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Sphere packings in high dimensions interest mathematicians and
physicists and have direct applications in communications the-
ory. Remarkably, no one has been able to provide exponen-
tial improvement on a hundred-year-old lower bound on the
maximal packing density due to Minkowski in d-dimensional
Euclidean space Rd. The asymptotic behavior of this bound
is controlled by 2−d in high dimensions. Using an optimiza-
tion procedure that we introduced earlier [Torquato and Still-

inger 02] and a conjecture concerning the existence of disor-
dered sphere packings in Rd, we obtain a conjectural lower
bound on the density whose asymptotic behavior is controlled
by 2−0.77865... d, thus providing the putative exponential im-
provement of Minkowski’s bound. The conjecture states that
a hard-core nonnegative tempered distribution is a pair corre-
lation function of a translationally invariant disordered sphere
packing in Rd for asymptotically large d if and only if the Fourier
transform of the autocovariance function is nonnegative. The
conjecture is supported by two explicit analytically character-
ized disordered packings, numerical packing constructions in
low dimensions, known necessary conditions that have rele-
vance only in very low dimensions, and the fact that we can
recover the forms of known rigorous lower bounds. A byprod-
uct of our approach is an asymptotic conjectural lower bound
on the average kissing number whose behavior is controlled by
20.22134... d, which is to be compared to the best known asymp-
totic lower bound on the individual kissing number of 20.2075... d.
Interestingly, our optimization procedure is precisely the dual of
a primal linear program devised by Cohn and Elkies [Cohn and

Elkies 03] to obtain upper bounds on the density, and hence has
implications for linear programming bounds. This connection
proves that our density estimate can never exceed the Cohn–
Elkies upper bound, regardless of the validity of our conjecture.

1. INTRODUCTION

A collection of congruent spheres in d-dimensional Eu-
clidean space Rd is called a sphere packing P if no two of
the spheres have an interior point in common. The pack-
ing density or simply density φ(P ) of a sphere packing is
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the fraction of space Rd covered by the spheres. We will
call

φmax = sup
P⊂Rd

φ(P )

the maximal density, where the supremum is taken over
all packings in Rd. The sphere-packing problem seeks
to answer the following question: Among all packings
of congruent spheres, what is the maximal packing den-
sity φmax, i.e., largest fraction of Rd covered by the
spheres, and what are the corresponding arrangements
of the spheres [Rogers 64, Conway and Sloane 98]? The
sphere-packing problem is of great fundamental and prac-
tical interest, and arises in a variety of contexts, includ-
ing classical ground states of matter in low dimensions
[Chaikin and Lubensky 95], the famous Kepler conjec-
ture for d = 3 [Hales 05], error-correcting codes [Conway
and Sloane 98], and spherical codes [Conway and Sloane
98].

For arbitrary d, the sphere-packing problem is notori-
ously difficult to solve. In the case of packings of congru-
ent d-dimensional spheres, the exact solution is known
for the first three space dimensions. For d = 1, the
answer is trivial because the spheres tile the space so
that φmax = 1. In two dimensions, the optimal solu-
tion is the triangular lattice arrangement (also called the
hexagonal packing) with φmax = π/

√
12. In three di-

mensions, the Kepler conjecture that the face-centered
cubic lattice arrangement provides the densest packing
with φmax = π/

√
18 was only recently proved by Hales

[Hales 05]. For 3 < d < 10, the densest known pack-
ings of congruent spheres are lattice packings (defined
below). However, for sufficiently large d, lattice packings
are likely not to be the densest. Indeed, this paper sug-
gests that disordered sphere arrangements may be the
densest packings as d → ∞.

We review some basic definitions that we will subse-
quently employ. A packing is saturated if there is no space
available to add another sphere without overlapping the
existing particles. The set of lattice packings is a subset
of the set of sphere packings in Rd. A lattice Λ in Rd is a
subgroup consisting of the integer linear combinations of
vectors that constitute a basis for Rd. A lattice packing
PL is one in which the centers of nonoverlapping spheres
are located at the points of Λ. In a lattice packing, the
space Rd can be geometrically divided into identical re-
gions F called fundamental cells, each of which contains
the center of just one sphere. Thus, the density of a lat-
tice packing φL consisting of spheres of unit diameter is

given by

φL =
v1(1/2)
Vol(F )

,

where

v1(R) =
πd/2

Γ(1 + d/2)
Rd (1–1)

is the volume of a d-dimensional sphere of radius R and
Vol(F ) is the volume of a fundamental cell. We will call

φL
max = sup

PL⊂Rd

φ(PL)

the maximal density among all lattice packings in Rd. For
a general packing of spheres of unit diameter for which a
density φ(P ) exists, it is useful to introduce the number
(or center) density ρ defined by

ρ =
φ(P )

v1(1/2)
,

which therefore can be interpreted as the average number
of sphere centers per unit volume.

Three distinct categories of packings have been dis-
tinguished, depending on their behavior with respect to
nonoverlapping geometric constraints and/or externally
imposed virtual displacements: locally jammed, collec-
tively jammed, and strictly jammed [Torquato and Still-
inger 01, Torquato et al. 03, Donev et al. 04]. Loosely
speaking, these jamming categories, listed in order of in-
creasing stringency, reflect the degree of mechanical sta-
bility of the packing. A packing is locally jammed if each
particle in the system is locally trapped by its neigh-
bors; i.e., it cannot be translated while the positions of
all other particles are held fixed. Each sphere simply has
to have at least d + 1 contacts with neighboring spheres,
not all in the same d-dimensional hemisphere. A collec-
tively jammed packing is any locally jammed configura-
tion in which no finite subset of particles can simultane-
ously be continuously displaced so that its members move
out of contact with one another and with the remain-
der set. A strictly jammed packing is any collectively
jammed configuration that disallows all globally uniform
volume-nonincreasing deformations of the system bound-
ary. Importantly, the jamming category is generally de-
pendent on the type of boundary conditions imposed
(e.g., hard-wall or periodic boundary conditions) as well
as the shape of the boundary. The range of possible
densities for a given jamming category decreases with in-
creasing stringency of the category. Whereas the lowest-
density states of collectively and strictly jammed pack-
ings in two or three dimensions are currently unknown,
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one can achieve locally jammed packings with vanish-
ing density [Böröczky 64]. This classification of packings
according to jamming criteria is closely related to the
concepts of “rigid” and “stable” packings found in the
mathematics literature [Connelly et al. 98].

In the next section, we summarize some previous up-
per and lower bounds on the maximal density. For large
d, the asymptotic behavior of the well-known Minkowski
lower bound [Minkowski 05] on the maximal density is
controlled by 2−d. Thus far, no one has been able to pro-
vide exponential improvement on this lower bound. Us-
ing an optimization procedure and a conjecture concern-
ing the existence of disordered sphere packings in high di-
mensions, we obtain conjectural lower bounds that yield
the long-sought asymptotic exponential improvement on
Minkowski’s bound. We believe that consideration of
truly disordered packings is the key notion that will yield
exponential improvement on Minkowski’s lower bound.
A byproduct of our approach is an asymptotic conjec-
tural lower bound on the average kissing number that is
superior to the best known asymptotic lower bound on
the individual kissing number.

2. SOME PREVIOUS UPPER AND LOWER BOUNDS

The nonconstructive lower bounds of Minkowski
[Minkowski 05] established the existence of reasonably
dense lattice packings. He found that the maximal den-
sity φL

max among all lattice packings for d ≥ 2 satisfies

φL
max ≥ ζ(d)

2d−1
, (2–1)

where ζ(d) =
∑∞

k=1 k−d is the Riemann zeta function.
Note that for large values of d, the asymptotic behav-
ior of the Minkowski lower bound is controlled by 2−d.
Since 1905, many extensions and generalizations of equa-
tion (2–1) have been obtained [Davenport and Rogers
47, Ball 92, Conway and Sloane 98], but none of these
investigations have been able to improve on the domi-
nant exponential term 2−d. It is useful to note that the
density of a saturated packing of congruent spheres in Rd

for all d satisfies
φ ≥ 1

2d
. (2–2)

The proof is trivial. A saturated packing of congruent
spheres of unit diameter and density φ in Rd has the
property that each point in space lies within a unit dis-
tance from the center of some sphere. Thus, a covering of
the space is achieved if each sphere center is encompassed
by a sphere of unit radius and the density of this covering

(2)2−d Minkowski (1905)

[ln(
√

2)d]2−d Davenport and Rogers (1947)

(2d)2−d Ball (1992)

TABLE 1. Dominant asymptotic behavior of lower bounds
on φL

max for large d.

(d/2)2−0.5d Blichfeldt (1929)

(d/e)2−0.5d Rogers (1958)

2−0.5990d Kabatiansky and Levenshtein (1978)

TABLE 2. Dominant asymptotic behavior of upper bounds
on φmax for large d.

is 2dφ ≥ 1. Thus, the bound (2–2), which is sometimes
called the “greedy” lower bound, has the same dominant
exponential term as (2–1). In Section 4.1, we show that
there exists a construction of a disordered packing of con-
gruent spheres that realizes the weaker lower bound of
(2–2), i.e., φ = 2−d.

The best currently known lower bound on φL
max was

obtained by Ball [Ball 92]. He found that

φL
max ≥ 2(d − 1)ζ(d)

2d
. (2–3)

Table 1 gives the dominant asymptotic behavior of sev-
eral lower bounds on φL

max for large d.
Nontrivial upper bounds on the maximal density φmax

for any sphere packing in Rd have been derived. Blich-
feldt [Blichfeldt 29] showed that the maximal packing
density for all d satisfies φmax ≤ (d/2+1)2−d/2. This up-
per bound was improved by Rogers [Rogers 58, Rogers 64]
by an analysis of the Voronoi cells. For large d, Rogers’s
upper bound asymptotically becomes 2−d/2d/e. Kaba-
tiansky and Levenshtein [Kabatiansky and Levenshtein
78] found an even stronger bound, which in the limit
d → ∞ yields φmax ≤ 2−0.5990d(1+o(1)). Cohn and Elkies
[Cohn and Elkies 03] obtained and computed linear pro-
gramming upper bounds, which provided improvement
over Rogers’s upper bound for dimensions 4 through 36.
They also conjectured that their approach could be used
to prove sharp bounds in 8 and 24 dimensions. Indeed,
Cohn and Kumar [Cohn and Kumar 04] used these tech-
niques to prove that the Leech lattice is the unique dens-
est lattice in �24. They also proved that no sphere pack-
ing in �24 can exceed the density of the Leech lattice by
a factor of more than 1 + 1.65 × 10−30, and gave a new
proof that E8 is the unique densest lattice in �8. Table
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2 provides the dominant asymptotic behavior of several
upper bounds on φmax for large d.

3. REALIZABILITY OF POINT PROCESSES

As will be described in Section 5, our new approach to
lower bounds on the density of sphere packings in Rd

rests on whether certain one- and two-point correlation
functions are realizable by sphere packings. As we will
discuss, a sphere packing can be regarded as a special
case of a point process and so a more general question
concerns the necessary and sufficient conditions for the
realizability of point processes in Rd. Before discussing
the realizability of point processes, it is useful to recall
some basic results from the theory of spatial stochas-
tic (or random) processes. Let x ≡ (x1, x2, . . . , xd) de-
note a vector position in Rd. Consider a stochastic pro-
cess {Y (x;ω) : x ∈ Rd;ω ∈ Ω}, where Y (x;ω) is a
real-valued random variable, ω is a realization generated
by the stochastic process, and (Ω,F ,P) is a probability
space (i.e., Ω is a sample space, F is a σ-algebra of mea-
surable subsets of Ω, and P is a probability measure).
For simplicity, we will often suppress the variable ω.

