj),

Λ(s) := γ(s)L(s),

where |ε| = 1, N is a positive integer, and �(µj) ≥
− 1

2 . For a certain choice of these parameters, Λ(s)
has meromorphic continuation to C, is a ratio of en-
tire functions of order 1, and satisfies the functional
equation

Λ(s) = Λ(1 − s), (1–2)

where for a complex function f we denote by f(s)
the function f(s̄). Note that ε here is the square
root of the usual root number, and is defined only
up to multiplication by ±1; we choose the value with
argument in

(−π
2 ,

π
2

]
. Including ε as part of the γ

factor makes Λ(s) real for �(s) = 1
2 , as can be seen

from (1–2).

Let Q(s) be the analytic conductor:

Q(s) := N

r∏
j=1

s+ µj

2π
.

Note that γ(s) satisfies the recurrence γ(s + 2) =
Q(s)γ(s). Further, we define

χ(s) :=
γ(1 − s)
γ(s)

,

so that L(s) = χ(s)L(1 − s).

• L(s) may have at most finitely many poles, which
we assume to lie along the line �(s) = 1. We label
them 1 + λk with λk ∈ iR, k = 1, . . . ,m, repeating
with the appropriate multiplicity. Further, from the
functional equation (1–2), each λk will equal −µj for
some j, counting multiplicity; in particular, m ≤ r.
We set

P (s) :=
m∏

k=1

(s− λk),

so that P (s)P (s− 1)Λ(s) is entire.

• Some progress is known toward the Ramanujan con-
jecture for L; that is, there exists θ < 1

2 such that

|αp,j | ≤ pθ and �(µj) ≥ −θ (1–3)

for all p, j. This assumption is not strictly neces-
sary, since we could instead use average bounds of



388 Experimental Mathematics, Vol. 15 (2006), No. 4

Rankin–Selberg type. However, bounds of the form
(1–3) are now known in the cases of greatest interest
(automorphic L-functions [Luo et al. 99]), and the
results are easier to state and use assuming it.

1.4 Numerical Results

Finally, in Section 6 we describe the implementation of
the above ideas and give some numerical results of tests
of the Riemann hypothesis for a few S5 and A5 extensions
in the region |�(s)| ≤ 100. For the S5 cases, this includes
a verification of Artin’s conjecture in the same region for
the L-functions of all representations of the group.

2. A CRITERION FOR VERIFYING ARTIN’S
CONJECTURE

Let ρ : Gal(K/Q) → GLn(C) be a Galois representa-
tion, as in the introduction. Brauer’s theorem expresses
the L-function L(s, ρ) as a ratio N(s)/D(s), where N(s)
and D(s) are Artin L-functions associated with sums
of monomial representations. If f(s) is any holomor-
phic Artin L-function, we have a formula for the number
Nf (t1, t2) of zeros of f between heights t1 and t2, from
the argument principle:

Nf (t1, t2) =
1

2πi

∫
C

f ′

f
(s) ds, (2–1)

where C is the rectangular contour with vertices at 2+it1,
2+it2, −1+it2, −1+it1 and counterclockwise orientation.
We also have available in this case algorithms to compute
f and f ′ at an arbitrary point in the complex plane; see
Section 5. Thus, in principle we could compute (2–1)
exactly by numerical integration. Although (2–1) has the
advantage of applying in great generality, to do so would
be inefficient and difficult to implement rigorously. In the
special case that the zeros of f are simple, a much more
efficient algorithm was given by Turing; see Section 4.

No matter how we arrive at the numbers Nf (t1, t2),
there is always some uncertainty in the locations of the
zeros of f . In (2–1) this is due to the fact that as ti ap-
proaches the ordinate of a zero, higher and higher preci-
sion is needed in order to compute f ′/f accurately. This
is in line with the expectation that the general zero is
transcendental, meaning that one can never know it ex-
actly.

For L(s, ρ), we can recover the net number of zeros
(i.e., zeros minus poles) between heights t1 and t2 as
NN (t1, t2)−ND(t1, t2). If Artin’s conjecture is true, then
for every zero of D(s) there is a zero of N(s) at the same

point. However, because of the uncertainty in the loca-
tions of the zeros of N(s) and D(s), from this computa-
tion alone we cannot rule out the possibility that L(s, ρ)
has a pole with a zero very close by in the neighborhood
of a zero of D(s). In other words, we can observe the
counts of net zeros only in these small neighborhoods.

Fortunately, there are some restrictions on potential
poles. For instance, the Dedekind zeta function ζK(s) of
the extension factors into Artin L-functions:

ζK(s) =
∏
ρ

L(s, ρ)dim ρ,

where the product is over all irreducible representations
of Gal(K/Q). Since ζK(s) is holomorphic (except for a
simple pole at s = 1), we see that any pole of L(s, ρ) in
the critical strip must be located at the zero of another
function. More generally, if σ is any representation, we
have

L(s, σ) =
∏
ρ

L(s, ρ)〈σ,ρ〉,

where 〈·, ·〉 is the inner product on the space of characters,
and by abuse of notation we write 〈σ, ρ〉 for 〈Trσ,Tr ρ〉.
When σ is monomial, we again have L(s, σ) holomorphic
with the possible exception of a pole at s = 1.

This information is described most concisely by use of
the Heilbronn (virtual) character: For s0 ∈ C\{1}, define

θs0 =
∑

ρ

ords=s0L(s, ρ) · Tr ρ,

where ords=s0L(s, ρ) := Ress=s0
L′
L (s, ρ). Thus,

ords=s0L(s, σ) = 〈θs0 , σ〉 ≥ 0 for all monomial σ.
(2–2)

The study of Heilbronn characters leads to many useful
results. For example, in [Foote and Murty 89] it is shown
that ∑

ρ

(
ords=s0L(s, ρ)

)2 ≤ (
ords=s0ζK(s)

)2
. (2–3)

In particular, the zeros and poles of each L(s, ρ) are
among the zeros of ζK(s).

The idea now is to combine (2–2) with observations of
net zeros. If we look in a small enough neighborhood of a
zero of ζK(s), we expect to find one net zero for a single
L(s, ρ) and no net zeros for the others. This is based
on the assumption that the zeros of different irreducible
Artin L-functions are distinct and simple. While such
a statement is likely impossible to prove, we may use it
as a working hypothesis to be tested at run time. This
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is analogous to assuming the simplicity of the zeros of ζ
in order to check the Riemann hypothesis. (Note that if
there is a multiple zero of ζ, it is doubtful that one could
distinguish it from a counterexample.)

In other words, if the working hypothesis is true, then
our net-zero observations correspond to the character
Tr ρ for some ρ. Thus, we have Tr ρ = θs1 + · · · + θsn

,
where s1, . . . , sn are the distinct zeros of ζK(s) in the
neighborhood that we examine. We would like to con-
clude that there is just one such point, meaning that the
actual zero counts agree with our observations. Since the
Heilbronn characters satisfy (2–2), it is enough to show
that

Tr ρ 
= χ1 + χ2 for virtual characters χi 
= 0 with

〈χi, σ〉 ≥ 0 for all monomial σ. (2–4)

The one notable exception to this philosophy is at the
central point 1

2 , where there can be forced vanishing if ρ is
self-dual (an example of which is given in [Armitage 72]).
In that case, we expect one zero for each self-dual ρ with
an odd functional equation, and no zeros for the rest.
However, we can determine only the parity of the order
of vanishing at 1

2 . This leads to the following replacement
for condition (2–4) at 1

2 :∑
ρ self−dual

Λ(1−s,ρ)=−Λ(s,ρ)

Tr ρ 
= χ1 + 2χ2 with χi 
= 0 and

〈χi, σ〉 ≥ 0 for all monomial σ. (2–5)

When (2–4) is satisfied for all irreducible representa-
tions ρ, we may check the holomorphy of all L(s, ρ) at
any point at which the working hypothesis turns out to
be true. We give a name to describe this situation:

Definition 2.1. A finite group G is almost monomial if
for each irreducible representation ρ, if Tr ρ = χ1 + χ2

for virtual characters χi such that 〈χi, σ〉 ≥ 0 for all
monomial σ, then either χ1 = 0 or χ2 = 0.

The terminology is explained with the aid of Fig-
ure 1. The plane represents the lattice of virtual charac-
ters, with the first quadrant being the monoid of charac-
ters, and the shaded cone the monoid generated by the
monomial characters. We consider all virtual characters
within 90 degrees of the cone, which in the figure is ev-
erything within the dashed lines; for brevity, we refer to
these as dual-monomial positive (or DM-positive) char-
acters. The group is almost monomial if the set of DM-
positive characters is not much larger than the character

FIGURE 1. Lattice of virtual characters. The shaded cone
is the monoid generated by monomial characters.

monoid, in the precise sense that the irreducible repre-
sentations, which are the coordinate-axis vectors repre-
sented by thick arrows, remain indecomposable in this
set. Equivalently, the monoid generated by the monomial
characters should be close to the full character monoid.
From the figure it is easy to see that any monomial group
is almost monomial.

One could argue that we should include condition
(2–5) in our definition as well. We prefer to keep it sep-
arate, taking the view that it is more important to be
able to demonstrate holomorphy at a generic zero of the
denominator. Indeed, we have already seen that the L-
function of a 2-dimensional representation cannot have a
finite number of poles, so we do not lose much general-
ity by excluding a single point. It is plausible that such
a result holds for higher dimensions as well. Moreover,
condition (2–5) seems usually to be weaker than almost
monomiality; cf. Proposition 2.3 below.

A potentially more serious issue is that N(s) and D(s)
may have high-order zeros at 1

2 , in which case Turing’s
method does not apply. This could be remedied by com-
puting the contour integral (2–1) around 1

2 , but we would
like to avoid doing so. Fortunately, if the order of van-
ishing at 1

2 is at most 3, we can still conclude that we
have the correct count by sign changes alone; this is be-
cause for a self-dual representation, if we miss a zero away
from 1

2 , then we must miss at least four such zeros. For-
tunately again, in all cases that we consider, N(s) has at
most three irreducible factors with a potential zero at 1

2 .
Like monomiality, the notion of almost monomiality

behaves well under some common group operations. In
particular, we have the following.

Proposition 2.2. If G is almost monomial, then so are
quotients of G and products G × H for any monomial
group H.

