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The aim of this paper is to analyze the distribution of analytic
(and signed) square roots of X values on imaginary quadratic
twists of elliptic curves.

Given an elliptic curve E of rank zero and prime conductor
N , there is a weight- 3

2
modular form g associated with it such

that the d-coefficient of g is related to the value at s = 1 of
the L-series of the (−d)-quadratic twist of the elliptic curve E.
Assuming the Birch and Swinnerton-Dyer conjecture, we can
then calculate for a large number of integers d the order of X of
the (−d)-quadratic twist of E and analyze their distribution.

1. INTRODUCTION

Let E be an elliptic curve of prime conductor N and rank
zero, and let

L(E, s) =
∑
n≥1

ann−s

be the L-function of E. By recent work of Wiles and
others it is known that

f =
∞∑

m=1

amqm, q = e2πiτ ,

is a modular form of weight 2, level N , and L(E, s) =
L(f, s). Moreover, f is a cusp form and an eigenfunction
for all the Hecke operators Tn acting on M2(Γ0(N)). If
we normalize to have a1 = 1, then the Fourier coefficients
ai are the eigenvalues.

For d a positive integer such that −d ≡ 0, 1 (mod 4),
we denote by ε−d the quadratic character of (Z/dZ)∗ de-
termined by ε−d(p) =

(
−d
p

)
for primes p. Then

f ⊗ ε−d =
∑
m≥1

amε−d(m)qm,

the twist of f , is the weight-2, level-dividing-Nd2 modu-
lar form of the (−d)-quadratic twist of the curve E, which
we will denote by Ed; and L(Ed, s) = L(f ⊗ ε−d, s).
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A special case of Waldspurger’s formula appears in
[Gross 87] that relates the product L(f, 1)L(f ⊗ ε−d, 1)
to the squared d-coefficient of a weight- 3

2 modular form
g under Shimura correspondence to f .

Moreover, Gross states a procedure for calculating
the weight- 3

2 form g given the weight-2, level-N mod-
ular form f . This procedure comes from the connection
between modular forms on Γ0(N) and the quaternion al-
gebra B ramified at N and ∞.

Basically, one constructs the theta series associated
with certain rank-3 lattices in the quaternion algebra.
These theta series are then modular forms of weight
3
2 . The weight- 3

2 modular form g corresponding to the
weight-2 modular form f will be a linear combination of
these, given by the coefficients of an eigenvector v of the
Brandt matrices of level N .

We will briefly state this procedure, following the no-
tation in [Gross 87]. Consider a maximal order R in
the quaternion algebra B, ramified at N and ∞, and let
{I1, . . . , In} be a set of left-ideal classes for the order R.
Let Ri denote the right (maximal) order for the ideal Ii.

For each right order Ri, one constructs the theta series
gi of the following rank-three Z-lattices: Define S0

i as the
subgroup of elements of trace zero in the Ri-suborder
Z + 2Ri. Let N denote the norm form, which is positive
definite. Then define the theta series gi by

gi(τ) =
1
2

∑
b∈S0

i

qNb =
1
2

+
∑
d>0

ai(d)qd, i = 1, . . . , n.

If t is the type number, that is, the number of distinct
conjugacy classes of maximal orders in B, one gets t dif-
ferent theta series gi (some are repeated).

These theta series are modular forms of weight 3
2 , level

4N , and trivial character, and the coefficients ad satisfy

ad = 0 unless − d ≡ 0 (mod 4) and
(−d

N

)
�= 1. (�)

This is the Kohnen subspace of modular forms of weight
3
2 , which has dimension t and is stable under the Hecke
algebra. The theta series lie in a lattice of rank t, denoted
by M∗, which consists of those forms that in addition to
satisfying (�), have integral coefficients, except (possibly)
for a0, which lies in 1

2Z.

1.1 Jacquet–Langlands Correspondence

Let N be a prime and S2(Γ0(N)) the space of cusp forms
of weight 2 for the congruence subgroup Γ0(N). The
Hecke operators Tp act on this space, and we are inter-

ested in eigenforms f :

f =
∞∑

n=1

anqn (a1 = 1), Tp(f) = apf.

To each of these modular forms f corresponds an eigen-
vector of the Brandt matrices of prime level N : there
is a dimension-one space of eigenvectors v such that
B(N, p)v = apv for all primes p (and for all n ∈ N).