3.1 Ordinary Stochastic Processes

We will assume that the stochastic process is translation-
ally invariant (i.e., statistically homogeneous in space).
Let us further assume that the mean µ = 〈Y (x)〉 and
autocovariance function

χ(r) = 〈[Y (x) − µ][Y (x + r) − µ]〉 (3–1)

exist, where angular brackets denote an expectation, i.e.,
an average over all realizations. The fact that the mean µ

and autocovariance function χ(r) are independent of the
variable x is a consequence of the translational invariance
of the measure. Clearly,

χ(0) = 〈Y 2〉 − µ2, (3–2)

and it follows from Schwarz’s inequality that

|χ(r)| ≤ 〈Y 2〉 − µ2. (3–3)

It immediately follows [Loève 63] that the autocovariance
function χ(r) must be positive semidefinite (nonnega-
tive) in the sense that for any finite number of spatial
locations r1, r2, . . . , rm in Rd and arbitrary real numbers
a1, a2, . . . , am,

m∑
i=1

m∑
j=1

aiajχ(ri − rj) ≥ 0. (3–4)

It is clear that 〈[Y (x + r) − Y (x)]2〉 = 2[χ(0) − χ(r)].
Thus, if the autocovariance function χ(r) is continuous
at the point r = 0, the process Y (x) on Rd will be mean
square continuous, i.e., limr→0〈[Y (x + r) − Y (x)]2〉 = 0
for all x. Stochastic processes that are continuous in the
mean square sense will be called ordinary. It is simple to
show that if χ(r) is continuous at r = 0, it is continuous
for all r.

Does every continuous positive semidefinite func-
tion f(r) correspond to a translationally invariant or-
dinary stochastic process with a continuous autocovari-
ance χ(r)? The answer is yes, and a proof is given in
the book by Loève [Loève 63] for stochastic processes in
time. Here we state without proof the generalization to
stochastic processes in space.

Theorem 3.1. A continuous function f(r) on Rd is an
autocovariance function of a translationally invariant or-
dinary stochastic process if and only if it is positive
semidefinite.

Remark 3.2. Assuming that f(r) is positive semidefinite,
one needs to show that there exists a random variable
Y (x) on Rd such that 〈[Y (x)− µ][Y (x + r)− µ]〉 = f(r).
This is done by demonstrating that there exists a Gaus-
sian (normal) process for every autocovariance function
[Loève 63]. A crucial property of a Gaussian process is
that its full probability distribution is completely deter-
mined by its mean and autocovariance.

The nonnegativity condition (3–4) is difficult to check.
It turns out that it is easier to establish the existence of
an autocovariance function by appealing to its spectral
representation. We denote the space of absolutely inte-
grable functions on Rd by L1. The Fourier transform of
an L1 function f : Rd → � is defined by

f̃(k) =
∫

Rd

f(r)e−ik · r dr. (3–5)

If f : Rd → R is a radial function, i.e., f depends only
on the modulus r = |r| of the vector r, then its Fourier
transform is given by

f̃(k) = (2π)
d
2

∫ ∞

0

rd−1f(r)
J(d/2)−1(kr)

(kr)(d/2)−1
dr, (3–6)

where k is the modulus of the wave vector k and Jν(x) is
the Bessel function of order ν. The Wiener–Khintchine
theorem states that a necessary and sufficient condition
for the existence of a continuous autocovariance func-
tion χ(r) of a translationally invariant stochastic process
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{Y (x) : x ∈ Rd} is that its Fourier transform be non-
negative everywhere, i.e., χ̃(k) ≥ 0 for all k [Yaglom
87, Torquato 02]. The key “necessary” part of the proof
of this theorem rests on a well-known theorem due to
Bochner [Bochner 36], which states that any continuous
function f(r) is positive semidefinite in the sense of in-
equality (3–4) if and only if it has a Fourier–Stieltjes
representation with a nonnegative bounded measure.

3.2 Generalized Stochastic Processes

The types of autocovariance functions that we are in-
terested in must allow for generalized functions, such as
Dirac delta functions. The Wiener–Khintchine theorem
has been extended to autocovariances in the class of gen-
eralized functions called tempered distributions, i.e., con-
tinuous linear functionals on the space S of infinitely dif-
ferentiable functions Φ(x) such that Φ(x) as well as all of
its derivatives decays faster than polynomially. Nonneg-
ative tempered distributions are nonnegative unbounded
measures ν on Rd such that∫

Rd

dν(r)
(1 + |r|)n

< ∞

for some n. The interested reader is referred to the
books by Gel’fand [Gel’fand and Vilenkin 64] and Ya-
glom [Yaglom 87] for details about generalized stochas-
tic processes. It suffices to say here that {Y (Φ(x)) :
x ∈ Rd} is a generalized stochastic process if for each
Φ(x) ∈ S we have a random variable Y (Φ(x)) that
is linear and mean square continuous in Φ. Then the
mean is the linear functional µ(Φ(x)) = 〈Y (Φ1(x))〉
and the autocovariance function is the bilinear functional
〈[Y (Φ1(x))−µ(Φ(x1))][Y (Φ2(x+r))−µ(Φ(x2))]〉, which
we still denote by χ(r) for simplicity.

Theorem 3.3. A necessary and sufficient condition for an
autocovariance function χ(r) to come from a translation-
ally invariant generalized stochastic process {Y (Φ(x)) :
x ∈ Rd} is that its Fourier transform χ̃(k) be a nonneg-
ative tempered distribution.

Remark 3.4. We will call Theorem 3.3 the generalized
Wiener–Khintchine theorem.

3.3 Stochastic Point Processes

Loosely speaking, a stochastic point process in Rd is de-
fined as a mapping from a probability space to configura-
tions of points x1,x2,x3, . . . in Rd. More precisely, let X

denote the set of configurations such that each configura-
tion x ∈ X is a subset of Rd that satisfies two regularity

conditions: (i) there are no multiple points (xi �= xj if
i �= j) and (ii) each bounded subset of Rd must contain
only a finite number of points of x. We denote by N(B)
the number of points within x∩B, B ∈ B, where B is the
ring of bounded Borel sets in Rd. Thus, we always have
N(B) < ∞ for B ∈ B but the possibility N(Rd) = ∞ is
not excluded. We denote by U the minimal σ-algebra of
subsets of X that renders all of the functions N(B) mea-
surable. Let (Ω,F ,P) be a probability space. Any mea-
surable map x(ω) : Ω → X, ω ∈ Ω, is called a stochastic
point process [Stoyan 95]. Point processes belong to the
class of generalized stochastic processes.

A particular realization of a point process in Rd can
formally be characterized by the random variable

n(r) =
∞∑

i=1

δ(r − xi), (3–7)

called the “local” density at position r, where δ(r) is a d-
dimensional Dirac delta function. The “randomness” of
the point process enters through the positions x1,x2, . . . .
Let us call

IA(r) =

{
1, r ∈ A,

0, r /∈ A,
(3–8)

the indicator function of a measurable set A ⊂ Rd, which
we also call a “window.” For a particular realization, the
number of points N(A) within such a window is given by

N(A) =
∫

Rd

n(r)IA(r) dr

=
∞∑

i=1

∫
Rd

δ(r − xi)IA(r) dr

=
∑
i≥1

IA(xi). (3–9)

Note that this random setting is quite general. It in-
corporates cases in which the locations of the points are
deterministically known, such as a lattice. A packing of
congruent spheres of unit diameter is simply a point pro-
cess in which any pair of points cannot be closer than a
unit distance from one another.

It is known that the probability measure on (X,U)
exists provided that the infinite set of n-point correla-
tion functions ρn, n = 1, 2, 3, . . . , meet certain conditions
[Lennard 73, Lennard 75a, Lennard 75b]. The n-point
correlation function ρn(r1, r2, . . . , rn) is the contribution
to the expectation 〈n(r1)n(r2) · · ·n(rn)〉 when the indices
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on the sums are not equal to one another, i.e.,

ρn(r1, r2, . . . , rn)

=

〈 ∞∑
i1 �=i2 �=···�=in

δ(r1 − xi1)δ(r2 − xi2) · · · δ(rn − xin
)

〉
.

Note that the distribution-valued function
ρn(r1, r2, . . . , rn) also has a probabilistic interpre-
tation: apart from trivial constants, it is the probability
density function associated with finding n different
points at positions r1, r2, . . . , rn. For this reason, ρn is
also called the n-particle density and, for any n, has the
nonnegativity property

ρn(r1, r2, . . . , rn) ≥ 0 ∀ri ∈ Rd (i = 1, 2, . . . , n).
(3–10)

Translational invariance means that for every constant
vector y in Rd, ρn(r1, r2, . . . , rn) = ρn(r1+y, . . . , rn+y),
which implies that

ρn(r1, r2, . . . , rn) = ρngn(r12, . . . , r1n), (3–11)

where ρ is the number (or center) density and
gn(r12, . . . , r1n) is the n-particle correlation function,
which depends on the relative positions r12, r13, . . .,
where rij ≡ rj − ri and we have chosen the origin to
be at r1.

For such point processes without long-range order,
gn(r12, . . . , r1n) → 1 when the points (or “particles”)
are mutually far from one another, i.e., as |rij | → ∞
(1 ≤ i < j < ∞), ρn(r1, r2, . . . , rn) → ρn. Thus, the de-
viation of gn from unity provides a measure of the degree
of spatial correlation between the particles, with unity
corresponding to no spatial correlation. Note that for
a translationally invariant Poisson point process, gn is
unity for all values of its argument.

As we indicated in the beginning of this section,
the first two correlation functions, ρ1(r1) = ρ and
ρ2(r1, r2) = ρ2g2(r), for translationally invariant point
processes are of central concern in this paper. If the
point process is also rotationally invariant (statistically
isotropic), then g2 depends on the radial distance r = |r|
only, i.e.,

g2(r) = g2(r), (3–12)

and is referred to as the radial distribution function.
Strictly speaking, one should use different notation for
the left and right members of (3–12), but to conform
to conventional statistical-mechanical usage, we invoke
the common notation for both. Because ρ2(r1, r2)/ρ =
ρg2(r) is a conditional joint probability density, then

Z(r1, r2) =
∫ r2

r1

ρs1(r)g2(r) dr

is the expected number of points at radial distances be-
tween r1 and r2 from a randomly chosen point. Here
s1(r) is the surface area of a d-dimensional sphere of ra-
dius r given by

s1(r) =
2πd/2rd−1

Γ(d/2)
. (3–13)

For a packing of congruent spheres of unit diameter,
g(r) = 0 for 0 ≤ r < 1, i.e.,

supp(g2) ⊆ {r : r ≥ 1}. (3–14)

Note that the radial distribution function g2(r) (or any
of the ρn) for a point process must be able to incorporate
Dirac delta functions. We will specifically consider those
radial distribution functions that are nonnegative distri-
butions. For example, g2(r) for a lattice packing is the
rotational symmetrization of the sum of delta functions
at lattice points at a radial distance r from any lattice
point [Torquato and Stillinger 03].