Proof: 1. Let K be a normal subgroup of G and π̃

an irreducible representation of G/K. Suppose that
Tr π̃ = χ̃1 + χ̃2, with χ̃1 and χ̃2 DM-positive. Let π,
χi be the lifts of π̃, χ̃i to G obtained by composition
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with the natural projection. Then π is irreducible and
Trπ = χ1 +χ2. Further, if ρ is an irreducible representa-
tion of G, then 〈χi, ρ〉 = 0 unless ρ factors through G/K.
If that is the case, let ρ̃ denote the induced map on G/K.

Now, if σ = IndG
Hλ is a monomial representation, then

by Frobenius reciprocity, we have 〈σ, ρ〉 =
〈
ResG

Hρ, λ
〉

for
all ρ factoring through G/K. If at least one of these
is nonzero, i.e., λ occurs in ResG

Hρ, then since ρ fac-
tors through G/K, λ must factor through H/H ∩ K ∼=
HK/K. Let λ̃ denote the induced map on HK/K. Then〈
ResG/K

HK/K ρ̃, λ̃
〉

=
〈
ResG

Hρ, λ
〉
. Thus, σ̃ = IndG/K

HK/K λ̃

satisfies 〈σ, ρ〉 = 〈σ̃, ρ̃〉. Therefore, 〈χi, σ〉 = 〈χ̃i, σ̃〉 ≥ 0.
The conclusion follows by almost monomiality of G.

2. Let ρG and ρH be irreducible representations of
G and H, respectively, and suppose that Tr ρG ⊗ ρH =
(Tr ρG)(Tr ρH) = χ1 + χ2 with χ1 and χ2 DM-positive.
Taking the inner product overH with ρH , we get Tr ρG =
〈χ1, ρH〉H + 〈χ2, ρH〉H .

Next, if σG is any monomial representation of G, we
have

〈〈χi, ρH〉H , σG

〉
G

= 〈χi, σG ⊗ ρH〉G×H ≥ 0, since
σG⊗ρH is monomial. Thus, since G is almost monomial,
we have 〈χi, ρH〉H = 0 for some i.

Similarly, if ρ′H is any other irreducible representa-
tion of H, we obtain 0 = 〈χ1, ρ

′
H〉H + 〈χ2, ρ

′
H〉H . Thus,

〈χ1, ρ
′
H〉H = 〈χ2, ρ

′
H〉H = 0. Therefore χi = 0 for some i.

The next proposition shows that the class of almost
monomial groups is strictly larger than that of monomial
groups.

Proposition 2.3. The groups SL2(F3), A5, and S5 are
almost monomial and satisfy (2–5).

Proof: These are shown with the aid of the computer
algebra system GAP [GAP 05]. We illustrate the gen-
eral procedure for checking almost monomiality for a
given group with the example A5. Note first that A5

has five irreducible representations, of dimensions 1, 3,
3, 4, and 5. We use GAP to determine all monomial
representations. In this case they are nonnegative lin-
ear combinations of the vectors (1, 0, 0, 0, 0), (0, 0, 0, 0, 1),
(1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1), and
(0, 1, 1, 1, 0), where the components indicate the multi-
plicities of the irreducible representations. We label the
monomial representations associated with these vectors
σ1, . . . , σ7. The first five form a Z-basis for the lattice
of virtual characters, i.e., any virtual character χ may
be written uniquely as an integral linear combination
χ =

∑5
i=1 xiTrσi.

Now, almost monomiality is equivalent to the assertion
that for each irreducible representation ρ, whenever 0 ≤
〈χ, σ〉 ≤ 〈ρ, σ〉 for all monomial σ, we have either χ = 0
or χ = Tr ρ. Using our integral basis, we investigate the
solutions to

0 ≤
5∑

i=1

xi〈σi, σj〉 ≤ 〈ρ, σj〉 (2–6)

for j = 1, . . . , 7. Restricting to j = 1, . . . , 5, we get an
invertible system, i.e., the matrix A =

(〈σi, σj〉
)
1≤i,j≤5

lies in SL5(Z). We consider the vectors x = A−1y for
all y = (y1, . . . , y5) satisfying 0 ≤ yj ≤ 〈ρ, σj〉. By con-
struction, these satisfy (2–6) for j = 1, . . . , 5. We check
that the only x satisfying (2–6) for j = 6, 7 are 0 and
A−1

(〈ρ, σj〉
)
, corresponding to χ = 0 and χ = Tr ρ, re-

spectively.
Similarly, for (2–5) we try all possible combinations

of ρ having odd functional equation. We may exclude
those whose L-functions may be expressed in terms of
Dedekind zeta functions, for which the root number is al-
ways 1. For A5, the only nontrivial possibility is that the
two 3-dimensional representations have odd functional
equation.

With the evidence provided by Propositions 2.2 and
2.3, one might hope that all groups are almost monomial.
That is not the case, as the counterexamples GL2(F3)
and SL2(F5) show. The group SL2(F5) has irreducible
representations of dimensions 1, 2, 2, 3, 3, 4, 4, 5, and
6, and it is the smallest group supporting an icosahedral
representation (since A5 has no 2-dimensional represen-
tations), meaning that our criterion unfortunately does
not apply to checking the icosahedral case. In fact, one
knows Artin’s conjecture for all induced representations
of this group; while they are not all monomial, the only
exceptions come from a pair of tetrahedral representa-
tions, for which we have the Langlands–Tunnell theorem.
Even with this added information, we cannot rule out
the possibility of a simple pole with undetectably small
residue at a zero of the L-function of the 6-dimensional
representation. More precisely, we find with GAP that
the induced representations are spanned by the twelve
vectors
(1, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 1, 0, 1, 0), (0, 0, 0, 0, 1, 1, 0, 1, 0),

(0, 0, 0, 1, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 0, 1),

(0, 1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 0, 1, 0, 1), (0, 1, 1, 0, 0, 0, 0, 0, 1).

The first seven of these are the monomial representa-
tions lifted from SL2(F5)/{±I} ∼= A5, while the others
give “new” information. One easily checks that for ρ
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the 6-dimensional representation, (2–4) fails with χ1 cor-
responding to any of the vectors (0,−1, 0, 0, 0, 0, 0, 0, 1),
(0, 0,−1, 0, 0, 0, 0, 0, 1), and (0, 0, 0, 0, 0, 0,−1, 0, 1), i.e.,
the representations of dimension 2 and one of dimension
4 can hide a pole at a zero of L(s, ρ). This shows in
a strong sense that information from induced represen-
tations is in general insufficient to demonstrate Artin’s
conjecture.

However, all is not lost concerning icosahedral repre-
sentations. For a given icosahedral ρ, the adjoint square
Ad(ρ) is a 3-dimensional representation with image iso-
morphic to A5. A result of Flicker [Flicker 94] implies
that modularity of ρ is equivalent to that of Ad(ρ). (In
fact, modularity of all representations of the underlying
group follows from that of Ad(ρ) and its Galois conju-
gate, by known cases of functoriality; see [Wang 03].)
Combining this fact with the GL(3) converse theorem,
one could give a converse theorem for GL(2) using ana-
lytic properties of L(s,Ad(ρ) ⊗ χ) for Dirichlet charac-
ters χ. Weissman, in his undergraduate thesis [Weiss-
man 99], used this idea to give indirect evidence for the
modularity of an even icosahedral representation. By
Propositions 2.2 and 2.3 we see that in principle we may
directly verify the holomorphy of these L-functions up
to finite height. Moreover, an “effective” version of the
GL(3) converse theorem (requiring, say, meromorphy of
all twists and holomorphy of a finite number in a bounded
region) would suffice to give an algorithm for verifying the
conjecture in the icosahedral case.

Unfortunately, there is the more practical problem
that totally real A5 fields (those that give rise to even
icosahedral representations) are very rare; the smallest
known discriminant is far too large to test with current
computers. Thus, for the A5 examples that we consider
in Section 6, the Artin conjecture is already known. To
test our criterion, we consider instead some examples of
S5 extensions, which exist in much greater abundance.

Finally, we note that in the course of verifying Artin’s
conjecture, the information that we collect implies that
the zeros of each L(s, ρ) are simple and lie on the line
�(s) = 1

2 . Thus, in the process we also verify the Rie-
mann hypothesis for ζK(s). Interestingly, we do not need
to establish the holomorphy of all L(s, ρ) in order to do
this; it is enough, for example, that they have at most
simple poles. More precisely, in order to check the Rie-
mann hypothesis around a generic zero of ζK(s) we need
to have

Tr ρ 
= χ1 + 2χ2 for virtual characters χi 
= 0

with 〈χi, σ〉 ≥ 0 for all monomial σ,

which is a weaker condition than almost monomiality. In
particular, we may still check the Riemann hypothesis
for SL2(F5) extensions.

3. LOCATING ZEROS VIA THE EXPLICIT FORMULA

Let notation be as in the introduction, and define
numbers cn by −L′

L (s) =
∑∞

n=1 cnn
−s, i.e., cn =

(log p)
∑r

j=1 α
k
p,j for n = pk a prime power, and cn = 0

otherwise. Further, we enumerate the zeros of Λ(s) as
ρn = 1

2 + iγn for n ∈ Z, repeated with multiplicity.
Weil’s explicit formula relates the sequences {cn} and
{γn}. Precisely, let g ∈ C1

c (R) be a differentiable func-
tion of compact support such that its Fourier transform
h(t) :=

∫∞
−∞ g(x)eixt dx is real for t ∈ R. Then

∑
n∈Z

h(γn) − 2�
m∑

k=1

h

(
−i
(

1
2

+ λk

))
(3–1)

= g(0) logN

+ 2�
[ r∑

j=1

1
2π

∫ ∞

−∞

Γ′
R

ΓR

(
1
2

+ µj + it

)
h(t) dt

−
∞∑

n=1

cn√
n
g(log n)

]
.

This follows from the Cauchy integral formula and the
functional equation; see [Rudnick and Sarnak 96]. Note
that all terms of the formula may be put in terms of g;
in particular,

1
2π

∫ ∞

−∞

Γ′
R

ΓR

(
1
2

+ µ+ it

)
h(t) dt

=
1
2

∫ ∞

0

log
(
πeγ(e2x − 1)

)
d
(
g(x)e−(1/2+µ)x

)
.

This form is convenient for computation, since g has com-
pact support.