Let v = (v1, . . . , vn) be (up to a constant factor) the
eigenvector of the Brandt matrices of prime level N corre-
sponding to our f ∈ S2(Γ0(N)) coming from the elliptic
curve E.

Define ef = (e1, . . . , en) = (v1/w1, . . . , vn/wn), where
wi is one-half the number of units of the order Ri.

Then

g =
n∑

i=1

eigi =
∑
d>0

mdq
d

is the weight- 3
2 modular form that corresponds to the

weight-2 modular form f . And this is the form involved
in the Waldspurger formula, as related by Gross.

1.2 Waldspurger’s Formula

Let N be a prime number, f a cusp form of weight 2 and
trivial character for Γ0(N), and f ⊗ ε−d the twist of f

by the character ε−d of (Z/dZ)∗ determined by ε−d(p) =(
−d
p

)
for primes p. For d a positive integer such that −d

is a fundamental discriminant and
(−d

N

) �= 1, we have

L(f, 1) L(f ⊗ ε−d, 1) = kN
(f, f)m2

d√
d〈ef , ef 〉

,

where kN = 2 if d ≡ 0 (mod N) and is 1 otherwise,
and (f, f) is the Peterson product. The product 〈. , .〉 is
defined as follows: if v =

∑n
i=1 viei and u =

∑n
i=1 uiei,

then

〈v, u〉 =
n∑

i=1

wiviui.

2. RESTATEMENT AND PROCEDURE

Now we will restate the above formula in a more conve-
nient way. We can replace the product (f, f) in the for-
mula above if we take E to be a strong Weil curve and use
the following result, which can be found in [Cremona 95]:
Let f(τ) be a normalized new form of weight 2 for Γ0(N).
The periods of 2πif(τ) form in this case a lattice Λf , and
the modular elliptic curve Ef = C/Λf is defined over Q
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and has conductor N . Let ϕ : X = Γ0(N)\H∗ −→ Ef

be the associated modular parameterization. Then

4π2‖f‖2 = deg(ϕ)Vol(Ef ),

where

‖f‖2 =
∫

X

|f(τ)|2du dv, τ = u + iv.

If we write the lattice Λf as generated by Ωf (1, τ),
where Ωf is the real period of Ef , then

Vol(Ef ) = Ω2
f Im(τ),

where Im(z) denotes the imaginary part of z and Vol(Ef )
is the volume of the lattice Λf . Replacing this in Wald-
spurger’s formula and rearranging in a convenient way,
we have

L(f, 1)
Ωf

L(f ⊗ ε−d, 1)
2Ωf Im(τ)√

d

= kN
deg(ϕ)m2

d

〈ef , ef 〉 ,

for
(−d

N

) �= 1,where deg(ϕ) is taken from Cremona’s ta-
bles. The factor L(f,1)

Ωf
on the left is a rational number,

which we can calculate with PARI-GP. The denominator
2Ωf Im(τ)√

d
is “almost” the real period of the (−d)-twist of

f , f ⊗ ε−d. That is, it is a rational calculable multiple of
it that depends sometimes on d modulo 8.

2.1 BSD: The Rank-Zero Case

For an elliptic curve E of rank zero, the Birch and
Swinnerton-Dyer (BSD) conjecture states that

L(E, 1)
Ω

=
|X|∏p cp

|Tor(E)|2 ,

where Tor(E) is the torsion group of E, and Ω is the
integral over E(R) of the invariant differential ω. This is
the real period of E or twice the real period, depending
on whether the polynomial p(x) defining E in y2 = p(x)
has negative or positive discriminant.

For Ed, the (−d)-twist of the elliptic curve E, we have
L(Ef ⊗ε−d, 1) = L(Ed, 1), and we substitute the equality
above given by the BSD conjecture into Waldspurger’s
formula. We then have

L(E, 1)
Ω

|Xd|
∏

p cp,d

|Tor(Ed)|2 qd =
kN2 deg(ϕ)m2

d

〈ef , ef 〉 .

The order of Tor(Ed) is constant. The factor qd is the ra-
tional multiple that comes from the quotient Ωd

/Ωf Im(τ)√
d

.
In calculated examples, qd is the constant 2, or it equals
2 or 4 depending on the divisibility of d modulo 8. The

quotient of L(E, 1), the period Ω, and the product of the
fudge factors

∏
p cp,d can be calculated with PARI-GP.

This is the identity we use to calculate the order of
Xd for a family of imaginary quadratic twists of the el-
liptic curve E, having previously calculated the weight-3

2

modular form g:

g(τ) =
∑
d>0

mdq
d.