For a translationally invariant point process, the auto-
covariance function χ(r) is related to the pair correlation
function via

χ(r) = ρδ(r) + ρ2h(r),

where
h(r) ≡ g2(r) − 1 (3–15)

is the total correlation function. This relation is obtained
using definitions (3–1) and (3–7) with Y (x) = n(x). Note
that χ(r) = ρδ(r) (i.e., h = 0) for a translationally in-
variant Poisson point process. Positive and negative pair
correlations are defined as those instances in which h is
positive (i.e., g2 > 1) and h is negative (i.e., g2 < 1),
respectively. The Fourier transform of the distribution-
valued function χ(r) is given by

χ̃(k) = ρ + ρ2h̃(k), (3–16)

where h̃(k) is the Fourier transform of h(r). It is com-
mon practice in statistical physics to deal with a function
trivially related to the spectral function χ̃(k) called the
structure factor S(k), i.e.,

S(k) ≡ χ̃(k)
ρ

= 1 + ρh̃(k). (3–17)

A natural question to ask at this point is the following:
Given a positive number density ρ and a pair correlation
function g2(r), does there exist a translationally invariant
point process in Rd with measure P for which ρ and g2
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are one-point and two-point correlation functions, respec-
tively? Two obvious nonnegativity conditions [Torquato
and Stillinger 02] that must be satisfied are the following:

g2(r) ≥ 0 for all r (3–18)

and

S(k) = 1 + ρh̃(k) ≥ 0 for all k. (3–19)

The first condition is trivial and comes from (3–10) with
n = 2. The second condition is nontrivial and derives
from the generalized Wiener–Khintchine theorem (The-
orem 3.3) using relations (3–16) and (3–17). However,
for realizability of point processes in arbitrary dimen-
sion d, the two standard conditions (3–18) and (3–19)
are only necessary, not necessary and sufficient. The
same state of affairs applies to the theory of random
sets [Torquato 02], where it is known that the Wiener–
Khintchine theorem provides only a necessary condition
on realizable autocovariance functions. The simplest ex-
ample of a random set is one in which Rd is partitioned
into two disjoint regions (phases) but with an interface
that is known only in a probabilistic sense. (A packing
can therefore be viewed as a special random set.) Thus,
a random set is described by a random variable that is
the indicator function for a particular phase, i.e., it is a
binary stochastic process. The class of autocovariances
that comes from a binary stochastic process is a subclass
of the total class that comes from an ordinary process
{Y (x) : x ∈ Rd} and meets the existence condition of
Theorem 3.3. Similarly, the class of autocovariances that
comes from a point process is a subset of of a generalized
process {Y (Φ(x)) : x ∈ Rd} and therefore the existence
condition of Theorem 3.3 is only necessary.

It has recently come to light that a positive g2 for a
positive ρ must satisfy an uncountable number of neces-
sary and sufficient conditions for it to correspond to a
realizable point process [Costin and Lebowitz 04]. How-
ever, these conditions are very difficult (or, more likely,
impossible) to check for arbitrary dimension. In other
words, given ρ1 = ρ and ρ2 = ρ2g2, it is difficult to
ascertain whether there are some higher-order functions
ρ3, ρ4, . . . for which these one- and two-point correlation
functions hold. Thus, an important practical problem
becomes the determination of a manageable number of
necessary conditions that can be readily checked.

One such additional necessary condition, obtained
by Yamada [Yamada 61], is concerned with σ2(A) ≡
〈(N(A)−〈N(A)〉)2〉, the variance in the number of points
N(A) contained within a window A ⊂ Rd. Specifically,

he showed that

σ2(A) ≥ θ(1 − θ), (3–20)

where θ is the fractional part of the expected number of
points ρ|A| contained in the window. This inequality is a
consequence of the fact that the number of points N(A)
within a window at some fixed position is an integer, not a
continuous variable, and sets a lower limit on the number
variance. We note in passing that the determination of
the number variance for lattice point patterns is an out-
standing problem in number theory [Kendall 48, Kendall
and Rankin 53, Sarnak and Strömbergsson 05]. The num-
ber variance for a specific choice of A is necessarily a
positive number and generally related to the total pair
correlation function h(r) for a translationally invariant
point process [Torquato and Stillinger 03]. In the spe-
cial case of a spherical window of radius R in Rd, it is
explicitly given by

σ2(R) = ρv1(R)

[
1 + ρ

∫
Rd

h(r)α2(r;R) dr

]
≥ θ(1 − θ),

(3–21)
where σ2(R) is the number variance for a spherical win-
dow of radius R in Rd, v1(R) is the volume of the win-
dow, and α2(r;R) is the volume common to two spheri-
cal windows of radius R whose centers are separated by
a distance r divided by v1(R). We will call α2(r;R) the
scaled intersection volume. The lower bound (3–21) pro-
vides another integral condition on the pair correlation
function.

For large R, it has been proved that σ2(R) cannot grow
more slowly than γRd−1, where γ is a positive constant
[Beck 87]. This implies that the Yamada lower bound
in (3–21) is always satisfied for sufficiently large R for
any d ≥ 2. In fact, we have not been able to construct
any examples of a pair correlation function g2(r) at some
number density ρ that satisfy the two nonnegativity con-
ditions (3–18) and (3–19) and simultaneously violate the
Yamada condition for any R and any d ≥ 2. Thus, it
appears that the Yamada condition is most relevant in
one dimension, especially in those cases in which σ2(R) is
bounded. We note that point processes (translationally
invariant or not) for which σ2(R) ∼ Rd−1 for large R are
examples of hyperuniform point patterns [Torquato and
Stillinger 03]. This classification includes all lattices as
well as aperiodic point patterns. Hyperuniformity im-
plies that the structure factor S(k) has the following
small-k behavior:

lim
k→0

S(k) = 0. (3–22)
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The scaled intersection volume α2(r;R) appearing in
(3–21) will play a prominent role in this paper. It has
support in the interval [0, 2R), range [0, 1], and the fol-
lowing integral representation:

α2(r;R) = c(d)
∫ cos−1(r/(2R))

0

sind(θ) dθ, (3–23)

where c(d) is the d-dimensional constant given by

c(d) =
2Γ(1 + d/2)

π1/2Γ((d + 1)/2)
.

Following the analysis given by Torquato and Stillinger
[Torquato and Stillinger 03] for low dimensions, we ob-
tain the following new series representation of the scaled
intersection volume α2(r;R) for r ≤ 2R and for any d:

α(r;R) = 1 − c(d)x (3–24)

+ c(d)
∞∑

n=2

(−1)n (d − 1)(d − 3) · · · (d − 2n + 3)
(2n − 1)[2 · 4 · 6 · · · (2n − 2)]

x2n−1,

where x = r/(2R). This is also easily proved, starting
from (3–24), with the help of Maple. For even dimen-
sions, relation (3–24) is an infinite series, but for odd
dimensions, the series truncates such that α2(r;R) is a
univariate polynomial of degree d. Except for the first
term of unity, all of the terms in relation (3–24) involve
only odd powers of x. Figure 1 shows graphs of the scaled
intersection volume α2(r;R) as a function of r for the
first five space dimensions. For any dimension, α(r;R)
is a monotonically decreasing function of r. At a fixed
value of r in the interval (0, 2R), α2(r;R) is a monotoni-
cally decreasing function of the dimension d. For large d,
we will subsequently make use of the asymptotic result

α2(R;R) ∼
(

6
π

)1/2(3
4

)d/2 1
d1/2

. (3–25)

Before closing this section, it is useful to note that
there has been some recent work that demonstrates the
existence of point processes for a specific ρ and g2 pro-
vided that ρ and g2 meet certain restrictions. For ex-
ample, Ambartzumian and Sukiasian proved the exis-
tence of point processes that come from Gibbs measures
for a special g2 for sufficiently small ρ [Ambartzumian
and Sukiasian 91]. Determinantal point processes have
been considered by Soshnikov [Soshnikov 00] and Costin
and Lebowitz [Costin and Lebowitz 04]. Costin and
Lebowitz have also studied certain one-dimensional re-
newal point processes [Costin and Lebowitz 04]. Still-
inger and Torquato [Stillinger and Torquato 04] discussed
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Spherical window of radius R

FIGURE 1. The scaled intersection volume α2(r; R) for
spherical windows of radius R as a function of r for the first
five space dimensions. The uppermost curve is for d = 1
and lowermost curve is for d = 5.

the possible existence of a general interparticle pair po-
tential (associated with a Gibbs measure) for a given ρ

and g2 using a cluster expansion procedure but did not
address the issue of convergence of this expansion. Ko-
ralov [Koralov 05] indeed proves the existence of a pair
potential on a lattice (with the restriction of single oc-
cupancy per lattice site) for which ρ is the density and
g2 is the pair correlation function for sufficiently small
ρ and g2. There is no reason to believe that Koralov’s
proof is not directly extendable to the case of a point
process corresponding to a sphere packing in Rd, where
the nonoverlap condition is the analogue of single occu-
pancy on the lattice. Thus, we expect that one can prove
the existence of a pair potential in Rd corresponding to a
sphere packing for a given ρ and g2 provided that ρ and
g2 are sufficiently small.

4. DISORDERED PACKINGS IN HIGH DIMENSIONS
AND THE DECORRELATION PRINCIPLE

In this section, we examine the asymptotic behavior of
certain disordered packings in high dimensions and show
that unconstrained spatial correlations vanish asymptot-
ically, yielding a decorrelation principle. We define a dis-
ordered packing in Rd to be one in which the pair cor-
relation function g2(r) decays to its long-range value of
unity faster than |r|−d−ε for some ε > 0. The decorrela-
tion principle as well as a number of other results (which
will be discussed in Section 5) motivate us to propose a
conjecture in Section 5 that describes the circumstances
in which the two standard nonnegativity conditions given
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by (3–18) and (3–19) are necessary and sufficient to en-
sure the existence of a disordered sphere packing.

4.1 Example 1: Disordered Sequential Packings

First we show that there exists a disordered sphere pack-
ing that realizes the greedy lower bound (2–2) (φ = 1/2d)
for all d. Then we study the asymptotic properties of the
n-particle correlation functions in the large-dimension
limit.

The disordered packing that achieves the greedy lower
bound is a special case of a generalization of the so-called
random sequential addition (RSA) process [Torquato 02].
This generalization, which we introduce here, is a sub-
set of the Poisson point process. Specifically, the cen-
ters of “test” spheres of unit diameter arrive continually
throughout Rd during time t ≥ 0 according to a trans-
lationally invariant Poisson process of density per unit
time η, i.e., η is the number of points per unit volume
and time. Therefore, the expected number of centers in
a region of volume Ω during time t is ηΩt, and the prob-
ability that this region is empty of centers is exp(−ηΩt).
However, this Poisson distribution of test spheres is not
a packing because the spheres can overlap. To create
a packing from this point process, one must remove test
spheres such that no sphere center can lie within a spheri-
cal region of unit radius from any sphere center. Without
loss of generality, we will set η = 1.

There is a variety of ways of achieving this “thinning”
process such that the subset of points corresponds to
a sphere packing. One obvious rule is to retain a test
sphere at time t only if it does not overlap a sphere that
was successfully added to the packing at an earlier time.
This criterion defines the well-known RSA process in Rd

[Torquato 02], and is clearly a statistically homogeneous
and isotropic sphere packing in Rd with a time-dependent
density φ(t). In the limit t → ∞, the RSA process cor-
responds to a saturated packing with a maximal or satu-
ration density φs(∞) ≡ limt→∞ φ(t). In one dimension,
the RSA process is commonly known as the “car-parking
problem,” which Reńyi showed has a saturation density
φs(∞) = 0.7476 . . . [Reńyi 63]. For 2 ≤ d < ∞, an ex-
act determination of φs(∞) is not possible, but estimates
for it have been obtained via computer experiments for
low dimensions [Torquato 02]. However, as we will dis-
cuss below, the standard RSA process at small times (or,
equivalently, small densities) can be analyzed exactly.

Another thinning criterion retains a test sphere cen-
tered at position r at time t if no other test sphere is
within a unit radial distance from r for the time interval
κt prior to t, where κ is a positive constant in the interval

[0, 1]. This packing is a subset of the RSA packing, and
therefore we refer to it as the generalized RSA process.
Note that when κ = 0, the standard RSA process is re-
covered, and when κ = 1, a relatively unknown model
due to Matérn [Matérn 86] is recovered. The latter is
amenable to exact analysis.