The important thing to note is that given a list of
the cn for n ≤ eX , the explicit formula gives a method
for evaluating

∑
n h(γn) for essentially any function h

whose Fourier transform is supported in [−X,X]. When
X is large, we may choose h to be narrowly concentrated
around any particular point, and thus resolve features of
the spectrum in places where the density of zeros is not
too large compared to X; a variant of this technique,
with explicit test functions (not of compact support),
was worked out by Omar [Omar 01] to estimate the low-
est zero of some Dedekind zeta functions. For a fixed
support [−X,X], there is a canonical way of choosing a
“best” test function, by a method developed for the Sel-
berg trace formula in [Booker and Strömbergsson 07]. In
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order to use the method, which depends crucially on a
positivity argument, it is necessary to assume the Rie-
mann hypothesis for our given L-function. With that
caveat, we recall briefly the construction from [Booker
and Strömbergsson 07].

For t0 ∈ R, let C(X, t0) be the class of functions h as
above, with the corresponding g supported in [−X,X],
and the additional restrictions h(t) ≥ 0 for t ∈ R and
h(t0) = 1. Define

FX(t0) := inf
h∈C(X,t0)

∑
n∈Z

h(γn). (3–2)

Then as X → ∞, FX tends pointwise to the character-
istic function of the zeros. Moreover, if FX(t0) < 1 for
any value of X, then t0 cannot be the ordinate of a zero.
Thus, by evaluating FX we can find provable intervals in
which the zeros must lie.

Although the definition of FX is abstract, it is easy
to construct concrete families of functions that closely
approximate any desired function. For instance, let M
be a large integer, δ = X/2M , and set

h(t) =
(

sin δt/2
δt/2

)4
(
a0+

M−1∑
n=1

(
an cos δnt+ bn sin δnt

))2

,

for arbitrary real numbers an, bn. (For self-dual L-
functions, we restrict to even test functions, i.e., all
bn = 0, and divide the final formula by 2.) On the other
side of the Fourier transform, this corresponds to taking
g = f ∗ f , where f linearly interpolates arbitrary values
at multiples of δ.

The sum over zeros in (3–1) is then a positive definite
quadratic form in the numbers an and bn. To compute
the matrix of the form essentially involves computing the
explicit formula for functions g that are translates of a
fixed function of small compact support. This requires
almost no extra work, since we may compute the formula
for all localized test functions simultaneously. Once the
matrix is known, the infimum in (3–2) over this restricted
class of test functions is easily found as the minimum
of the quadratic form subject to the linear constraint
h(t0) = 1. This involves inverting the matrix, after which
the minimum may be found quickly for many different
values of t0.

For an L-function of degree r and conductor N , the
density of zeros at height T is roughly 1

2π logN
(

T
2π

)r
.

Therefore, in order to resolve features around height T ,
the uncertainty principle says we should know the num-
bers cn for n up to about N

(
T
2π

)r
. In the self-dual case,

the extra division by 2 replaces this by its square root;

thus, the complexity is on par with that of the approx-
imate functional equation or the algorithm of Section
5, although it is much more sensitive to the local spac-
ing of zeros. (Heuristic arguments based on experiments
and random matrix theory [Odlyzko 87] indicate that the
minimum gap between zeros can be arbitrarily small rel-
ative to the mean value; although such small gaps are ex-
pected to be very rare, we could in principle need many
more coefficients than for the “typical” zero at height
T .) In practice, the explicit formula is clean and easy
to implement since there are no error terms to estimate
with functions of compact support. It is particularly well
suited to finding low zeros or to situations in which the
numbers cn may be computed quickly, as is the case for
Artin L-functions; cf. Section 6.1.

As mentioned above, the minimization procedure re-
quires assuming the Riemann hypothesis. If one is willing
to do so, the method may be made completely rigorous,
and may even be used in place of Turing’s method for
verifying Artin’s conjecture. However, it is more natural
to use it as a quick check in order to fine-tune and vali-
date the subsequent rigorous methods. In fact, it is help-
ful to assume Artin’s conjecture and apply the method to
the irreducible Artin L-functions directly. That thins out
the spectrum, making it easier to isolate individual zeros.
We have carried out this procedure for a few examples in
Section 6.2.

4. TURING’S METHOD

Turing’s method for verifying the Riemann hypothe-
sis is described well in his paper [Turing 53], although
there are some errors in the details that were later
corrected by Lehman [Lehman 70]. The method has
subsequently been extended to Dirichlet L-functions by
Rumely [Rumely 93] and Dedekind zeta functions by Tol-
lis [Tollis 97].2 Our contribution is to work out the details
necessary to apply it to an arbitrary L-function with sim-
ple zeros.

Our argument essentially follows that of Turing. We
begin by setting some notation to be used only in this
section. For t not the ordinate of a zero or pole of Λ, let

S(t) :=
1
π

�
∫ 1/2

∞

L′

L
(σ + it) dσ.

2Tollis applied his method to cubic and quartic fields. In these
cases, there is a slight advantage in passing to the normal closure
and separating into irreducible Artin L-functions, as we have done
for the A5 cases in Section 6.
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By convention, we make S(t) upper semicontinuous, i.e.,
when t is the ordinate of a zero or pole, we define S(t) =
limε→0+ S(t+ ε).

Next, for t1 < t2 let N(t1, t2) denote the net number
of zeros with imaginary part in (t1, t2], counting multi-
plicity. When neither t1 nor t2 is the ordinate of a zero or
pole, we may calculate N(t1, t2) using the argument prin-
ciple, as in (2–1). Let C be the rectangle with corners at
2 + it1, 2 + it2, −1 + it2, −1 + it1, with counterclockwise
orientation, H the half-plane

{
s ∈ C : �(s) ≥ 1

2

}
, and

Hc its complement. Note that by the functional equa-
tion, we have Λ′

Λ (s) = −Λ′
Λ (1 − s̄). Hence,

N(t1, t2) =
1
2π

�
∫

C

Λ′

Λ
(s) ds

=
1
2π

�
(∫

C∩H

Λ′

Λ
(s) ds−

∫
C∩Hc

Λ′

Λ
(s) ds

)
=

1
2π

�
(∫

C∩H

Λ′

Λ
(s) ds+

∫
C∩Hc

Λ′

Λ
(1 − s̄) ds̄

)
=

1
π
�
∫

C∩H

Λ′

Λ
(s) ds

=
1
π
�
∫

C∩H

γ′

γ
(s) ds+

1
π
�
∫

C∩H

L′

L
(s) ds.

(4–1)
Now for the integral of L′/L we move the right edge of
the contour out to ∞, where the integrand vanishes. We
thus obtain

N(t1, t2) =
1
π
� log γ(s)

∣∣∣ 12+it2

1
2+it1

+ S(t2) − S(t1).

We select a particular branch of log γ
(
s) by using the

principal branch of log Γ. With this choice, set

Φ(t) :=
1
π

[
arg ε+

logN
2

t− log π
2

(
rt+ �

r∑
j=1

µj

)

+ �
r∑

j=1

log Γ
(

1/2 + it+ µj

2

)]
(4–2)

and
N(t) := Φ(t) + S(t).

Then N(t1, t2) = N(t2) − N(t1). Note that if L is self-
dual and vanishes to order ≤ 1 at 1

2 then N(t) = N(0, t).
In the general case, although we still haveN(t) ∈ Z, there
is no standard reference point, so only changes in N(t)
are meaningful. (Put another way, the branch of log γ
chosen in (4–2) is noncanonical.) For large t, Φ(t) may
be evaluated quickly by an effective version of Stirling’s
formula:

� log Γ(z) = �
[(
z − 1

2

)
log

z

e

]
+ Θ

(
1

8|�(z)|
)

for z ∈ C \ R, where the notation f = Θ(g) means
|f | ≤ g.

Turing’s method is as follows: Recall that Λ
(

1
2 + it

)
is real-valued. Thus, if we have an accurate procedure to
compute Λ(s), then we may locate all simple zeros on the
line �(s) = 1

2 by observing its sign changes. If it turns
out that all of the zeros between ordinates t1 and t2 are
simple and on the line, then we can deduce the Riemann
hypothesis in that interval by computingN(t1, t2) (minus
the contribution from any poles between t1 and t2) and
finding the same number of sign changes over the interval.

To compute N(t1, t2), we could evaluate (4–1) numer-
ically. However, this would require many evaluations of
Λ(s) and would be difficult to carry out rigorously. For-
tunately, Turing devised a simpler method, based on the
fact (first due to Littlewood for ζ(s)) that S(t) has mean
value 0. Thus, the graph of N(t0, t) − Φ(t) for any fixed
t0 oscillates around a constant value; if we were to plot
the same function using the measured number of zeros
in (t0, t], then any zeros that we had missed would be
obvious as jumps in the graph.

This can be made rigorous as follows. Let t0 be a large
number that is not the ordinate of a zero or pole, and as-
sume that between ordinates t0 − h and t0 + h (for some
h > 0), we have located several zeros of Λ(s), i.e., we
have found small intervals (an, bn) such that Λ

(
1
2 + ian

)
and Λ

(
1
2 + ibn

)
have opposite sign. Let Nleft(t0, t) (re-

spectively Nright(t0, t)) be the step function that is upper
semicontinuous, increases by 1 at each an (respectively
bn), and vanishes at t = t0. We then have

N(t) ≤ N(t0) +Nleft(t0, t) for t ≤ t0 (4–3)

and

N(t) ≥ N(t0) +Nright(t0, t) for t ≥ t0. (4–4)

From these, we can deduce upper and lower bounds for
N(t0); integrating (4–3) and (4–4), we get

N(t0)h+
∫ t0+h

t0

Nright(t0, t) dt

≤
∫ t0+h

t0

N(t) dt (4–5)

=
∫ t0+h

t0

Φ(t) dt+
∫ t0+h

t0

S(t) dt
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and

N(t0)h+
∫ t0

t0−h

Nleft(t0, t) dt

≥
∫ t0

t0−h

N(t) dt (4–6)

=
∫ t0

t0−h

Φ(t) dt+
∫ t0

t0−h

S(t) dt.

If we have in fact located all zeros in the interval (t0−
h, t0 + h) with some amount of precision (as measured
by the size of the intervals (an, bn)), then we can expect
these bounds to be close to the truth. Moreover, if we
have effective upper and lower bounds for the integral of
S(t), then for h large enough, (4–5) and (4–6) will bound
a single integer, i.e., we can unambiguously determine
N(t0). Doing this for two different values t0 = t1, t2, we
obtain N(t1, t2).

One nice feature of Turing’s method is that precise
knowledge of the zeros is required only in the short in-
tervals around t1 and t2, and even there one can make a
tradeoff between the precision of the zeros and the length
h of the interval. For the bulk of the zeros between t1
and t2 it suffices to observe the sign changes.