Moreover, as is known, the order of the Tate–Shafarevich
group is a square. Then we can get signed square roots
of Xd with the sign given by the md-coefficient of the
weight- 3

2 modular form g.
We will concentrate our attention on arithmetic as-

pects of the density distribution of the square roots
of |X| values obtained in the family of (−d)-quadratic
twists of an elliptic curve E. There are relevant results
concerning the distribution of values of L-series due to
Conrey, Keating, Farmer, Rubinstein, Snaith, and De-
launay that will not be mentioned here. For references
see [Conrey et al. 04, Delaunay 01].

3. AN EXAMPLE

We will write explicitly all calculations for the prime con-
ductor N = 17. From Cremona’s tables we see that there
is one isogeny class of elliptic curves of conductor N = 17
and rank zero. We take the curve number one in the
class, that is, the strong Weil curve, in order to use the
above formula to calculate (f, f). This is, in the format
[a1, a2, a3, a4, a6] given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

the curve E = [1,−1, 1,−1,−14]; its torsion has four el-
ements, and the degree of the modular parameterization
ϕ is 1.

With this curve we have to associate a modular form
g of weight 3

2 , which will be a linear combination of the
theta series gi of the lattices S0

i constructed from right
orders Ri in the quaternion algebra ramified at 17 and ∞.

3.1 Calculation of the Theta Series gi

For our calculations we used routines from A. Pacetti’s
qalgmodforms [Pacetti 01] for doing arithmetic over
quaternion algebras and from G. Tornaria’s qftheta3

[Tornaria 04], both of which run under PARI-GP. We
will employ the following notation: [b0, b1, b2, b3] stands
for b0 + b1i + b2j + b3k in the quaternion algebra.

First, we take a maximal order R in the quaternion
algebra ramified at N = 17 and ∞ and calculate a set
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of representatives I1, . . . , In of left ideals for the order R.
For each of these ideals Ii we calculate the right (maxi-
mal) orders Ri. We then take the trace-zero elements of
the lattices Z + 2Ri. The modular forms gi will be the
theta series of these lattices. This can be done in the
following way with routines from the packages above:
qsetprime(17) sets the quaternion algebra ramified at
N = 17 and ∞, and returns a maximal order R in it:

R =
[
[12 , 0, 1

2 , 0], [0, 1
2 , 0, 1

2 ], [0, 0, 1
3 , 1

3 ], [0, 0, 0, 1], 1
]
.

Then qdef tells us which quaternion algebra we are in:

qdef = [−17,−3].

That is, the quaternion algebra ramified at N = 17 and
∞ is

B = {b0 + b1i + b2j + b3k, bi ∈ Q, i2 = −17, j2 = −3}.

We then have to calculate a set of representatives of
left ideals for the maximal order R:

qidcl(R) =
[[ [

1
2 , 0, 1

2 , 0
]
,
[
0, 1

2 , 0, 1
2

]
,
[
0, 0, 1

3 , 1
3

]
,

[0, 0, 0, 1] , 1
]
,[

[1, 0, 1, 0] , [1, 0,−1, 0] ,
[
0, 0, −1

3 , −1
3

]
,[

1
2 , −1

2 , 1
6 , 1

6

]
, 2
]]

.

Thus in this case, we have two different ideal classes.
Then the class number n is 2, and the left ideals are

I1 =
[ [

1
2 , 0, 1

2 , 0
]
,
[
0, 1

2 , 0, 1
2

]
,
[
0, 0, 1

3 , 1
3

]
, [0, 0, 0, 1], 1

]
,

I2 =
[
[1, 0, 1, 0], [1, 0,−1, 0],

[
0, 0, −1

3 , −1
3

]
,[

1
2 , −1

2 , 1
6 , 1

6

]
, 2
]
.

Now we calculate the right orders: Ri = qrorder(Ii)
gives a (maximal) right order for the ideal Ii:

R1 =
[
[1, 0, 0, 0],

[−1
2 , 0, −1

2 , 0
]
,
[−1

2 , −1
2 , 1

6 , 1
6

]
,[

1
2 , −1

2 , −1
6 , −1

6

]
, 1
]
,

R2 =
[
[1, 0, 0, 0],

[−1
2 , 0, 1

3 , −1
3

]
,
[−1

2 , 0, 2
3 , 1

6

]
,[

0, −1
2 , −1

2 , 0
]
, 1
]
.