The time-dependent density φ(t) in the case of the gen-
eralized RSA process with κ = 1 is easily obtained. (Note
that for any 0 < κ ≤ 1, the generalized RSA process is
always an unsaturated packing.) In this packing, a test
sphere at time t is accepted only if it does not overlap an
existing sphere in the packing as well as any previously
rejected test spheres (which we will call “ghost” spheres).
An overlap cannot occur if a test sphere is outside a unit
radius of any successfully added sphere or ghost sphere.
Because of the underlying Poisson process, the probabil-
ity that a trial sphere is retained at time t is given by
exp(−v1(1)t), where v1(1) is the volume of a sphere of
unit radius having the same center as the retained sphere
of radius 1

2 . Therefore, the expected number density ρ(t)
and packing density φ(t) at any time t are respectively
given by

ρ(t) =
∫ t

0

exp(−v1(1)t′) dt′ =
1

v1(1)
[1 − exp(−v1(1)t)]

and

φ(t) = ρ(t)v1(1/2) =
1
2d

[1 − exp(−v1(1)t)]. (4–1)

We see that φ(t) is a monotonically increasing function of
t. This result was first given by Matérn using a different
approach and he also gave a formal expression for the
time-dependent radial distribution function g2(r; t) (see
Section 3). Here we present an explicit expression for
g2(r; t) at time t for any dimension d:

g2(r; t) =
Θ(r − 1)

22d−1[β2(r; 1) − 1]φ2(t)
(4–2)

×
[
2dφ(t) − 1 − exp[−2dβ2(r; 1)t]

β2(r; 1)

]
.

Here

Θ(x) =

{
0, x < 0,

1, x ≥ 0,
(4–3)

is the unit step function and

β2(r;R) = 2 − α2(r;R)

is the union volume of two spheres of radius R (whose
centers are separated by a distance r) divided by the vol-
ume of a sphere of radius R and α2(r;R) is the scaled



316 Experimental Mathematics, Vol. 15 (2006), No. 3

intersection volume of two such spheres given by equa-
tion (3–23). Our approach for obtaining (4–2) is different
from Matérn’s and details are given elsewhere [Torquato
and Stillinger 06].

It is useful to note that at small times or, equivalently,
low densities, formula (4–1) yields the asymptotic expan-
sion φ(t) = v1(1)t/2d−v2

1(1)t2/2d+1+O(t3), which when
inverted yields t = 2dφ/v1(1) + 2d−1φ2 + O(φ3). Substi-
tution of this last result into (4–2) gives

g2(r;φ) = Θ(r − 1) + O(φ3), (4–4)

which implies that g2(r;φ) tends to the unit step function
Θ(r − 1) as φ → 0 for any finite d.

In the limit t → ∞, the maximum density is given by

φ(∞) ≡ lim
t→∞φ(t) =

1
2d

and

g2(r;∞) ≡ lim
t→∞ g2(r; t) =

2Θ(r − 1)
β2(r; 1)

=
Θ(r − 1)

1 − α2(r; 1)/2
.

(4–5)
We see that the greedy lower-bound limit on the den-
sity is achieved in the infinite-time limit for this sequen-
tial but unsaturated packing. This is the first time that
such an observation has been made. Obviously, for any
0 ≤ κ < 1, the maximum (infinite-time) density of the
generalized RSA packing is bounded from below by 1/2d

(the maximum density for κ = 1). Note also that because
β2(r; 1) is equal to 2 for r ≥ 2, g2(r;∞) = 1 for r ≥ 2,
i.e., spatial correlations vanish identically for all pair dis-
tances except those in the small interval [0, 2). Even the
positive correlations exhibited for 1 < r < 2 are rather
weak and decrease with increasing dimension. The func-
tion g2(r;∞) achieves its largest value at r = 1+ in any
dimension and for d = 1, g2(1+;∞) = 4

3 . The radial dis-
tribution function g2(r;∞) is plotted in Figure 2 for the
first five space dimensions. Using the asymptotic result
(3–25) and relation (4–5), it is seen that for large d,

g2(1+;∞) ∼ Θ(r − 1)

1 − ( 3
2π

)1/2 ( 3
4

)d/2 1
d1/2

,

and thus g2(r;∞) tends to the unit step function Θ(r−1)
exponentially fast as d → ∞ because the scaled intersec-
tion volume α2(1; 1) vanishes exponentially fast.

The higher-order correlation functions for this model
have not been given previously. In another work
[Torquato and Stillinger 06], we use an approach different
from the one used by Matérn to obtain not only g2 but
an explicit formula for the general n-particle correlation

FIGURE 2. Radial distribution function for the first five
space dimensions at the maximum density φ = 1/2d for the
generalized RSA model with κ = 1.

function gn, defined by (3–11), for any time t and n and
for arbitrary dimension d. To our knowledge, this repre-
sents the first exactly solvable disordered sphere-packing
model for any d. These details are somewhat tangential
to the present work and for our purposes it suffices to
state the final result in the limit t → ∞ for n ≥ 2:

gn(r1, . . . , rn;∞) =

∏n
i<j Θ(rij − 1)

βn(r1, . . . , rn; 1)

[ n∑
i=1

gn−1(Qi;∞)
]
,

(4–6)
where the sum is over all the n distinguishable ways
of choosing n − 1 positions from n positions r1, . . . , rn

and the arguments of gn−1 are the associated n − 1 po-
sitions, which we denote by Qi, and g1 ≡ 1. More-
over, βn(r1, . . . , rn;R) is the union volume of n congru-
ent spheres of radius R, whose centers are located at
r1, . . . , rn, where rij = |rj − ri| for all 1 ≤ i < j ≤ n,
divided by the volume of a sphere of radius R.

Lemma 4.1. In the limit d → ∞, the n-particle corre-
lation function gn(r1, . . . , rn;∞) approaches 1 uniformly
in (r1, . . . , rn) ∈ Rd such that rij ≥ 1 for all 1 ≤ i <

j ≤ n. If rij < 1 for any pair of points ri and rj, then
gn(r1, . . . , rn;∞) = 0.

Proof: The second part of the lemma is the trivial re-
quirement for a packing. Whenever rij ≥ 1 for all
1 ≤ i < j ≤ n, it is clear from (4–6) that we have the
following upper and lower bounds on the n-particle cor-
relation function:

n

βn
≤ gn ≤ ng∗n−1

βn
,

where g∗n−1 denotes the largest possible value of gn−1.
The scaled union volume βn of n spheres obeys the
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bounds
n −

∑
i<j

α2(rij ; 1) ≤ βn ≤ n,

but since the scaled intersection volume of two spheres
α2(r; 1) attains its maximum value for r ≥ 1 when r = 1,
we also have

n − n(n − 1)
2

α2(1; 1) ≤ βn ≤ n.

Use of this inequality and the recursive relation (4–6)
yields the bounds

1 ≤ gn ≤ 1
1 − 1

4n(n − 1)α2(1; 1) + O(α2(1; 1)2)
.

Using the asymptotic result (3–25), we see that the upper
bound tends to the lower bound for any given n as d →
∞, which proves the lemma.

In summary, the lemma enables us to conclude that in
the limit d → ∞ and for φ = 1/2d,

gn(r12, . . . , r1n;∞) ∼
n∏

i<j

g2(rij ;∞),

where
g2(r;∞) ∼ Θ(r − 1). (4–7)

Importantly, we see that the asymptotic behavior of
g2 in the low-density limit φ → 0 for any d [cf. (4–4)]
is the same as the high-dimensional limit d → ∞ [cf.
(4–7)], i.e., spatial correlations, which exist for positive
densities at fixed d, vanish for pair distances beyond the
hard-core diameter. Note also that gn for n ≥ 3 asymp-
totically factorizes into products involving only the pair
correlation function g2. Is the similarity between the low-
density and high-dimensional limits for this model of a
disordered packing a general characteristic of disordered
packings? In what follows, we discuss another disordered
packing that has this attribute and subsequently formu-
late what we refer to as a “decorrelation principle.”

4.2 Example 2: The Classic Gibbsian Hard-Sphere
Packing

The statistical mechanics of the classic Gibbsian hard-
sphere packing is well established (see [Torquato 02] and
references therein). The purpose of this subsection is
simply to collect some results that motivate the decorre-
lation principle. Let ΦN (rN ) be the N -body interaction
potential for a finite but large number of particles with
configuration rN ≡ {r1, r2, . . . , rN} in a volume V in Rd

at absolute temperature T . A large collection of such

systems in which N , V , and T are fixed but in which
the particle configurations are otherwise free to vary is
called the Gibbs canonical ensemble. Our interest is in
the thermodynamic limit, i.e., the distinguished limit in
which N → ∞ and V → ∞ such that the number density
ρ = N/V exists. For a Gibbs canonical ensemble, when
the n-particle densities ρn (defined in Section 3) exist,
they are entirely determined by the interaction poten-
tial ΦN (rN ). For a hard-sphere packing, the interaction
potential is given by a sum of pairwise terms such that

ΦN (rN ) =
N∑

i<j

u2(|rj − ri|), (4–8)

where u2(r) is the pair potential defined by

u2(r) =

{
+∞, r < 1,

0, r ≥ 1.
(4–9)

Thus, the particles do not interact for interparticle sep-
aration distances greater than or equal to unity but ex-
perience an infinite repulsive force for distances less than
unity. The hard spheres have kinetic energy, and there-
fore a temperature, but the temperature enters in a triv-
ial way because the configurational correlations between
the spheres are independent of the temperature. We call
this the classic equilibrium sphere packing, which is both
translationally and rotationally invariant.

In one dimension, the n-particle densities ρn for such
packings are known exactly in the thermodynamic limit.
The density φ lies in the interval [0, 1] but this one-
dimensional packing is devoid of a discontinuous (first-
order) transition from a disordered (liquid) phase to an
ordered (solid) phase. Although a rigorous proof for the
existence of a liquid-to-solid phase transition in two or
three dimensions is not yet available, there is overwhelm-
ing numerical evidence (as obtained from computer sim-
ulations) that such a transformation takes place at suf-
ficiently high densities. The maximal densities for equi-
librium sphere packings in two and three dimensions are
φmax = π/

√
12 and φmax = π/

√
18, respectively, i.e.,

they correspond to the density of the densest sphere pack-
ing in the respective dimension.

Figure 3 shows the three-dimensional radial distribu-
tion function as obtained from computer simulations for
a density φ = 0.49, which is near the maximum value for
the stable disordered branch. It is seen that the packing
exhibits short-range order (i.e., g2(r) has both positive
and negative correlations for small r), but g2(r) decays to
its long-range value exponentially fast after several diam-
eters. By contrast, in the limit d → ∞, it has been shown
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FIGURE 3. The radial distribution function for the classic
three-dimensional equilibrium packing at φ = 0.49 as ob-
tained from molecular-dynamics computer simulations. The
graph is adapted from Figure 3.15 of [Torquato 02].

that the “pressure” [Ruelle 99] of an equilibrium packing
is exactly given by the first two terms of its asymptotic
low-density expansion for some positive density interval
[0, φ0] [Wyler et al. 87, Frisch and Percus 99]. (Roughly
speaking, the pressure is the average force per unit area
acting on an “imaginary planar wall” in the packing due
to collisions between the spheres and the wall.) Frisch
and Percus [Frisch and Percus 99] have established, al-
beit not rigorously, that φ0 = 1/2d. This result for the
pressure implies that the leading-order term of the low-
density expansion of the radial distribution function in
arbitrary dimension [Torquato 02]

g2(r) = Θ(r − 1)
[
1 + 2dα2(r; 1)φ + O(φ2)

]
(4–10)

becomes asymptotically exact in the limit d → ∞ in the
same density interval. The presence of the unit step func-
tion Θ(r − 1) in relation (4–10) means that the scaled
intersection volume α2(r; 1) need be considered only for
values of r in the interval [1, 2]. Since α2(r; 1) is largest
when r = 1 for 1 ≤ r ≤ 2 and α2(1; 1) has the asymp-
totic behavior (3–25), the product 2dα2(1; 1)φ vanishes
no more slowly than (6/π)1/2/[(4/3)d/2d1/2] in the limit
d → ∞ for 0 ≤ φ ≤ 1/2d, and therefore g2(r) tends to
Θ(r − 1) exponentially fast. In summary, we see again
that spatial correlations that exist in low dimensions for
r > 1 completely vanish in the limit d → ∞. Moreover,
this is yet another disordered packing model in which the
high-dimensional asymptotic behavior corresponds to the
low-density asymptotic behavior.