The remainder of this section is devoted to bounding∫
S(t) dt; cf. Theorem 4.6 below. Our starting point is

the following formula, obtained by Littlewood’s box prin-
ciple (see [Titchmarsh 86, Section 9.9]):

π

∫ t2

t1

S(t) dt (4–7)

=
∫ ∞

1/2

log |L(σ + it2)| dσ −
∫ ∞

1/2

log |L(σ + it1)| dσ.

Lemma 4.1. Let notation be as above, and set B :=
sup
(s)=3/2 |L(s)|2. Then for s in the strip

{
s ∈ C :

− 1
2 ≤ �(s) ≤ 3

2

}
,

|L(s)|2 ≤ B|χ(s)Q(s)|
∣∣∣∣P (s+ 1)2P (s− 2)

P (s)2P (s− 1)

∣∣∣∣ .
Remark 4.2. The power of |Q(s)| in the above is not op-
timal; for �(s) = 1

2 , the “convexity bound” says that we
can put instead |Q(s)|1/2+ε, with a constant depending
on ε (see [Iwaniec and Sarnak 00]), while the Lindelöf
hypothesis would have |Q(s)|ε. Our present choice per-
mits us to avoid Stirling’s formula in the proof, and thus
obtain a clean bound that is uniform in all parameters.

Proof: We consider first the case that L(s) is entire. Set

F (s) := L(s)L(1 − s) = χ(s)−1L(s)2.

Plugging in the definition of χ(s) yields

|F (σ + it)| = |L(σ + it)|2
∣∣∣∣ γ(σ + it)
γ(1 − σ − it)

∣∣∣∣
= |L(σ + it)|2

∣∣∣∣ γ(σ + it)
γ(1 − σ + it)

∣∣∣∣ .
Note that when σ = 1

2 +a positive integer, the ratio of γ
factors reduces to a polynomial; in particular,∣∣∣∣F (3

2
+ it

)∣∣∣∣ =
∣∣∣∣L(3

2
+ it

)∣∣∣∣2 ∣∣∣∣Q(−1
2

+ it

)∣∣∣∣
≤ B

∣∣∣∣Q(3
2

+ it

)∣∣∣∣ . (4–8)

The inequality holds since �(µj) ≥ − 1
2 for all j. Next,

from the functional equation we have F (s) = F (1 − s),
so that

|F (σ + it)| = |F (1 − σ + it)|.
Hence, by (4–8),∣∣∣∣F (−1

2
+ it

)∣∣∣∣ ≤ B

∣∣∣∣Q(−1
2

+ it

)∣∣∣∣ .
Thus, the function F (s)/Q(s) is bounded by B on the
lines �(s) = − 1

2 and �(s) = 3
2 . Note that although Q(s)

has zeros, F (s) has trivial zeros at the same points; in
fact

F (s)
Q(s)

=
Λ(s)L(1 − s)
γ(s)Q(s)

=
Λ(s)L(1 − s)
γ(s+ 2)

. (4–9)

Since F has finite order, it follows from the Phragmén–
Lindelöf theorem that |F (s)| ≤ B|Q(s)| for all s in the
strip.

If L(s) has poles, then the above argument breaks
down since F (s)/Q(s) is not holomorphic in the strip.
In fact, for each k we get three poles, one at 1 + λk and
two at λk, as (4–9) shows. To compensate for this, we
consider F (s)P (s)2P (s−1) in the above, in place of F (s).
One checks that |s2(s−1)| ≤ |(s+1)2(s−2)| on the lines
�(s) = − 1

2 and �(s) = 3
2 , so that

|F (s)P (s)2P (s− 1)| ≤ B|Q(s)P (s)2P (s− 1)|
≤ B|Q(s)P (s+ 1)2P (s− 2)|.

Further, the ratio F (s)P (s)2P (s−1)
Q(s)P (s+1)2P (s−2) is holomorphic in the

strip, so we may proceed as above. The lemma follows.

Lemma 4.3. Suppose that

(t+ �(µj))2 ≥
(

5
2

+ �(µj)
)2

+X2 (4–10)

for some X > 5 and all j = 1, . . . , r. Then
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(i) For σ ∈ [ 1
2 ,

5
2

]
,

− r

(
1

2
√

2X
+

4/π2 + 1/4
X2

)
(4–11)

≤ �γ
′

γ
(σ + it) − 1

2
log

∣∣∣∣Q(3
2

+ it

)∣∣∣∣ ≤ 4r
π2X2

.

(ii) For σ ∈ [− 1
2 ,

3
2

]
,

�Q
′

Q
(σ + it) ≤ r√

2X
.

(iii) For all σ,

�P
′

P
(σ + it) ≤ max(σm, 0)

X2
.

Proof: (i) We have

γ′

γ
(σ + it) =

1
2

log
N

πr
+

1
2

r∑
j=1

Γ′

Γ

(
σ + it+ µj

2

)
.

We apply the Stirling-type estimate [Lehman 70]

Γ′

Γ
(z) = log z− 1

2z
+Θ

(
2/π2

|�(z)2 −�(z)2|
)

for �(z) ≥ 0.

(4–12)
This yields

�γ
′

γ
(σ + it) − 1

2
log

∣∣∣∣Q(3
2

+ it

)∣∣∣∣
= −1

2

r∑
j=1

[
log

∣∣∣∣3/2 + it+ µj

σ + it+ µj

∣∣∣∣+ � 1
σ + it+ µj

+ Θ
(

8/π2

|(t+ �(µj))2 − (σ + �(µj))2|
)]

.

For the lower bound in (4–11) we need an upper bound
for the expression in brackets. By hypothesis, the Θ term
is bounded by 8

π2X2 . For the others, put σ + it + µj =
x + iy, β = 3

2 − σ, so that |β| ≤ 1 and x and y are
constrained by y2 ≥ x2 + X2, x ≥ 0. Then, using the
inequality log(1 + u) ≤ u, we have

log
∣∣∣∣x+ β + iy

x+ iy

∣∣∣∣+ � 1
x+ iy

=
1
2

log
(

1 +
2βx+ β2

x2 + y2

)
+

x

x2 + y2

≤ (β + 1)x+ β2/2
x2 + y2

≤ 2x+ 1/2
2x2 +X2

≤ 1√
2X

+
1

2X2
.

There are r such terms, and the lower bound follows after
multiplying by − 1

2 .
The upper bound is similar, but uses the second-order

inequality log(1 + u) ≥ u− u2/2. We omit the details.
(ii) Similarly,

�Q
′

Q
(σ + it) =

r∑
j=1

� 1
σ + µj + it

≤
r∑

j=1

σ + �(µj)
2(σ + �(µj))2 +X2

≤ r√
2X

.

(iii) We have

�P
′

P
(σ + it) =

m∑
k=1

� 1
σ + it− λk

≤
m∑

k=1

max(σ, 0)
σ2 +X2

≤ max(σm, 0)
X2

.

(Note that this bound is of faster decay than estimates (i)
and (ii). That is because we have control over the real
parts of the poles, while nothing prevents �(µj) from
being of comparable size to X. One could also obtain an
O
(
X−2

)
bound in (i) and (ii), with a constant depending

on the µj .)

Lemma 4.4. Let w be a complex number with |�(w)| ≤ 1
2 .

Then∫ 1

0

log
∣∣∣∣ (x+ 1 + w)(x+ 1 − w)

(x+ w)(x− w)

∣∣∣∣ dx
≤ (log 4)�

(
1

1 + w
+

1
1 − w

)
. (4–13)

Proof (sketch): Note first that equality is attained at
w = 0. Using the principal branch of the logarithm, set

f(w) =
∫ 1

0

log
(

(x+ 1 + w)(x+ 1 − w)
(x+ w)(x− w)

)
dx

and
g(w) =

1
1 + w

+
1

1 − w
.

These define analytic functions on C \R, with real parts
extending continuously to (−1, 1). Further, (4–13) is
equivalent to the assertion

�(f(w) − (log 4)g(w)) ≤ 0 for |�(w)| ≤ 1
2
. (4–14)

Note that f(w) and g(w) are each asymptotic to
−2/w2 as |w| → ∞. Thus, (4–14) holds for �(w) suffi-
ciently large; we check that in fact |�(w)| ≥ 2 is enough.
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By symmetry and the maximum modulus principle ap-
plied to the function ef(w)−(log 4)g(w) on the rectangle
with corners at ± 1

2 and ± 1
2 +2i, it suffices to check (4–14)

on the real axis and for �(w) = 1
2 . On the real axis we

calculate the integral explicitly and verify the inequality
using calculus. For �(w) = 1

2 the inequality is strict, so
we may verify it computationally for 0 ≤ �(w) ≤ 2.

Lemma 4.5. For σ > θ + 1, define

zθ(σ) :=
(
ζ(2σ + 2θ)ζ(2σ − 2θ)
ζ(σ + θ)ζ(σ − θ)

)1/2

and
Zθ(σ) :=

(
ζ(σ + θ)ζ(σ − θ)

)1/2
.

Then

r
z′θ
zθ

(σ) ≥ �L
′

L
(σ + it) ≥ r

Z ′
θ

Zθ
(σ) (4–15)

and
zθ(σ)r ≤ |L(σ + it)| ≤ Zθ(σ)r. (4–16)

Proof: From (1–1) we have

r
Z ′

θ

Zθ
(σ) −�L

′

L
(σ + it)

=
∑

p

∞∑
k=1

p−kσ log p

×
⎛⎝�

r∑
j=1

(
αp,jp

−it
)k − r

2
(
pkθ + p−kθ

)⎞⎠ .

Pairing the terms for αp,j and α′
p,j , we see that each

summand is ≤ 0, from which the second inequality of
(4–15) follows. The first inequality is similar. For (4–16),
integrate (4–15) from σ to ∞.

Theorem 4.6. Suppose t1 and t2 satisfy (4–10), and set

cθ := logZθ

(
3
2

)
+
∫ ∞

3/2

log
Zθ(σ)
zθ(σ)

dσ

−
∫ 5/2

3/2

log zθ(σ) dσ + (log 4)
z′θ
zθ

(
3
2

)
,

where zθ and Zθ are as in Lemma 4.5. (In particular,
c0 � 5.65055.) Then

π

∫ t2

t1

S(t) dt ≤ 1
4

log
∣∣∣∣Q(3

2
+ it2

)∣∣∣∣
+
(

log 2 − 1
2

)
log

∣∣∣∣Q(3
2

+ it1

)∣∣∣∣
+ cθr +

r√
2(X − 5)

.