The corresponding n-particle correlation function gn,
defined by (3–11), in the low-density limit [Salpeter 58]

is given by

gn(r12, . . . , r1n)

=
n∏

i<j

g2(rij)
[
1 + 2dαn(r12, . . . , r1n; 1)φ + O(φ2)

]
,

where αn(r12, . . . , r1n;R) is the intersection volume of n

congruent spheres of radius R (whose centers are located
at r1, . . . , rn, where rij = rj − ri for all 1 ≤ i < j ≤ n)
divided by the volume of a sphere of radius R. The scaled
intersection volume αn(r12, . . . , r1n;R)/n has the range
[0, 1]. Now since α2(rij , 1) ≥ αn(r12, . . . , r1n; 1) for any
pair distance rij = |rij | such that 1 ≤ i < j ≤ n, it
follows from the analysis above that in the limit d → ∞
for 0 ≤ φ ≤ 1/2d,

g2(r) ∼ Θ(r − 1) (4–11)

and

gn(r12, . . . , r1n) ∼
n∏

i<j

g2(rij). (4–12)

Again, as in the generalized RSA example with κ = 1, gn

factorizes into products involving only g2’s in the limit
d → ∞. Moreover, we should also note that the stan-
dard RSA process (generalized RSA process with κ = 0)
has precisely the same asymptotic low-density behavior
as the standard Gibbs hard-sphere model [Torquato 02].
More precisely, these two models share the same low-
density expansions of the gn through terms of order φ

and therefore the same asymptotic expressions (4–11),
(4–12).

4.3 Decorrelation Principle

The previous two examples illustrate two important and
related asymptotic properties that are expected to apply
to all disordered packings:

1. the high-dimensional asymptotic behavior of g2 is
the same as the asymptotic behavior in the low-
density limit for any finite d, i.e., unconstrained spa-
tial correlations, which exist for positive densities at
fixed d, vanish asymptotically for pair distances be-
yond the hard-core diameter in the high-dimensional
limit;

2. gn for n ≥ 3 asymptotically can be inferred from a
knowledge of only the pair correlation function g2

and number density ρ.

What is the explanation for these two related asymptotic
properties? Because we know from the Kabatiansky-
Levenshtein asymptotic upper bound on the maximal
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FIGURE 4. The radial distribution function of a three-
dimensional packing of spheres near the maximally random
jammed state [Torquato et al. 00, Torquato 02] at a density
φ = 0.64 as obtained from computer simulations [Torquato
and Stillinger 02]. The delta function contribution at r = 1
(of course, not explicitly shown) corresponds to an average
kissing number of about six.

density that φ must go to zero at least as fast as
2−0.5990d for large d [Kabatiansky and Levenshtein 78],
unconstrained spatial correlations between spheres are
expected to vanish, i.e., statistical independence is estab-
lished. (An example of constrained spatial correlations is
described below.) Such a decorrelation means that the
gn for n ≥ 3 are determined entirely from a knowledge of
the decorrelated pair correlation function g2. In the spe-
cific examples that we considered, the gn factorize into
products involving only g2’s, but there may be other de-
compositions. For example, the gn for n ≥ 3 can be func-
tionals that involve only ρ and g2. We will call the two
asymptotic properties the decorrelation principle for dis-
ordered packings. This principle as well as other results
described in Section 5 leads us to a conjecture concern-
ing the existence of disordered sphere packings in high
dimensions, which we state in Section 5.1.

An example of constrained spatial correlations that
would not vanish asymptotically is illustrated in Fig-
ure 4, where we show the pair correlation function
g2(r) for a three-dimensional sphere packing near the so-
called maximally random jammed state [Torquato et al.
00, Torquato 02]. A special feature of g2(r) for a maxi-
mally random jammed packing is a delta-function contri-
bution at r = 1, which reflects the fact that the average
kissing number (i.e., average number of contacting par-
ticles per particle) is effectively six for this collectively
jammed packing, meaning that the packing is isostatic

[Donev et al. 05]. A positive average kissing number is
required if the packing is constrained to be jammed, and
in Rd this means that the average kissing number is 2d

for either collective or strict jamming [Donev et al. 05].
Isostatic packings are jammed packings with the mini-
mum number of contacts for a particular jamming cate-
gory. According to the decorrelation principle, as d tends
to infinity, g2 for a maximally random jammed packing
would retain this delta-function contribution but the un-
constrained spatial correlations beyond r = 1 would van-
ish. Of course, the manner in which the g2 shown in
Figure 4 approaches the asymptotic limit of a step func-
tion Θ(r−1) plus a delta-function contribution at r = 1 is
crucial. We note that maximally random jammed pack-
ings contain about 2%–3% rattler spheres, i.e., spheres
trapped in a cage of jammed neighbors but free to move
within the cage.

5. A NEW APPROACH TO LOWER BOUNDS

The salient ideas behind our new approach to the deriva-
tion of lower bounds on φmax were actually laid out in our
earlier work [Torquato and Stillinger 02]. The main ob-
jective of that work was to study sphere packings in three
dimensions in which long-range order was suppressed and
short-range order was controlled (i.e., disordered sphere
packings in �3) using so-called g2-invariant processes. A
g2-invariant process is one in which a given nonnegative
pair correlation g2(r) function remains invariant as the
density varies, for all r, over the range of densities

0 ≤ φ ≤ φ∗.

The terminal density φ∗ is the maximum achievable den-
sity for the g2-invariant process subject to satisfaction of
the structure-factor inequality (3–19). A five-parameter
test family of g2’s had been considered, which incorpo-
rated the known features of core exclusion, contact pairs,
and damped oscillatory short-range order beyond con-
tact. The problem of finding the maximal packing frac-
tion φ∗ was posed as an optimization problem: maximize
φ over the set of parameters subject to the constraints
(3–18) and (3–19). We noted in passing that when the
damped-oscillatory contribution to g2 was set equal to
zero, the optimization problem could be solved analyti-
cally for all space dimensions, leading to a terminal den-
sity φ∗ = (d + 2)/2d+1. Under the assumption that such
a g2 was a realizable packing, we also observed that this
φ∗ was a lower bound on the maximal density for any
sphere packing [i.e., φmax ≥ (d + 2)/2d+1] because the
terminal density would have been higher by including the
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damped-oscillatory contribution to g2. This conjectural
lower bound was noted to provide linear improvement
over Minkowski’s lower bound, but we were not aware of
Ball’s similar lower bound [Ball 92] at the time. Since
our original 2002 paper, we also learned about other nec-
essary conditions for the realizability of a point process
for a given number density ρ and g2, such as Yamada’s
condition (3–20). In any event, our brief remarks about
lower bounds on sphere packings were not intended to be
mathematically rigorous.

It is our intent here to make our optimization method-
ology to obtain lower bounds on φmax more mathemat-
ically precise, especially in light of recent developments
and the considerations of the previous two sections. We
then apply the optimization procedure to provide alter-
native derivations of previous lower bounds as well as a
new bound.

We will consider those “test” g2(r)’s that are distri-
butions on Rd depending only on the radial distance r

such that h(r) = g2(r) − 1. For any test g2(r), we want
to maximize the corresponding density φ satisfying the
following three conditions:

(i.) g2(r) ≥ 0 for all r,

(ii.) supp(g2) ⊆ {r : r ≥ 1},
(iii.)

S(k) = 1 + ρ (2π)d/2
∫ ∞

0

rd−1[g2(r) − 1]

× J(d/2)−1(kr)

(kr)(d/2)−1
dr

is greater than or equal to zero for all k.

We will call the maximum density the terminal density
and denote it by φ∗.

Remark 5.1. The conditions (i)–(iii) are just recapitula-
tions of (3–14), (3–18), and (3–19) for this class of test
functions. We will call condition (ii) the hard-core con-
straint.

Remark 5.2. When there exist sphere packings with g2

satisfying conditions (i)–(iii) for φ in the interval [0, φ∗],
then we have the lower bound on the maximal density
given by

φmax ≥ φ∗. (5–1)

The best lower bound would be obtained if one could
probe the entire class of test functions. In practice, we
will consider here only a small subset of test functions and

in particular those that are amenable to exact asymptotic
analysis. In some instances, we will associate with the
terminal density φ∗ an optimized average kissing number
Z∗. Thus, whenever inequality (5–1) applies, the maxi-
mal kissing number Zmax is bounded from below by Z∗,
i.e.,

Zmax ≥ Z∗. (5–2)

In the next subsection, we put forth a conjecture that
states when the conditions (i)–(iii) are necessary and suf-
ficient for the existence of disordered sphere packings.

Remark 5.3. Remarkably, the optimization problem de-
fined above is identical to one formulated by Cohn [Cohn
02]. In particular, it is the dual of the primal infinite-
dimensional linear program that Cohn employed with
Elkies [Cohn and Elkies 03] to obtain upper bounds on
the maximal packing density. One need only replace S(k)
with ĝ−cδ(k), where c plays the role of number density, g

is a tempered distribution, and ĝ is its Fourier transform
in Cohn’s notation. Thus, even if there does not exist a
sphere packing with g2 satisfying conditions (i)–(iii), our
formulation has implications for upper bounds on φmax,
which we discuss in Section 6. For finite-dimensional
linear programs (and many infinite-dimensional ones)
there is no “duality gap,” i.e., the optima of the primal
and dual programs are equal. However, in this infinite-
dimensional setting, it is not clear how to prove that there
is no duality gap [Cohn 02]. Therefore, it is rigorously
true that the terminal density φ∗ can never exceed the
Cohn–Elkies upper bound, which is a desirable feature
of our formulation, for otherwise, the terminal density
could never correspond to a rigorous lower bound.

We will show that for the test radial distribution func-
tions considered in this paper, Yamada’s condition, in-
equality (3–20), is relevant in only one dimension, and
even then in just some cases. A remark about the Ya-
mada condition for sphere packings is in order here. In
earlier work [Torquato and Stillinger 03], we observed
that for any sphere packing of congruent spheres, the
number variance for a spherical window of radius R de-
fined by (3–21) obeys the lower bound

σ2(R) ≥ 2dφRd
[
1 − 2dφRd

]
(5–3)

for any R. This is a tight bound for sufficiently small
R and is exact for R ≤ 1

2 . However, we note here
that if 2dφRd ≤ 1, the Yamada lower bound (3–20) and
lower bound (5–3) are identical. Thus, the Yamada lower
bound for any sphere packing needs to be checked only
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for R > R0, where

R0 =
1

2φ1/d
. (5–4)

5.1 Existence of Disordered Packings in High
Dimensions

We have seen that a necessary condition for the exis-
tence of a translationally invariant point process with a
specified positive ρ and nonnegative g2 is that S(k) be
nonnegative [cf. (3–19)]. In other words, given ρ and
g2, it does not mean that there are some higher-order
functions g3, g4, . . . for which these one- and two-point
correlation functions hold. The function g2 specifies how
frequently pair distances of a given length occur statis-
tically in Rd. The third-order function g3 reveals how
these pair separations are linked into triangles. This ad-
ditional information generally cannot be inferred from
the knowledge of ρ and g2 alone, however. The fourth-
order function g4 controls the assembly of triangles into
tetrahedra (and is the lowest-order correlation function
that is sensitive to chirality) but g4 cannot be determined
by knowing only ρ, g2, and g3. In general, gn for any
n ≥ 3 is not completely determined from a knowledge
of the lower-order correlation functions alone. This is to
be contrasted with general stochastic processes in which
nonnegativity of first- and second-order statistics (mean
and autocovariance) are necessary and sufficient to es-
tablish existence because one can always find a Gaussian
process with such given first- and second-order statistics.
For a Gaussian process, first- and second-order statistics
determine all of the high-order statistics.