Remark 4.7. Note that there is no assumption on the
order of t1 and t2, so one obtains a lower bound as well
by reversing their roles.

Proof: By (4–7), we need upper and lower bounds for∫∞
1/2

log |L(σ + it)| dσ. For the upper bound, we use
Lemma 4.1:∫ ∞

1/2

log |L(σ + it)| dσ

=
∫ 3/2

1/2

log |L(σ + it)| dσ +
∫ ∞

3/2

log |L(σ + it)| dσ

≤ 1
2

logB +
1
2

∫ 3/2

1/2

log
∣∣∣∣γ(1 − σ + it)Q(σ + it)

γ(σ + it)

∣∣∣∣ dσ
+

1
2

∫ 3/2

1/2

log
∣∣∣∣P (σ + 1 + it)2P (σ − 2 + it)

P (σ + it)2P (σ − 1 + it)

∣∣∣∣ dσ
+
∫ ∞

3/2

log |L(σ + it)| dσ.

We bound the first and last terms with Lemma 4.5:

log sup

(s)=3/2

|L(s)| +
∫ ∞

3/2

log |L(σ + it)| dσ

≤ r logZθ

(
3
2

)
+ r

∫ ∞

3/2

logZθ(σ) dσ.

For the second term, we replace σ by 2 − σ in the top γ
factor, and use the recurrence for γ to get

1
2

∫ 3/2

1/2

log
∣∣∣∣γ(σ + 1 + it)

γ(σ + it)
Q(σ + it)

Q(σ − 1 + it)

∣∣∣∣ dσ. (4–17)

By the mean value theorem, the integral equals �[γ′

γ (σ∗+

it) + Q′

Q (σ∗ − 1 + it)
]

for some σ∗ ∈ [
1
2 ,

5
2

]
. Thus, by

Lemma 4.3, (4–17) is at most

1
4

log
∣∣∣∣Q(3

2
+ it

)∣∣∣∣+ r

(
2

π2X2
+

1
2
√

2X

)
.

Similarly, we see that the third term is bounded by 5m
2X2 .

We now turn to the lower bound. This part is more
delicate since we must take into account the contribution
of zeros near 1

2 + it. We use Turing’s idea of comparing
log |L(s)| to log |L(s + 1)|; the difference between these
looks like a value of the logarithmic derivative, which we
can make precise with the help of Lemma 4.4.

Proceeding, we first clear the poles of Λ by writing
F (s) = Λ(s)P (s)P (s − 1). This function then has the
Weierstrass–Hadamard product

F (s) = eas+b
∏
ρ

(
1 − s

ρ

)
es/ρ, (4–18)
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where ρ runs over the zeros of Λ and �(a) = −∑ρ �
(

1
ρ

)
.

Next, we split the integral as follows:

∫ ∞

1/2

log |L(σ + it)| dσ

=
∫ 3/2

1/2

log
∣∣∣∣ F (σ + it)
F (σ + 1 + it)

∣∣∣∣ dσ
+
∫ 3/2

1/2

log
∣∣∣∣γ(σ + 1 + it)

γ(σ + it)

∣∣∣∣ dσ
+
∫ 3/2

1/2

log
∣∣∣∣P (σ + 1 + it)
P (σ − 1 + it)

∣∣∣∣ dσ
+
∫ 5/2

3/2

log |L(σ + it)| dσ

+
∫ ∞

3/2

log |L(σ + it)| dσ.

The second term may be estimated, as above, by
Lemma 4.3 and the mean value theorem:

∫ 3/2

1/2

log
∣∣∣∣γ(σ + 1 + it)

γ(σ + it)

∣∣∣∣ dσ
≥ 1

2
log

∣∣∣∣Q(3
2

+ it

)∣∣∣∣− r

(
1

2
√

2X
+

4/π2 + 1/4
X2

)
.

The third term is positive since
∣∣P (σ+1+it)
P (σ−1+it)

∣∣ ≥ 1 for σ ≥ 0.
The fourth and fifth terms are handled by Lemma 4.5.

As for the first term, from (4–18) we have

log
∣∣∣∣ F (s)
F (s+ 1)

∣∣∣∣ =
∑

ρ

log

∣∣∣∣∣ 1 − s
ρ

1 − s+1
ρ

∣∣∣∣∣ = −
∑

ρ

log
∣∣∣∣s+ 1 − ρ

s− ρ

∣∣∣∣ .
Thus,

∫ 3/2

1/2

log
∣∣∣∣ F (σ + it)
F (σ + it+ 1)

∣∣∣∣ dσ
= −

∑
ρ

∫ 3/2

1/2

log
∣∣∣∣σ + it+ 1 − ρ

σ + it− ρ

∣∣∣∣ dσ. (4–19)

Now, by the functional equation, the zeros of Λ either lie
on the line �(s) = 1

2 or come in pairs ρ, 1 − ρ. Applying
Lemma 4.4 with w = 1

2 + it − ρ, we see that (4–19) is
bounded below by

−(log 4)
∑

ρ

� 1
3/2 + it− ρ

.

Again by (4–18), this equals

− (log 4)�F
′

F

(
3
2

+ it

)
= −(log 4)�

[
γ′

γ

(
3
2

+ it

)
+
L′

L

(
3
2

+ it

)
+
P ′

P

(
3
2

+ it

)
+
P ′

P

(
1
2

+ it

)]
≥ −(log 4)

[
1
2

log
∣∣∣∣Q(3

2
+ it

)∣∣∣∣+ 4r
π2X2

+ r
z′θ
zθ

(
3
2

)
+

2m
X2

]
.

Altogether, we get∫ ∞

1/2

log |L(σ + it)| dσ

≥
(

1
2
− log 2

)
log

∣∣∣∣Q(3
2

+ it

)∣∣∣∣
+ r

[ ∫ 5/2

3/2

log zθ(σ) dσ +
∫ ∞

3/2

log zθ(σ) dσ

− (log 4)
z′θ
zθ

(
3
2

)]
− r

(
1

2
√

2X
+

4
π2 log(4e) + 1

4

X2

)
− 4m log 2

X2
.

Finally, we combine the upper bound for t = t2 and
lower bound for t = t1. We get the stated main term
plus error

r

(
1√
2X

+
2

π2 log(16e3) + 1
4

X2

)
+m

4(log 2) + 5/2
X2

<
r√

2(X − 5)
.

5. RIGOROUS COMPUTATION OF L-FUNCTIONS

The methods of Section 4 depend on a fast, rigorous al-
gorithm for evaluating Λ(s). We describe one such al-
gorithm, based on the fast Fourier transform, in this
section. We note that in the case of the Riemann zeta
function, a similar technique was developed and used by
Odlyzko and Schönhage [Odlyzko and Schönhage 88].

Some algorithms for computing general L-functions
were described by Dokchitser [Dokchitser 04] and Ru-
binstein [Rubinstein 05]. They ultimately boil down to
the Cauchy integral formula:

Λ(s0) =
1

2πi

∫
γ(s)L(s)
s− s0

ds,
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where the contour consists of two vertical lines enclos-
ing s0. Writing L(s) as a Dirichlet series and using the
functional equation, one is led to study integrals of the
form

1
2πi

∫
γ(s)n−s

s− s0
ds, (5–1)

taken along a vertical line far to the right. Rubinstein,
following an idea of Lagarias and Odlyzko [Lagarias and
Odlyzko 79], inserts a factor designed to cancel the de-
cay of the γ factor, e.g., ei πr

4 ηs for some η close to ±1.
Without this factor, very high precision is required to
calculate Λ(s) when �(s) is large.

These algorithms are good when one is interested in
computing Λ(s) at specific points, e.g., for locating zeros
of L(s) precisely. They suffer from the disadvantage of
being difficult to carry out rigorously, basically because
(5–1) is a two-parameter family (indexed by s0 and n)
of integrals, for which uniform asymptotics are hard to
obtain in certain transition ranges.

For Turing’s method, we need an algorithm for rigor-
ously computing Λ(s) for many values of s, not necessar-
ily with high precision. For that we consider instead the
one-parameter integrals

1
2πi

∫
Λ(s)e−zs ds and

1
2πi

∫
γ(s)e−zs ds.

These are essentially Fourier transforms, and they con-
tain enough information for evaluating Λ(s) quickly, if
one is interested in many points. They also involve only
a single Mellin transform, making rigorous computation
more accessible.

Precisely, let η ∈ (−1, 1) and set F (t) :=
Λ
(

1
2 + it

)
e

πr
4 ηt. Then the (inverse) Fourier transform

of F is

F̂ (x) :=
1
2π

∫ ∞

−∞
F (t)e−ixt dt

=
1

2πi

∫

(s)= 1

2

Λ(s)e(x+i πr
4 η)(1/2−s) ds

=
1

2πi

∫

(s)=2

Λ(s)e(x+i πr
4 η)(1/2−s) ds

−
∑

ρ∈{1+λk:1≤k≤m}
Ress=ρΛ(s)e(x+i πr

4 η)(1/2−s).

(5–2)
The residue sum is straightforward to evaluate assuming
we have complete information on any poles of L(s). We
multiply the Euler product (1–1) out to a Dirichlet series,
writing L(s) =

∑∞
n=1 ann

−s. Then the first term of (5–2)

is
∞∑

n=1

an
1

2πi

∫

(s)=2

γ(s)e(x+i πr
4 η)(1/2−s)n−s ds

= ε

∞∑
n=1

an√
n
G

(
x+ log

n√
N

; η, {µj}
)
, (5–3)

where

G(u; η, {µj}) (5–4)

:=
1

2πi

∫

(s)=2

e(u+i πr
4 η)(1/2−s)

r∏
j=1

ΓR(s+ µj) ds.

Let us assume for now that we have a procedure to
compute G(u; η, {µj}), and thereby F̂ (x), to prescribed
precision; we return to this point in Section 5.1 below.
In order to use the fast Fourier transform to compute F
from F̂ , we first need to discretize the problem. To that
end, let A,B > 0 be parameters such that q = AB is an
integer. By the Poisson summation formula,∑

k∈Z

F
(m
A

+ kB
)

=
2π
B

∑
k∈Z

F̂

(
2πk
B

)
e

(
km

AB

)

=
2π
B

∑
n (mod q)

e

(
mn

q

)∑
k∈Z

F̂

(
2πn
B

+ 2πAk
)
.