There are a number of results that suggest that it is
reasonable to conclude that the generally necessary non-
negativity conditions for the existence of a disordered
sphere packing become necessary and sufficient for suffi-
ciently large d. First, the decorrelation principle of the
previous section states that unconstrained correlations in
disordered sphere packings vanish asymptotically in high
dimensions and that the gn for any n ≥ 3 can be in-
ferred entirely from a knowledge of ρ and g2. Second, as
we noted in Section 4, the necessary Yamada condition
appears to have relevance only in very low dimensions.
Third, we will demonstrate below that other new nec-
essary conditions also seem to be germane only in very
low dimensions. Fourth, we will describe numerical con-
structions of configurations of disordered sphere packings
on the torus corresponding to certain test radial distri-
bution functions in low dimensions for densities up to
the terminal density. Finally, we will show that certain
test radial distribution functions recover the asymptotic

forms of known rigorous bounds. In light of these results,
we propose the following conjecture:

Conjecture 5.4. For sufficiently large d, a hard-core non-
negative tempered distribution g2(r) that satisfies g2(r) =
1 + O(|r|−d−ε) as |r| → ∞ for some ε > 0 is a pair cor-
relation function of a translationally invariant disordered
sphere packing in Rd at number density ρ if and only if
S(k) ≡ 1 + ρh̃(k) ≥ 0. The maximum achievable density
is the terminal density φ∗.

Remark 5.5. A weaker form of this conjecture would re-
place the phrase “for sufficiently large d” with “in the
limit d → ∞.”

Remark 5.6. Employing the aforementioned optimization
procedure with a certain test function g2 and this conjec-
ture, we obtain in what follows conjectural lower bounds
that yield the long-sought asymptotic exponential im-
provement on Minkowski’s bound. Before obtaining this
result, we first apply the procedure to two simpler test
functions that we examined in the past.

5.2 Step Function

The simplest possible choice for a radial distribution
function corresponding to a disordered packing is the fol-
lowing unit step function:

g2(r) = Θ(r − 1). (5–5)

This states that all pair distances beyond the hard-core
diameter are equally probable, i.e., spatial correlations
vanish identically. The corresponding structure factor
[cf. condition (iii)] for this test function in any dimension
d is given by [Torquato and Stillinger 02]

S(k) = 1 − φ23νΓ(1 + ν)
kν

Jν(k),

where ν = d/2. Since there are no parameters to be opti-
mized here, the terminal density φ∗ is readily obtained by
determining the highest density for which the condition
(3–19) is satisfied, yielding

φ∗ =
1
2d

. (5–6)

Now we show that the Yamada condition (3–20) is
satisfied in any dimension for 0 ≤ φ ≤ 2−d. Consider the
more general class of radial distribution functions:

0 ≤ g2(r) ≤ 1 for r > 1. (5–7)
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The test function (5–5) belongs to this class. Note that
for any dimension, the scaled intersection volume given
by (3–24) obeys the inequality

α2(r;R) ≤ 1 − r

2R
for 0 ≤ r ≤ 2R, (5–8)

where the equality applies when d = 1. For g2(r) satisfy-
ing (5–7), relation (3–21) and inequality (5–8) yield the
following lower bound for any d:

σ2(R) ≥ 2dφRd

[
1 + d2dφ

∫ 2R

0

rd−1h(r)
[
1 − r

2R

]
dr

]
.

(5–9)
At φ = 1/2d, the lower bound (5–9) for the test func-

tion (5–5) is given by

σ2(R) ≥ d

2(d + 1)
Rd−1

and because R0 = 1 [cf. (5–4)], we only need to consider
R > 1. In particular, the right side of this inequality is
smallest at R = 1, so that

σ2(R) ≥ d

2(d + 1)
.

Since σ2(R) ≥ 1
4 for d ≥ 1, Yamada’s condition is satis-

fied for all R for the step function (5–5) at φ = 1/2d as
well as all φ < 1/2d.

We already established in Section 4 that there exist
sphere packings that asymptotically have radial distri-
bution functions given by the simple unit step function
(5–5) for φ ≤ 2−d. Nonetheless, invoking Conjecture 5.4
and terminal density specified by (5–6) implies that the
asymptotic lower bound on the maximal density is given
by

φmax ≥ 1
2d

,

which provides an alternative derivation of the elemen-
tary bound (2–2).

Using numerical simulations with a finite but large
number of spheres on the torus, we have been able to
construct particle configurations in which the radial dis-
tribution function (sampled at discretized pair distances)
is given by the test function (5–5) in one, two, and three
dimensions for densities up to the terminal density [Craw-
ford et al. 03, Uche et al. 06]. The existence of such a
discrete approximation to (5–5) of course is not conclu-
sive proof of the existence of such packings in low dimen-
sions, but it is suggestive that the standard nonnegativity
conditions may be sufficient to establish existence in this
case for densities up to φ∗.

5.3 Step Plus Delta Function

An important feature of any dense packing is that the
particles form contacts with one another. Ideally, one
would like to enforce strict jamming (see Section 1). The
probability that a pair of particles form such contacts
at the pair distance r = 1 for the test function (5–5) is
strictly zero. Accordingly, let us now consider the test
radial distribution function given by the previous test
function plus a delta-function contribution as follows:

g2(r) = Θ(r − 1) +
Z

s1(1)ρ
δ(r − 1). (5–10)

Here s1(r) is the surface area of a d-dimensional sphere of
radius r given by (3–13) and Z is a parameter, which is
the average kissing number. Because we allow for inter-
particle contacts via the second term in (5–10), the ter-
minal density is expected to be greater than 2−d, which
will indeed be the case. The corresponding structure fac-
tor [cf. (iii)] for this test function in any dimension d is
given by [Torquato and Stillinger 02]

S(k) = 1 − φ23νΓ(1 + ν)
kν

Jν(k) +
Z2νΓ(1 + ν)

dkν−1
Jν−1(k),

where ν = d/2. The structure factor for small k can be
expanded in a MacLaurin series as follows:

S(k) = 1 + (Z − 2dφ) +
[

2d−2φ

1 + d/2
− Z

2d

]
k2 + O(k4).

The last term changes sign if Z increases past 2dφd/(d+
2). At this crossover point,

S(k) = 1 − 2d+1

d + 2
φ + O(k4).

Under the constraint that the minimum of S(k) occurs
at k = 0, we then have the exact results

φ∗ =
d + 2
2d+1

, Z∗ =
d

2
. (5–11)

We see that at the terminal density, the average kissing
number Z∗ is equal to d/2, which does not even meet the
local jamming criterion described in Section 1.

The Yamada condition (3–20) is violated only for
d = 1 for the test function (5–10) at the terminal density
specified by (5–11). It is easy to verify directly that the
Yamada condition becomes less restrictive as the dimen-
sion increases from d = 2. Interestingly, we have also
shown via numerical simulations that there exist sphere
packings possessing radial distribution functions given by
the test function (5–10) (in the discrete approximation)
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in two and three dimensions for densities up to the termi-
nal density [Uche et al. 06]. This is suggestive that Con-
jecture 5.4 for this test function may in fact be stronger
than is required.

In the high-dimensional limit, we invoke Conjecture
5.4 and the terminal density given by (5–11), yielding
the conjectural lower bound

φmax ≥ d + 2
2d+1

. (5–12)

This lower bound provides the same type of linear im-
provement over Minkowski’s lower bound as does Ball’s
lower bound [Ball 92].

5.4 Step Plus Delta Function with a Gap

The previous test function (5–10) provided an optimal
average kissing number Z∗ = d/2 that did not even
meet the local jamming criterion. Experience with dis-
ordered jammed packings in low dimensions reveals that
the kissing number as well as the density can be substan-
tially increased if there is a low probability of finding
noncontacting particles from a typical particle at radial
distances just larger than the nearest-neighbor distance.
This small-distance negative correlation is clearly man-
ifested in the graph of g2(r) for the three-dimensional
maximally random jammed packing (Figure 4) for val-
ues of r approximately between 1.1 and 1.5. We would
like to idealize this small-distance negative correlation in
such a way that it is amenable to exact asymptotic anal-
ysis. Accordingly, we consider a test radial distribution
function that is similar to the previous one [cf. (5–10)]
but one in which there is a gap between the location of
the unit step function and the delta function at finite d,
i.e.,

g2(r) = Θ(r − σ) +
Z

s1(1)ρ
δ(r − 1). (5–13)

The expression contains two adjustable parameters, σ ≥
1 and Z, which must obviously be constrained to be non-
negative. According to the decorrelation principle of Sec-
tion 4, the location of the step function r = σ must ap-
proach unity asymptotically, i.e., it must approach the
previous test function (5–10). However, as we have em-
phasized, the manner in which the test function (5–13)
approaches (5–10) is crucial. Indeed, we will see that the
presence of a gap between the unit step function and delta
function will indeed lead asymptotically to substantially
higher terminal densities.

The structure factor is given by

S(k) = 1−23νφσdΓ(1 + ν)
(kσ)ν

Jν(kσ)+
2νZΓ(1 + ν)

dkν−1
Jν−1(k).

(5–14)
The goal now is to find the optimal values of the the ad-
justable nonnegative parameters Z and σ that maximize
the density φ subject to the constraint (iii). This search
in two-dimensional parameter space can be reduced by
imposing the further condition that a minimum of the
structure factor occur at k = 0. The MacLaurin expan-
sion of expression (5–14) gives

S = 1 + [Z − (2σ)dφ] +

[
2d−1σd+2φ

d + 2
− Z

2d

]
k2 + O(k4).

Requiring that a zero of S(k) occur at the origin (hyper-
uniformity) such that the quadratic coefficient is nonneg-
ative implies the restrictions

Z = (2σ)dφ − 1 (5–15)

and
(2σ)dφ[dσ2 − (d + 2)] + d + 2 ≥ 0.

Combination of (5–14) and (5–15) yields the structure
factor as

S(k) = 1 − c1(d)
Jν(kσ)
(kσ)ν

+ c2(d)
Jν−1(k)
(kσ)ν−1

, (5–16)

where the d-dependent coefficients c1(d) and c2(d) are
given by

c1(d) = φσd23νΓ(1 + ν) (5–17)

and

c2(d) = [(2σ)dφ − 1]2ν Γ(1 + ν)
d

. (5–18)

Now the problem reduces to finding the optimal value of
the parameter σ(d) as a function of the space dimension
d that maximizes the density φ subject to the constraint
(iii). It will be shown below that the optimal σ is of order
unity and approaches unity in the limit d → ∞. It imme-
diately follows from (5–16) and the asymptotic properties
of the Bessel functions of fixed order that S(k) → 1 for
k → ∞.

In general, S(k) will possess multiple minima, and
thus we want to ensure that the values of S(k) at each
of these minima are all nonnegative. To find the minima
of S(k), we set its first derivative to zero, yielding the
relation

c1(d)
σν−1

Jν+1(kσ) = c2(d)kJν(k), (5–19)
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FIGURE 5. The optimized structure factor for d = 12 and
d = 24.

where we have used the identity

d

dx

[
Jν(x)

xν

]
= −Jν+1(x)

xν
.