Thus, the functions F̃ (m) :=
∑

k∈Z
F
(

m
A + kB

)
and˜̂

F (n) :=
∑

k∈Z
F̂
(

2πn
B + 2πAk

)
, which are periodic in

m,n with period q, form a discrete Fourier transform
pair.

Note that since F is real-valued, F̂ (−x) = F̂ (x).
Thus, for |n| ≤ q/2 we have

˜̂
F (n) = F̂

(
2πn
B

)
+

∞∑
k=1

F̂

(
2πn
B

+ 2πkA
)

+
∞∑

k=1

F̂

(
−2πn

B
+ 2πkA

)
. (5–5)

For A even moderately large, the terms for k ≥ 1 fall
within the asymptotic range. Precise bounds are given in
Section 5.3 below; in particular, we may apply Lemma 5.6
with x = 2π(A± n

B ) to compute the sums over k. Hence,
it suffices to calculate F̂ (2πn/B) for 0 ≤ n ≤ q/2. On
the other hand, to compute F (m/A), we need to bound
the terms of F̃ (m) for k 
= 0. We have already obtained
a suitable bound for the L-function in Lemma 4.1. The
sum of this bound over k 
= 0 is the content of Lemma 5.7.
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5.1 Computing G(u; η, {µj})

For brevity, some of the results of this section are only
sketched. Our emphasis is on the details necessary for
rigorous computation. For more general background in-
formation we refer the reader to [Booker 05, Dokchitser
04, Rubinstein 05].

One simple method for calculating integrals such as
(5–4) that is easy to make rigorous is the power and log
series, obtained by shifting the contour of (5–4) to the
left:

G(u; η, {µj}) =
∑
ρ∈C

Ress=ρ

(
e(u+i πr

4 η)(1/2−s)

×
r∏

j=1

ΓR(s+ µj)
)

=
∑

poles ρ

P (u; ρ, η, {µj})e(1/2−ρ)u,

(5–6)

where P (u; ρ, η, {µj}) is a polynomial of degree one less
than the order of the pole at ρ.

For example, in the case of Galois representations, the
µj are all either 0 or 1, and the residues in (5–6) may be
evaluated by the following:

ΓR(s)

=
2

s+ 2k
(−2π)k

(2k)!!

× exp

[(
k∑

n=1

1
2n

− 1
2

log(πeγ)

)
(s+ 2k)

+
∞∑

j=2

1
j

(
(−1)j2−jζ(j) +

k∑
n=1

1
(2n)j

)
(s+ 2k)j

⎤⎦
=

(−2π)k

(2k − 1)!!

× exp

[(
k∑

n=1

1
2n− 1

− 1
2

log(4πeγ)

)
(s+ 2k − 1)

+
∞∑

j=2

1
j

(
(−1)j(1 − 2−j)ζ(j)

+
k∑

n=1

1
(2n− 1)j

)
(s+ 2k − 1)j

]
,

for any integer k ≥ 0. For general µj , we need an algo-
rithm to calculate the values of Γ and its derivatives at an
arbitrary point in the complex plane; we assume without
further comment that this is available when necessary.

We say that µj and µk are equivalent if µj −µk ∈ 2Z.
For µ ranging over an equivalence class, the functions

ΓR(s+ µ) share all but finitely many poles. Thus, (5–6)
may be broken naturally into parts corresponding to each
class. We can bound the tail of each part as follows.

Lemma 5.1. Let ρ be a pole of

g(s) = e(u+i πr
4 η)(1/2−s)

r∏
j=1

ΓR(s+ µj)

of order n, with �(ρ + µj) ≤ 0 for j = 1, . . . , r and
(2π)re2u < 1

2

∏r
j=1(|2 − ρ − µj | − 1). Let cj be the co-

efficients of the polar part of g around ρ, i.e., such that
g(s+ ρ) −∑n

j=1 cjs
−j is holomorphic at s = 0. Then∣∣∣∣∣

∞∑
k=1

Ress=ρ−2kg(s)

∣∣∣∣∣ < max |cj |.

Proof: First note that

g(s+ ρ− 2) (5–7)

= (2π)re2u+i πr
2 ηg(s+ ρ)

r∏
j=1

(s+ ρ− 2 + µj)−1

=
(−2π)re2u+i πr

2 η∏r
j=1(2 − ρ− µj)

· g(s+ ρ)∏r
j=1

(
1 − s

2−ρ−µj

) .
Next, let f(s) be a meromorphic function with polar

part a1s
−1 + · · · + ans

−n at 0. If x is a complex num-
ber with |x| < 1, then the function f(s)

1−xs has polar part
a′1s

−1 + · · · + a′ns
−n, where a′j =

∑n−j
k=0 aj+kx

k. Thus,

max |a′j | ≤
max |aj |
1 − |x| . (5–8)

Let c′1s
−1+· · ·+c′ns−n be the polar part of g(s+ρ−2).

Applying (5–8) r times, we see from (5–7) that

max |c′j | ≤
(2π)re2u∏r

j=1 |2 − ρ− µj | ·
max |cj |∏r

j=1

(
1 − 1

|2−ρ−µj |
)

=
(2π)re2u max |cj |∏r

j=1(|2 − ρ− µj | − 1)
<

1
2

max |cj |.

Repeating this procedure, we see that the coefficients of
the polar part of g(s+ ρ− 2k) are less than 2−k max |cj |.
The conclusion follows.

The lemma says roughly that if we compute the
residue sum for all poles with real part down to �(ρ), the
tail of the series (from poles at ρ−2k) may be bounded by
the data from the last term added. Moreover, (5–7) gives
an algorithm for computing the data at ρ − 2 from that
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at ρ, and shows that the terms eventually decrease fac-
torially. Thus, we may use this to compute G(u; η, {µj})
to any desired precision for a given u.

Since the µj are arbitrary, this procedure is general
enough to compute derivatives of G(u; η, {µj}) as well.
For instance, for any k we have

G′(u; η, {µj}) = (µk+1/2)G(u; η, {µj})−2πG(u; η, {µ′
j}),

where µ′
j = µj if j 
= k and µ′

k = µk + 2. Higher deriva-
tives may be computed in a similar fashion. (In fact,
G satisfies an rth-order differential equation, due to the
recurrence for Γ; thus, the derivatives of all orders are
determined from the first r.)

Note that for u large this method requires high pre-
cision due to cancellation, and is therefore inefficient.
The essential point that makes it worthwhile is that
for a given γ factor the calculations need be performed
only once, since one can develop local approximations to
G(u; η, {µj}) for later rapid evaluation. The computation
may then be recycled and used for any L-function with
the same µj ; this is useful for functions in an arithmetic
family, such as Artin L-functions.

More precisely, suppose we wish to calculate
G(u; η, {µj}) for u in an interval I. Choose ε > 0 and
sample points um such that each u ∈ I is contained in
a unique interval [um − ε, um + ε). For u in the mth
interval, we have by Taylor’s theorem

G(u; η, {µj})

=
K−1∑
k=0

G(k)(um; η, {µj})
k!

(u− um)k (5–9)

+ Θ

(
max

|u∗−um|≤ε

∣∣G(K)(u∗; η, {µj})
∣∣

K!
εK

)
.

We may evaluate the derivatives precisely using (5–6).
As for the Kth derivative, a uniform bound is obtained
by shifting the contour of (5–4) to �(s) = 1

2 :∣∣G(K)(u; η, {µj})
∣∣

K!

≤ 1
2π

∫ ∞

−∞

|t|K
K!

e
πr
4 ηt

r∏
j=1

∣∣∣∣ΓR

(
1
2

+ it+ µj

)∣∣∣∣ dt.
For large K this is of size

(
4

πr(1−η)

)K

; thus as long as
ε is small compared to πr

4 (1 − η), we may compute and
store the coefficients of (5–9), yielding a fast method to
calculate G(u; η, {µj}) for any u ∈ I.

Moreover, we can improve the efficiency of our algo-
rithm if the sample points of (5–5) coincide with multi-
plies of 2ε, i.e., if π

εB ∈ Z. For any given sample point x,

we approximate F̂ (x) via a truncated series (keeping
track of the error terms from (5–9) and Lemma 5.4 be-
low):

M∑
n=1

an√
n
G

(
x+ log

n√
N

; η, {µj}
)

≈
∑
m

∑
n

an√
n

K−1∑
k=0

G(k)(x+ um; η, {µj})
k!

×
(

log
n√
N

− um

)k

=
K−1∑
k=0

∑
m

G(k)(x+ um; η, {µj})
k!

S(k)
m ,

(5–10)

where the inner sum in the second line is over{
n | log n√

N
∈ [um − ε, um + ε)

}
, and

S(k)
m :=

∑
log n√

N
∈[um−ε,um+ε)

an√
n

(
log

n√
N

− um

)k

.

Since x+ um is another sample point um′ , the kth term
of (5–10) is a convolution of the sequences (indexed by

m) G(k)(um;η,{µj})
k! and S

(k)
m ; thus, we may evaluate it

efficiently for all x simultaneously by appealing again to
the fast Fourier transform.

5.2 Complexity

We may now consider the complexity of the algorithm.
Note that by Stirling’s formula, F (t) decays roughly like
e−(1−η) πr

4 t for t > 0. Ideally, we should choose 1 − η

of size T−1 in order to compute values up to height T .
Adjusting the constant of proportionality (i.e., choosing
η relatively close to or far from 1) allows us to trade off
the computational precision and number of coefficients
needed to overcome the error terms below. Finding a
good compromise between these two is best done by trial
and error; cf. Section 6.

Since δ � T−1, Lemma 5.4 shows that in order to
compute (5–10) we need on the order of

√
NT r terms

of (5–3), or roughly the square root of the analytic con-
ductor. Note that the values of A and B enter only in
the Fourier transforms, and do not significantly affect the
computation of (5–10). We set B equal to a multiple of
T , depending on the chosen value of η. As for A, as men-
tioned in Section 3, the density of zeros of F (t) around
height T is 1

2π logN
(

T
2π

)r
; one can expect to take A equal

to a multiple of this. Thus, this method has complexity
consistent with computing a single value by the approxi-
mate functional equation, after which we get many values
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in mean time Oε

(
(NT )ε

)
, which is essentially best possi-

ble. The gain comes from the fact, as emphasized above,
that only a single G-function is involved.

5.3 Asymptotics

To complete our understanding of G(u; η, {µj}), in or-
der to calculate (5–3) accurately, we need an asymptotic
bound for large u. If we write µ = − 1

2 + 1
r

(
1 +

∑r
j=1 µj

)
then by the method of stationary phase, we have

G(u; η, {µj}) =

√
2r+1

r
eµ(u+i πr

4 η) exp
(
−e 2

r (u+i πr
4 η)

)
× (

1 +O
(
e−2u/r

))
, (5–11)

where the implied constant depends on the µj . For r = 1
the formula is exact, i.e., the O term is 0. For r > 1,
one can work out explicit constants case by case, which
is preferable if sharp error terms are desired. Otherwise,
we get a bound that is close to (5–11) simply by shifting
the contour of (5–4) to the right.

Lemma 5.2. Let δ = π
2 (1 − |η|), νj = 
(µj)−1

2 + 1
2r ,

µ = − 1
2 + 1

r

(
1+

∑r
j=1 µj

)
, K = 2

√
2r+1

r
eδ(r−1)

δ e−
πrη�(µ)

4 ,

and X = πrδe−δe2u/r. Then for X ≥ r,

∣∣G(u; η, {µj})
∣∣ ≤ Ke
(µ)ue−X

r∏
j=1

(
1 +

rνj

X

)νj

. (5–12)

Remark 5.3. This is within a factor O
(
δ−1/2

)
of the cor-

rect asymptotic if δ � re−u/r.

Proof: We write s = 2σ + 2it in (5–4) to get

|G(u; η, {µj})| (5–13)

≤ π−r(σ+
�(µ)

2 + 1
4 )− 1

2 eu( 1
2−2σ)−πrη�(µ)

4

×
∫ ∞

−∞

r∏
j=1

∣∣∣Γ(σ + it+
µj

2

)
e

πη
4 (2t+(µj))

∣∣∣ dt.
Applying Hölder’s inequality, we get integrals of the

form ∫ ∞

−∞
|Γ(a+ it)|reπrη

2 t dt,

where a = σ + �(µj)/2. Assuming σ ≥ 1, we may apply
the inequality

|Γ(a+ it)| ≤
√

2π(a+ |t|)a−1/2e−π|t|/2 for a ≥ 1
2
.

(To see this, note that
∣∣Γ( 1

2 + it
)∣∣ =

√
πsechπt, and use

the recurrence for Γ and (4–12) to reduce to the region

1
2 ≤ a ≤ 3

2 , 0 ≤ t ≤ 2, where the inequality may be
checked computationally.) Thus we have∫ ∞

−∞
|Γ(a+ it)|reπrη

2 t dt

≤ 2(2π)r/2

∫ ∞

0

(a+ t)r(a−1/2)e−rδt dt

≤ 2(2π)r/2eδra Γ(r(a− 1/2) + 1)
(δr)r(a−1/2)+1

≤ 2(2π)
r+1
2

√
eδ(r−1)

δr

×
(
eδ

δ

a− 1/2 + 1/2r
e

)r(a−1/2)+1/2

.

Substituting this bound into (5–13) and collecting terms,
we obtain

Ke
(µ)u
r∏

j=1

(
σ + νj

eX/r

)σ+νj

≤ Ke
(µ)ue−σr
r∏

j=1

(rσ
X

)σ+νj
(
1 +

νj

σ

)νj

.

The result follows upon taking σ = X/r.

With this bound in hand, we can estimate the error in
truncating the series (5–3).

Lemma 5.4. Let M be a positive integer, x ∈ R.
Let δ, νj , µ,K be as in Lemma 5.2 and set X =
πrδe−δ

(
ex/

√
N
)2/r. Let C,α ≥ 0 be such that |an| ≤

Cnα for all n, and put c = �(µ)+ 1
2 +α, c′ = max(cr/2−

1, 0). Then for XM2/r > max(c′, r),∣∣∣∣∣∑
n>M

an√
n
G

(
x+ log

n√
N

; η, {µj}
)∣∣∣∣∣

≤ Kr

2

(
ex

√
N

)
(µ)
CM ce−XM2/r

XM2/r − c′

r∏
j=1

(
1 +

rνj

XM2/r

)νj

.

Remark 5.5. Different values of C and α are appropriate
for different ranges. For small M , one can take C =
1, α = log2 r+ θ, while for larger M it is better to choose
a smaller value of α and compute C from the coefficients.

Proof: Using Lemma 5.2, we have∑
n>M

|an|√
n

∣∣∣∣G(x+ log
n√
N

; η, {µj}
)∣∣∣∣

≤ K ′ ∑
n>M

nc−1e−Xn2/r

, (5–14)
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where

K ′ = CK

(
ex

√
N

)
(µ) r∏
j=1

(
1 +

rνj

XM2/r

)νj

.

The condition on X ensures that the terms of (5–14) are
monotonically decreasing. Thus, we can estimate by the
integral

K ′
∫ ∞

M

tc−1e−Xt2/r

dt

=
K ′r
2
(
X−r/2

)c
∫ ∞

XM2/r

ycr/2−1e−y dy

≤ K ′r
2

M ce−XM2/r

XM2/r − c′
.

The next two lemmas bound the error introduced in
discretization.

Lemma 5.6. Let x ∈ R, A ≥ 1
2π , and let notation be as

in Lemma 5.4. Then for X > max(c′, r),

∞∑
k=0

F̂ (x+ 2πkA)

= −
∑

ρ∈{1+λk:1≤k≤m}
Ress=ρ

Λ(s)e(x+i πr
4 η)(1/2−s)

1 − e2πA(1/2−s)

+ Θ
[

K

1 − e−πA

(
ex

√
N

)
(µ)

e−X

(
1 +

Cr/2
X − c′

)
×

r∏
j=1

(
1 +

rνj

X

)νj
]
.

Proof: The residue sum comes from summing the polar
part of (5–2) with x + kA in place of x. For the rest,
we apply Lemmas 5.2 and 5.4 (with M = 1) to get the
bound

K

(
ex

√
N

)
(µ)

e−X

(
1 +

Cr/2
X − c′

) r∏
j=1

(
1 +

rνj

X

)νj

for the k = 0 term. To pass from this to the kth term,
we multiply by a factor not exceeding

e2πkA
(µ)e−X(exp(4πkA/r)−1)

= exp
(

2πkA
[
�(µ) − 2X

r

− X

2πkA

(
e4πkA/r − 1 − 4πkA

r

)])
≤ exp

(
−2πkA

[
α+

1
2
− 2
r

+
4πkA
r

])
≤ e−πkA.

The result follows on summing the geometric series.

Lemma 5.7. Let t ∈ R and put s = 1
2 + it,

E = Zθ(3/2)r|γ(s)|eπr
4 ηt

∣∣∣∣Q(s)
P (s+ 1)2P (s− 2)
P (s)2P (s− 1)

∣∣∣∣1/2

,

and

β =
πr

4
− 1

2

r∑
j=1

arctan
�(s+ µj)
|�(s+ µj)|

− 4
π2

r∑
j=1

1
|�(s+ µj)2 −�(s+ µj)2| .

(i) If �(s+µj) > 0 for all j = 1, . . . , r and β− πr
4 η > 0,

then ∣∣∣∣∣
∞∑

k=0

F
(
t+ kB

)∣∣∣∣∣ ≤ E

1 − e−(β−πr
4 η)B

.

(ii) If �(s+µj) < 0 for all j = 1, . . . , r and β+ πr
4 η > 0,

then ∣∣∣∣∣
∞∑

k=0

F
(
t− kB

)∣∣∣∣∣ ≤ E

1 − e−(β+ πr
4 η)B

.

Proof: We treat only the first case, the second being
similar. Lemmas 4.1 and 4.5 imply the bound |F (t)| ≤ E.
We consider the same bound with t replaced by t+ kB.
Note that if |�(s+µj)| increases for all j, then the factor
involving P is nonincreasing. For the γ and Q factors,
by the mean value theorem we have

log

(∣∣∣∣γ(s+ ikB)
γ(s)

∣∣∣∣ ∣∣∣∣Q(s+ ikB)
Q(s)

∣∣∣∣1/2
)

= −kB�
(
γ′

γ
(s∗) +

1
2
Q′

Q
(s∗)

)
for some s∗ on the line between s and s + ikB. Using
(4–12), this is

− kB�
r∑

j=1

(
1
2

log
s∗ + µj

2

+ Θ
(

4/π2

|�(s∗ + µj)2 −�(s∗ + µj)2|
))

≤ −kB
(
πr

4
− 1

2

r∑
j=1

arctan
�(s∗ + µj)
�(s∗ + µj)

− 4
π2

r∑
j=1

1
|�(s∗ + µj)2 −�(s∗ + µj)2|

)
≤ −βkB.

Thus, |F (t+ kB)| ≤ Ee−(β−πr
4 η)kB . The conclusion fol-

lows.
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6. NUMERICAL RESULTS

We have applied the methods described in the previous
sections to a few examples of splitting fields of polyno-
mials with Galois group S5 and A5, as listed in Table
1. For the A5 cases, the Artin conjecture is true for all
representations by known cases of functoriality [Kiming
94, Jehanne and Müller 01]. This speeds up the pro-
cess, since we may apply Turing’s method to the Artin
L-functions directly. For the S5 examples we verify both
conjectures. As expected, we found no counterexamples
to either conjecture in the tested range |t| ≤ 100.

To illustrate the methods, we discuss in detail the S5

field of discriminant 2963601796 given by the polynomial
f(x) = x5−68(x+1). Recall that S5 has seven irreducible
representations. We label them 1, χ, ρ4, ρ′4 = ρ4 ⊗χ, ρ5,
ρ′5 = ρ5⊗χ, and ρ6, where χ is the sign character and the
subscripts indicate the dimensions. As it will turn out,
the limiting factor in our computations is the conductor
of ρ6, which in our example is 36 081 072 = 2433174. This
is the smallest among the table of S5 polynomials given
in [Klüners and Malle 01]; since that table is ordered by
the conductor of ρ4, it is possible that smaller examples
exist. (We note, however, that if one is interested only in
verifying some instances of Artin’s conjecture and not the
Riemann hypothesis, the holomorphy of L(s, ρ′5) may be
checked much more easily; there the limiting factor is the
conductor of ρ4, of which [Klüners and Malle 01] yields
examples as small as 1609. We have not pursued this
possibility.)