For sufficiently small d (d ≤ 200), the search procedure
is carried out numerically using Maple, and is made more
efficient by exploiting the fact that the minima of S(k)
occur at the real solutions of (5–19). Figure 5 shows
the optimized structure factor for d = 12 and d = 24.
Our numerical examination of S(k) for a wide range of
d values has consistently shown that the first minimum
for positive k is the deepest one. Although we have not
proven this rigorously, we assume that this is a general
result.

We should note that the Yamada condition (3–20) is
violated only for d = 1 for the test function (5–13) for the
terminal density φ∗ and associated optimized parameters
σ∗ and Z∗ [calculated via (5–15)]. One can again verify
directly that the Yamada condition becomes less restric-
tive as the dimension increases from d = 2. However, al-
though the test function (5–13) for d = 2 with optimized
parameters φ∗ = 0.74803, σ∗ = 1.2946, and Z∗ = 4.0148
satisfies the Yamada condition, it cannot correspond to
a sphere packing because it violates local geometric con-
straints specified by σ∗ and Z∗. Specifically, for an aver-
age kissing number of 4.0148, there must be particles that
are in contact with at least five others. But no arrange-
ment of the five exists that is consistent with the assumed
pair correlation function (step plus delta function with a
gap from 1 to 1.2946). Simple geometric considerations
show that either some pairs of the five would be forced
into the gap, or they would be restricted to fixed separa-
tions that would correspond to undesired delta functions
beyond the gap. To our knowledge, this is the first exam-
ple of a test radial distribution function that satisfies the

d σ∗ Z∗ φ∗ 2d+1φ∗
d+2

3 1.246997 7.932582 0.5758254 1.842641
4 1.212589 13.71016 0.4252472 2.267985
5 1.186929 21.97918 0.3048322 2.787037
6 1.167000 33.53884 0.2136444 3.418310
7 1.151106 49.42513 0.1471058 4.184343
8 1.137967 70.88348 0.09985085 5.112364
24 1.058992 5473.546 8.245251e-05 106.4095
36 1.041611 76521.15 2.566299e-07 928.1828
56 1.028036 4.248007e06 1.253255e-11 31140.19
60 1.026330 9.179315e06 1.674130e-12 62262.60
64 1.024823 1.968233e07 2.221414e-13 124175.32
80 1.020211 3.908042e08 6.521679e-17 1.922982e06
100 1.016421 1.478804e10 2.288485e-21 5.688234e08
125 1.013311 1.246172e12 5.610270e-27 3.758024e09
150 1.011214 9.698081e13 1.275632e-32 2.319290e11
175 1.009671 7.086019e15 2.745830e-38 1.485866e13
200 1.008510 4.959086e17 5.667098e-44 9.016510e14

TABLE 3. Optimized parameters σ∗, Z∗, and φ∗, and the

ratio 2d+1φ∗
d+2

, which is the relative improvement of the ter-
minal density over the gapless-test-function terminal density
[cf. (5–11)].

two standard nonnegativity conditions (3–18) and (3–19)
and the Yamada condition (3–20), but cannot correspond
to a point process. Thus, there is at least one previously
unarticulated necessary condition that has been violated
in the low dimension d = 2.

In three dimensions one obtains φ∗ = 0.5758254,
σ∗ = 1.246997, and Z∗ = 7.932582. The last of these
requires that some nonzero fraction of the spheres have
at least eight contacting neighbors. We have verified that
valid arrangements of both eight and nine contacts are
possible, thereby avoiding the analogue of the violation
encountered in d = 2. As is the case with the Yamada
condition (3–20), this additional necessary condition ap-
pears to lose relevance as d increases.

The terminal density φ∗ and the associated optimized
parameters σ∗ and Z∗ are listed in Table 3 for selected
values of the space dimension between d = 3 and d = 200.
Note that for d ≤ 56, the terminal density lies below the
density of the densest known packing. For d = 56, the
densest arrangement is a lattice (designated by L56,2(M)
[Nebe 98]) with density φ = 2.327670 × 10−11, which
is about twice as large as φ∗, as shown in the table.
However, for d > 56, φ∗ can be larger than the den-
sity of the densest known arrangement. For d = 60,
the densest known packing is again a lattice (desig-
nated by L56,2(M) [Conway and Sloane 98]) with den-
sity φ = 2.966747 × 10−13, which is about five times
smaller than φ∗, as shown in the table. The next di-
mension for which data are available is d = 64, where
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the densest known packing is the Ne64 lattice [Nebe 98]
with density φ = 1.326615 × 10−12, which is about six
times larger than φ∗. The table also reveals exponential
improvement of the terminal density φ∗ over that for the
gapless case, i.e., φ∗ = (d+2)/2d+1. The crucial question
is whether such exponential improvement persists in the
high-dimensional limit.

To obtain an asymptotic expression for φ∗ for large
d, we use the fact that (2σ)dφ � 1, implying that
c1(d)/c2(d) → d [cf. (5–17) and (5–18)]. Therefore, the
minima of S(k) for large d are the solutions of

Jν+1(kσ)
σν−1

=
k

d
Jν(k). (5–20)

We see that the locations of the minima depend only on σ

(not on φ). The deepest minimum of S(k), after the one
at k = 0, is a zero and occurs at the wave number k =
kmin. (This characteristic is true in any dimension; see
Figure 5.) Therefore, S(k = kmin) = 0, c2(d) = c1(d)/d,
and relation (5–14) gives the condition

c1(d)
kν
min

∆ν(kmin) = 1, (5–21)

where

∆ν(kmin) =
Jν(kminσ)

σν
− kmin

Jν−1(kmin)
d

. (5–22)

The solution of equation (5–21) produces the desired op-
timal values of σ∗ and φ∗, where

φ∗ =
kν
min

23νΓ(1 + ν)σ2ν∗ ∆ν(kmin)
. (5–23)

We find the solutions of (5–20) by linearizing each
Bessel function in (5–20) around its respective first pos-
itive zero, i.e.,

Jν(x) = β1(x0)(x − x0) + O ((x − x0)2
)
,

Jν+1(x) = β2(y0)(x − y0) + O ((x − y0)2
)
,

where

β1(x0) =
1
2
[Jν−1(x0) − Jν+1(x0)], (5–24)

β2(y0) =
1
2
[Jν(y0) − Jν+2(y0)], (5–25)

and x0 and y0 denote the locations of the first positive
zeros of Jν(z) and Jν+1(z), respectively. Similarly, we
employ the linearized form

xJν(x) = x0β1(x0)(x − x0) + O ((x − x0)2
)
.

Use of these relations in (5–20) yields the following equa-
tion for kmin:

kmin ≈ x0 − d(y0 − σx0)
β1
β2

σν−1x0 − dσ
. (5–26)

This formula provides an excellent approximation for
kmin. For example, for d = 200 (or ν = 100), substitution
of the exact values x0 = 108.8361659, y0 = 109.8640469,
and β1/β2 = 1.003189733 as well as the numerical search
solution σ∗ = 1.008510 into this formula predicts kmin =
108.4368917. This value is to be compared to the nu-
merical search solution of kmin = 108.4395. This sup-
ports the fact that the higher-order terms in the afore-
mentioned linearized forms of the Bessel functions are
negligibly small. Indeed, we expect that this can be rig-
orously proved, but we shall not do so here. We will
assume the validity of the linearized forms in the asymp-
totics displayed below.

For large d = 2ν, we make use of the asymptotic for-
mulas

x0 = ν + a1ν
1/3 +

a2

ν1/3
+

a3

ν
+ O

(
1

ν5/3

)
,

y0 = ν + a1ν
1/3 + 1 +

a2

ν1/3
+

a2

3ν2/3
+

a3

ν
+ O

(
1

ν4/3

)
,

where the constants a1, a2, and a3 are explicitly given
in the appendix, Section 7. For d = 200, these formulas
predict x0 = 108.8362067 and y0 = 109.8640871, which
are in excellent agreement with the exact values reported
in the preceding paragraph. Using the asymptotic results
given in the appendix, we obtain that

β1

β2
= 1 +

2
3ν

− 2C2

3C1ν5/3
+ O

(
1
ν2

)
,

where the constants C1 and C2 are given explicitly in
terms of the constants a1 and a2 in the appendix. For
d = 200, for example, this formula together with (7–7)
provides the estimate β1/β2 = 1.007122331, which is to
be compared to the exact result β1/β2 = 1.006215695.

The optimized asymptotic form for σ∗ is obtained by
taking the derivative of both sides of the zero condition
(5–21) with respect to σ and solving for σ using relation
(5–26) for kmin. We obtain that

σ∗ = 1 +
q1

ν
+

q2

ν5/3
+ O

(
1
ν2

)
, (5–27)

where
q1 = 0.90763589355 . . . (5–28)
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is the unique positive root of xex + e2x − 5ex +4 = 0 and

q2 =
a1(8eq1 − 2q1e

q1 − 10e2q1 + 4 + e3q1 + 4q1e
2q1)

3eq1(2q1eq1 − 2q1 + 12 + 3e2q1 − 13eq1)
= −1.279349474. (5–29)

Therefore, expression (5–26) for kmin has the asymptotic
form

kmin = ν + a1ν
1/3 + Q1 +

a2

ν1/3
+ O

(
1

ν2/3

)
, (5–30)

where

Q1 =
2(q1 − 1)
eq1 − 2

= −0.3860921576. (5–31)

These formulas predict σ∗ = 1.008482538 and kmin =
108.4501542, which again are in excellent agreement with
values reported above.

Linearizing each Bessel function appearing in (5–22)
about its first positive zero and using the results of the
appendix yields

∆ν(kmin) ≈ β1(x0)(kminσ∗ − x0)
σν∗

− β3(z0)kmin(kmin − z0)
2ν

,

where β1(x0) is given by (5–24), β3(z0) = [Jν−2(z0) −
Jν(z0)]/2, and z0 is the first positive zero of Jnu−1. Us-
ing relations (5–27) and (5–30) and the results of the
appendix yields the asymptotic expansion of ∆ν(kmin):

∆ν(kmin) =
D1

ν2/3
+

D2

ν4/3
+ O

(
1

ν5/3

)
,

where

D1 =
C1(2 − eq1)

2eq1
,

D2 =
C1 [a1(2eq1 + 6q1e

−q1 − 7) + 3q2(q1 − 1)]
3(2 − eq1)

+
C2D1

C1
.

(5–32)

Note also that(
kmin

ν

)ν

= ea1ν1/3+Q1

[
1 +

E1

ν1/3
+

E2

ν2/3
+ O

(
1
ν

)]

and

σ2ν
∗ = e2q1

[
1 +

2q2

ν2/3
− q2

1

ν
+

2q2
2

ν4/3
+ O

(
1

ν5/3

)]
,

where

E1 = a2 − a2
1

2
, E2 = −Q1a1 +

a4
1 − 4a2

1a2 + 4a2
2

8
,

(5–33)
and Q1 is given by (5–31). For d = 200, these formu-
las [together with the constants specified by equations
(5–28), (5–29), (5–32), (5–33), (7–3), and (7–7)] predict
∆ν(kmin) = 0.00567441932, (kmin/ν)ν = 3353.018128,
and σ2ν

∗ = 5.405924156. These values should be com-
pared to the exact value of ∆ν(kmin) = 0.00559813885,
(kmin/ν)ν = 3301.799093, and σ2ν

∗ = 5.445550297.
Thus, substituting the asymptotic relations above into

the optimal expression (5–23) for the density and invok-
ing Conjecture 5.4 yields the conjectural lower bound

φmax ≥ φ∗ (5–34)

=
1

2[3−log2(e)]ν−log2(e)a1ν1/3+(2q1−Q1) log2(e)

×
[

1
2D1

√
2
π

[
ν1/6 +

E1

ν1/6
+

E2 − 2q2 − D2/D1

ν1/2

+ O
(

1
ν5/6

)]]
,

where we have used the asymptotic relation Γ(1 + ν) ∼
νν

√
2πνe−ν . For d = 200, this asymptotic formula, to-

gether with the constants specified by equations (5–28),
(5–29), (5–32), (5–33), (7–3), and (7–7), predicts φ∗ =
5.626727001 × 10−44, which is in good agreement with
the numerical search solution of φ∗ = 5.667098 × 10−44.
Note also that the formula (5–23) with kmin estimated
from (5–26) yields φ∗ = 5.666392126 × 10−44, which is
remarkably close to the numerical solution. For large d,
result (5–34) yields the following dominant asymptotic
formula for the conjectural lower bound on φmax:

φmax ≥ φ∗ ∼ d1/6

22/3D1
√

π 2[3−log2(e)]d/2

=
3.276100896 d1/6

20.7786524795... d
. (5–35)

This putatively provides the long-sought exponential im-
provement on Minkowski’s lower bound. Note that the
constant D1 = 0.1084878572 appearing in (5–35) is de-
termined from the appropriate relation in (5–32) using
the value for q1 given by (5–28) and the more refined
estimate of C1 given by (7–9).

Substitution of the asymptotic expression (5–35) into
(5–15) and use of (5–2) yields a conjectural lower bound
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on the maximal kissing number

Zmax ≥ Z∗ ∼ 21/3e2q1d1/6

D1
√

π
2[log2(e)−1]d/2

= 40.24850787 d1/6 20.2213475205... d,

which applies for large d. This result is superior to the
best known asymptotic lower bound on the maximal kiss-
ing number of 20.2075...d [Wyner 65]. Note that such a dis-
ordered packing would be substantially hyperstatic (the
average kissing number is greater than 2d [Donev et al.
05]) and therefore would be appreciably different from
a maximally random jammed packing [Torquato et al.
00, Torquato 02], which is isostatic (see Section 4.3) and
hence significantly smaller in density.

6. DISCUSSION

Our results have immediate implications for the linear
programming bounds of Cohn and Elkies [Cohn and
Elkies 03], regardless of the validity of Conjecture 5.4.
As we noted earlier, our optimization procedure is pre-
cisely the dual of the their primal linear programming
upper bound. The existence of our test functions (5–10)
and (5–13), which satisfy conditions (i), (ii), (iii) of Sec-
tion 5 for densities up to the terminal density φ∗, narrows
the duality gap; cf. (5–11) and (5–34). In particular, in-
equality (5–34) provides the greatest lower bound known
for the dual linear program. Moreover, the existence of
the inequalities (5–12) and (5–34) proves that linear pro-
gramming bounds cannot possibly match the Minkowski
lower bound for any dimension d. Finally, this link to the
Cohn–Elkies formulation proves that the terminal den-
sity φ∗ can never exceed the Cohn–Elkies upper bound,
which obviously must be true if the terminal density cor-
responds to a rigorous lower bound.

Conjecture 5.4, concerning the existence of disordered
sphere packings, is plausible for a number of reasons: (i)
the decorrelation principle of Section 4.3; (ii) the neces-
sary Yamada condition appears to have relevance only in
very low dimensions; (iii) other new necessary conditions
described in Section 5.4 also seem to be germane only in
very low dimensions; (iv) there are numerical construc-
tions of configurations of disordered sphere packings on
the torus corresponding to these test radial distribution
functions in low dimensions for densities up to the termi-
nal density [Crawford et al. 03, Uche et al. 06]; and (v)
the test radial distribution functions (5–5) and (5–10)
recover the asymptotic forms of known rigorous bounds.
Concerning the latter point, if Conjecture 5.4 is false,
it is certainly not revealed by the results produced by

the test functions (5–5) and (5–10) because the forms of
known rigorous results, obtained using completely differ-
ent techniques, are recovered. If Conjecture 5.4 is false,
why would it suddenly be revealed by the introduction of
a gap in the test radial distribution function (cf. (5–13))
relative to (5–10)? This would seem to be unlikely and
lends credibility to the conjecture in our view.

Conjecture 5.4, the particular choice (5–13), and our
optimization procedure lead to a lower bound on the
maximal density that improves on the Minkowski bound
by an exponential factor. Our results suggest that the
densest packings in sufficiently high dimensions may be
disordered rather than periodic, implying the existence
of disordered classical ground states for some continuous
potentials. A byproduct of our procedure is an associated
lower bound on the maximal kissing number, which is su-
perior to the currently best known result. By no means
is the choice (5–13) optimal. For example, one may be
able to improve our putative lower bound by allowing the
test function to be some positive function smaller than
unity for 1 ≤ r ≤ σ. Of course, it would be desirable
to choose test functions that make asymptotic analysis
exactly rather than numerically tractable.

Our putative exponential improvement over
Minkowksi’s bound is striking and should provide
some impetus to determine the validity of Conjecture
5.4. As a first step in this direction, it would be fruitful
if one could show that for sufficiently small densities, the
two standard nonnegativity conditions on the pair cor-
relation function g2 are sufficient to ensure the existence
of a point process, whether it is a sphere packing or not.
Another problem worth pursuing is the demonstration
of the existence of a pair interaction potential in Rd

corresponding to a sphere packing for a given ρ and
g2 provided that ρ and g2 are sufficiently small. Such
a proof may be possible following the methods that
Koralov [Koralov 05] used for the lattice setting. It
would also be profitable to pursue the construction of
disordered sphere packings with densities that exceed
1/2d for sufficiently large d.

7. APPENDIX

An asymptotic expression for Jν(x) when ν is large and
x > ν is given by [Watson 58]

Jν(x) = Aν(x)
[
cos[ων(x) − π

4
+ O

(
3x2 + 2ν2

12(x2 − ν2)

)]
,

(7–1)



328 Experimental Mathematics, Vol. 15 (2006), No. 3

where

Aν(x) =

[
2

π
√

x2 − ν2

]1/2

and
ων(x) =

√
x2 − ν2 − ν cos−1(ν/x).

The function Aν(x) cos[ων(x)−π/4] in (7–1) actually rep-
resents the dominant term in the asymptotic expansion
of [Watson 58, p. 244 , equation (4)] for Jν(x) when ν is
large and x > ν, and Aν(x) multiplied by the big-O term
represents the largest absolute error when this dominant
term is used to estimate Jν(x). A problem of central
concern is an estimate of Jν(x) in the vicinity of its first
positive zero x0 when ν is large. The first positive zero
has the asymptotic expansion [Olver 60]

x0 = ν + a1ν
1/3 +

a2

ν1/3
+

a3

ν
+ O

(
1

ν5/3

)
, (7–2)

where

a1 = 1.8557571 . . . , a2 = 1.033150 . . . ,

a3 = −0.003971 . . . . (7–3)

Expanding Jν(x) in a Taylor series about x = x0 and ne-
glecting quadratic and higher-order terms gives the linear
estimate

Jν(x) ≈ 1
2
[Jν−1(x0) − Jν+1(x0)](x − x0),

where we take the Bessel functions on the right side to
be given by the asymptotic forms

Jν+1(x0) = Aν+1(x0)
[
cos[ων+1(x0) − π/4]

+ O
(

3x2 + 2ν2

12(x2 − ν2)

)]
and

Jν−1(x0) = Aν−1(x0)
[
cos[ων−1(x0) − π/4]

+ O
(

3x2 + 2ν2

12(x2 − ν2)

)]
.

We will also need to consider the related functions

Jν+1(x) ≈ 1
2
[Jν(y0) − Jν+2(y0)](x − y0),

Jν−1(x) ≈ 1
2
[Jν−2(z0) − Jν(z0)](x − z0),

where y0 and z0 are the first positive zeros of Jν+1(x) and
Jν−1(x), respectively, which are asymptotically given by

y0 = ν + a1ν
1/3 + 1 +

a2

ν1/3
+

a2

3ν2/3
+

a3

ν
+ O

(
1

ν4/3

)
,

z0 = ν + a1ν
1/3 − 1 +

a2

ν1/3
− a2

3ν2/3
+

a3

ν
+ O

(
1

ν4/3

)
.

Note that the asymptotic expressions for the zeros given
here for ν = 100 (d = 200) predict x0 = 108.8362071,
y0 = 109.8641774, and z0 = 107.8082369, which are in
excellent agreement with exact results x0 = 108.8361659,
y0 = 109.8640469, and z0 = 107.8081033 obtained from
Maple.

Using Maple and the results above, we obtain the fol-
lowing asymptotic expansions:

1
2
[Jν−1(x0) − Jν+1(x0)] =

C1

ν2/3
+

C2

ν4/3

+ O
(

1
ν2

)
,

1
2
[Jν(y0) − Jν+2(y0)] =

C1

ν2/3
+

C2

ν4/3
− 2C1

3ν5/3

+ O
(

1
ν2

)
, (7–4)

1
2
[Jν−2(z0) − Jν(z0)] =

C1

ν2/3
+

C2

ν4/3
+

2C1

3ν5/3

+ O
(

1
ν2

)
,

where

C1 = −
21/4

[√
2f1(a1) + 8a3/2

1 f2(a1)
]

8
√

πa
5/4
1

, (7–5)

C2 =
1

3840
√

πa
13/4
1

(7–6)

×
[
23/4

[
1152a6

1 − 3840a4
1a2 − 180a3

1

+ 600a1a2 − 225
]
f1(a1)

+ 21/4
[
3072a

9/2
1 − 200a

3/2
1

]
f2(a1)

]
,

and

f1(a1) = sin
(

(2a1)3/2

3

)
+ cos

(
(2a1)3/2

3

)
,

f2(a1) = sin
(

(2a1)3/2

3

)
− cos

(
(2a1)3/2

3

)
.

Thus, substitution of the values for the constants a1 and
a2 into the expressions above yields the estimates

C1 = −1.104938082, C2 = 1.627074727. (7–7)

For d = 200 (ν = 100), for example, the asymptotic ex-
pansions (7–4) predict −0.04778125640, −0.04743934518
and −0.04812316762, respectively. This is to compared
to the corresponding exact results: −0.04829366129,
−0.04799533693 and −0.04859672879. Note that al-
though the estimates of the constants C1 and C2 given
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by (7–7) involve a small error due to our use of only the
dominant asymptotic term (7–1), the functional forms of
the asymptotic expansions (7–4) are exact.

We can show that the exact expressions for the con-
stants C1 and C2 appearing in (7–4) are rapidly con-
verging asymptotic expansions in inverse powers of the
constant a1 appearing in (7–2). For example, using the
expansion of [Watson 58, p. 244 , equation (4)], we find
that the first three terms of the expansion of C1 are given
by

C1 =
C11

a
5/4
1

+
C12

a
11/4
1

+
C13

a
17/4
1

+ O
(

1

a
23/4
1

)
, (7–8)

where

C11 = −
21/4

[√
2f1(a1) + 8a3/2

1 f2(a1)
]

8
√

π
,

C12 =
5 · 21/4

[
4
√

2f1(a1) − 7a
3/2
1 f2(a1)

]
384

√
π

,

C13 = −
385 · 21/4

[
13
√

2f1(a1) + 8a3/2
1 f2(a1)

]
221184

√
π

.

The first term of the expansion (7–8) is the dominant one
and is identical to the estimate given in (7–5). The first
term of (7–8) is about 66 times larger than the second
term in absolute value and the second term is about 7
times larger than the third term in absolute value. Sub-
stitution of the constant a1 into (7–8) yields the more
refined estimate

C1 = −1.123958144. (7–9)

This refined estimate differs from the dominant first-term
estimate given in (7–7) in the third significant figure.
One could continue correcting this estimate by including
additional terms in the asymptotic expansion but this
quickly becomes tedious and is not necessary because, as
we show at the end of Section 5, the precise value of C1

is not relevant for the putative exponential improvement
of Minkowski’s lower bound on the density, as specified
by (5–35).
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