Note that 1, χ, and ρ6 are monomial representations,
so Artin’s conjecture is true for those. Equation (6–1)
below shows that L(s, ρ4) and L(s, ρ5) are holomorphic
except possibly at the zeros of ζ(s). Twisting by χ, we see
similarly that L(s, ρ′4) and L(s, ρ′5) are holomorphic away
from the zeros of L(s, χ). Moreover, we learn from GAP
that the representations ρ4⊕ρ6, ρ′4⊕ρ6, ρ5⊕ρ′4⊕χ, and
ρ′5⊕ρ4 ⊕1 are all monomial. Thus, in order to verify the

polynomial group splitting field
discriminant

x5 − 68x − 68 S5 2963601796

x5 − x4 − 8x3 + 10x2 − x − 5 S5 2160396796

x5 − x4 + 3x3 − 11x2 − 8x − 8 S5 22201396

x5 + 2x3 − 4x2 − 2x + 4 A5 2907330

x5 + 20x + 16 A5 290578

x5 − x4 + 8x3 − 6x2 + 14x − 6 A5 29019330

x5 − 7x3 − 17x2 + 18x + 73 A5 24048730

x5 + 8x3 + 7x2 + 172x + 53 A5 208330

TABLE 1. Tested polynomials.

holomorphy of L(s, ρ4), L(s, ρ′4), L(s, ρ5), and L(s, ρ′5),
it is enough to check that L(s, ρ6) and L(s, ρ′4 ⊕ χ) are
nonvanishing at zeros of ζ(s) and, similarly, that L(s, ρ6)
and L(s, ρ4 ⊕ 1) do not vanish at the zeros of L(s, χ).
Applying Turing’s method to these functions as well as
L(s, ρ5 ⊕1) and L(s, ρ′5 ⊕χ), we can deduce both Artin’s
conjecture and the Riemann hypothesis (up to the tested
height) for all representations.

In what follows we describe the numerical procedure
in detail for L(s, ρ6). First we must choose a value of
η to use for the computation of G(u; η, {µj}). One can
aim to limit either the number of Dirichlet coefficients
an or the precision required in the computation. Since
the coefficients are relatively easy to compute in our
case (we have 232 of them), we try for the latter. The
largest error comes from Lemma 5.4 with x = 0, and
is of size roughly M c exp

(−πrδe−δ(M/
√
N)2/r

)
, where

δ = π
2 (1− |η|), r = 6, N = 36 081 072, and M = 232. Ex-

amining the local factors at small primes, we determine
that |an| ≤ 1.26nlog4243 6, yielding c = 2

3 +log4243 6. (The
µj in this case are 0, 0, 0, 1, 1, 1.) This error term should
be compared to the size of the function being evaluated,
which is roughly e−δrt/2. From Theorem 4.6 we find that
to apply Turing’s method up to height t = 100 we need to
be able to compute the L-function up to about t = 115.
Trying a few values of η, we find that with η = 0.98 the
error terms are of size 10−14, compared to 10−5 for the
size of the function. Thus, with this choice we should use
a precision of at least 14 digits; in fact we carry out most
computations to 30 digits.

All computations were performed on a 3-GHz PC run-
ning Linux. They were divided into several steps:

1. computing the Dirichlet coefficients an;

2. estimating zeros by the explicit formula;

3. computing G(k)(um; η, {µj});

4. computing S(k)
m ;

5. computing (5–10) and L(s, ρ6) by fast Fourier trans-
form;

6. Turing’s method.

To ensure correct results, we used the arbitrary-precision
interval arithmetic package MPFI [Revol and Rouiller 05]
for steps 3 through 6. We discuss the steps in more detail
below.
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ρ 1 2a 2b 3 4 5 6
1 1 − x 1 − x 1 − x 1 − x 1 − x 1 − x 1 − x
χ 1 − x 1 + x 1 − x 1 − x 1 + x 1 − x 1 + x
ρ4 (1 − x)4 (1 − x)2(1 − x2) (1 − x2)2 (1 − x)(1 − x3) 1 − x4 1 + x + x2 + x3 + x4 (1 + x)(1 − x3)
ρ′
4 (1 − x)4 (1 + x)2(1 − x2) (1 − x2)2 (1 − x)(1 − x3) 1 − x4 1 + x + x2 + x3 + x4 (1 − x)(1 + x3)

ρ5 (1 − x)5 (1 + x)(1 − x2)2 (1 − x)(1 − x2)2 (1 + x + x2)(1 − x3) (1 − x)(1 − x4) 1 − x5 (1 + x + x2)(1 + x3)
ρ′
5 (1 − x)5 (1 − x)(1 − x2)2 (1 − x)(1 − x2)2 (1 + x + x2)(1 − x3) (1 + x)(1 − x4) 1 − x5 (1 − x + x2)(1 − x3)

ρ6 (1 − x)6 (1 − x2)3 (1 + x)2(1 − x2)2 (1 − x3)2 (1 + x2)(1 − x4) (1 − x)(1 − x5) 1 − x6

TABLE 2. S5 unramified local factors.

6.1 Computing an

First we consider methods of computing the coefficients
of the L-functions L(s, ρ) for all irreducible representa-
tions ρ. One way is to express them as ratios of prod-
ucts of Hecke L-functions, as given by Brauer’s theo-
rem; in fact for S5 we may express each in terms of
Dedekind zeta functions of intermediate fields. Precisely,
let k be the quadratic extension of Q associated with χ;
F = Q(x1) ⊂ M = Q(x1, x2), where x1 and x2 are dis-
tinct roots of f ; and E = Q(y) ⊂ K, where y is a root
of the sextic resolvent (a formula for which is given in
[Dummit 91]); then we have

L(s, χ) =
ζk(s)
ζ(s)

, L(s, ρ4) =
ζF (s)
ζ(s)

,

L(s, ρ5) =
ζE(s)
ζ(s)

, L(s, ρ6) =
ζk(s)ζE(s)ζM (s)
ζkE(s)ζF (s)2

,

L(s, ρ′4) =
ζ(s)ζkF (s)
ζk(s)ζF (s)

, L(s, ρ′5) =
ζ(s)ζkE(s)
ζk(s)ζE(s)

.

(6–1)

In turn, we may compute each of the Dedekind zeta func-
tions using the ideal factorization functions built into
PARI [PARI Group 04]. This facilitates the computa-
tion of local factors at primes dividing the discriminant,
allowing us to avoid a detailed study of the possible types
of ramification. However, it is not well suited to working
out many coefficients.

Fortunately, there is a faster method that works for all
but finitely many primes. Table 2 shows the unramified
local factors for each representation and conjugacy class
(labeled by the order of elements in the class), where we
write x for p−s.

For S5 it turns out that the Frobenius conjugacy class
at p is determined by the number of linear and quadratic
factors of the reduction f̄ of f modulo p, which may
be computed from the degrees of gcd

(
xpn − x, f̄(x)

)
for

n = 1, 2. That computation requires O(log p) multipli-
cations and additions modulo p. Thus, by the prime
number theorem, for each L(s, ρ) we may determine the
Dirichlet coefficients an for n ≤ X in time O(X) (as-
suming that mod-p multiplications and additions take
bounded time, which is appropriate for numbers of the

ρ conductor lowest zero
1 1 14.134725142
χ 3 8.039737156

ρ4 4009008 1.108937765
ρ′4 36081072 0.5717508665
ρ5 36081072 1.062064850
ρ′5 12027024 0.8132800720
ρ6 36081072 1.376872200

TABLE 3. Conductor and ordinate of the lowest zero of each
irreducible L-function.

size that we consider). Up to the implied constant, that
is best possible. Moreover, the technique is very fast
in practice; we found that it takes approximately seven
hours to compute the local factors for all p < 232.

6.2 Estimating Zeros

With our computed coefficients, we readily obtain esti-
mates for the low zeros by the method of Section 3. Fig-
ure 2 shows graphs of FX(t), with X = log(232), for
each irreducible L-function. The spikes correspond to
zeros, from which we get the estimates for the ordinate
of the lowest zero of each function shown in Table 3;
note that for ζ the estimate agrees with the known value
14.1347251417 . . . to within the precision of the computa-
tion. The increase in density of zeros with the conductor
and degree is apparent in the graphs. Moreover, since
the explicit formula is very sensitive to errors in the co-
efficients, the fact that we see spikes of height 1 for the
low zeros indicates that our coefficients were computed
correctly. Each graph took a few minutes to generate.

6.3 Computing G(k)(um; η, {µj})

Next we compute local approximations of G(u; η, {µj})
for u in the interval

[
log 1√

N
, log 232√

N

]
. We evaluate 213

Taylor series of 16 terms using (5–6); with these choices,
the error term in (5–9) is less than 10−28. This calcu-
lation is the most delicate, due to high precision and
catastrophic cancellation. Nevertheless, the computation
time for this stage was only a few hours. The graph of
|G(u; η, {µj})| is shown in Figure 3.
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FIGURE 2. FX(t) for each irreducible representation.
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FIGURE 3. |G(u; 0.98, {0, 0, 0, 1, 1, 1})|.

6.4 Computing S(k)
m , (5–10), and L(s, ρ6)

Now we come to the main part of the computation,
(5–10). Most of the time, approximately twelve hours,
was spent computing S(k)

m . Note that if we had not ad-
justed η to reduce the precision, this calculation could
have taken substantially longer.

Once we have S
(k)
m , the computation of (5–10) and

L(s, ρ6) is very fast. We choose B = 2π·212

log(232) ≈ 1160.
Since this is much larger than t = 115, the error terms
from Lemma 5.7 are negligible. We choose A = 220/B ≈
900, which is about 160 times the expected density
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FIGURE 4. Z(t) and 25FX(t) for small t.

1
2π logN

(
t

2π

)r of zeros around t = 115. Thus, the main
Fourier transform is of 220 points, which takes only a few
minutes to compute.

Figure 4 shows the graph of Z(t) := Λ
(

1
2 + it

)
/
∣∣γ( 1

2 +
it
)∣∣, which is the analogue of Riemann’s Z-function. We

have superimposed the graph of 25FX(t) over the same
range; note the good agreement in location of zeros be-
tween the two, which gives evidence that our computa-
tions are correct. Figure 5 shows Z(t) over the higher
range t ∈ [90, 100].
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FIGURE 5. Z(t) for large t.

6.5 Turing’s Method

Finally, we apply Turing’s method to the computed L-
functions. At the same time, we verify the “working hy-
pothesis” that we can isolate the zeros of the irreducible
L-functions. This verification takes only a few seconds.
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