To calculate the lattices S0
i we have to take the trace-zero

elements of Z + 2Ri. The Z + 2Ri are generated by

Z + 2R1 =
[
[1, 0, 0, 0], [0, 0,−1, 0],

[
0,−1, 1

3 , 1
3

]
,[

0,−1, −1
3 , −1

3

]
, 1
]
,

Z + 2R2 =
[
[1, 0, 0, 0],

[
0, 0, 2

3 , −1
3

]
,
[
0, 0, 4

3 , 1
3

]
,

[0,−1,−1, 0], 1
]
.

Then we have

S0
1 =
[
[0, 0,−1, 0],

[
0,−1, 1

3 , 1
3

]
,
[
0,−1, −1

3 , −1
3

]
, 1
]
,

S0
2 =
[ [

0, 0, 2
3 , −1

3

]
,
[
0, 0, 4

3 , 1
3

]
,

[0,−1,−1, 0], 1
]
,

and the corresponding theta series

gi(τ) =
1
2

∑
b∈S0

i

qNb =
1
2

∑
x∈Z3

qxtAix,

where Ai is one-half the matrix of the bilinear form
Tr(xy) restricted to the lattice S0

i . More precisely, if
f1, f2, f3 is a basis for the lattice L, then the matrix A is
given by

A =
1
2

Tr(fifj).

With qgram (S0
i )/2 we now have the corresponding

quadratic forms: We calculate Ai = 1
2qgram (S0

i ):

A1 =

⎡⎣ 3 −1 1
−1 23 11
1 11 23

⎤⎦ ; A2 =

⎡⎣ 7 −3 −2
−3 11 −4
−2 −4 20

⎤⎦ .

Now we have to calculate the coefficients of the series

gi(τ) =
1
2

∑
x∈Z3

qxtAix, i = 1, 2.

These are computed by the routine qfminim3 (Ai, b, 0, 3),
which returns a small vector of length b+1 whose (k+1)th
component is the number of elements of norm k, that is,
the k-coefficient of the theta series given by the norm
form Ai. Then we calculate ten million coefficients of the
modular forms gi with 1

2qfminim3 (Ai, 10000000, 0, 3).

3.2 Calculation of the Weight-3
2

Form g

Once we have these forms, we have to calculate the
“right” linear combination of them. We need the number
of units in Ri, which we calculate with qrepnum (Ri, 1).
Then we have

w1 = qrepnum (R1, 1)/2 = 3,

w2 = qrepnum (R2, 1)/2 = 1.
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Now we look for the eigenvector of the Brandt matri-
ces corresponding to the modular form f defined above:
We know that there exists an eigenvector v of all the
Brandt matrices of prime level 17 such that Bp(v) = apv

for all prime p. The eigenvalues ap are the eigenvalues of
the modular form f under the action of the Hecke oper-
ators Tp. We use the PARI-GP routine ellap (E, p) and
calculate

a2 = −1, a3 = 0, a5 = −2, a7 = 4, . . . .

Then we calculate the Brandt matrix B2:

B2 = brandt(R, 2) =
[
0 3
1 2

]
.

Recall that R is our maximal order in the quaternion
algebra ramified at 17 and ∞. Since a2 = −1, we look
for the kernel of

B2 − (−matid(2)) =
[
1 3
1 3

]
.

This kernel already has dimension one. Then any vector
in it, for example v = (−3, 1), will be eigenvector of all
Brandt matrices with the required eigenvalues. If it did
not have dimension one, we would need to intersect with
the kernel of B3 − a3I, and so on, until we obtained a
dimension-one eigenspace.

Now we have the eigenvector v = (−3, 1) and the val-
ues w1 = 3, w2 = 1. Then we set ef = ( v1

w1
, v2

w2
) =

(−1, 1), and the weight-3
2 modular form we want is

g = g17 =
v1

w1
g1 +

v2

w2
g2 = −g1 + g2.

3.3 |Xd| Formula

We want now to calculate the |X| value of the (−d)-
quadratic twists of E. If md is the d-coefficient of the
modular form g17, then we know that

L(f, 1)
Ωf

L(f ⊗ ε−d, 1)
2Ωf Im(τ)√

d

=
deg(ϕ)m2

d

〈ef , ef 〉 ,

and we can calculate 〈ef , ef 〉 = w1e
2
f1+w2e

2
f2 = 3(−1)2+

1 · 12 = 4. From Cremona’s tables we get deg(ϕ) = 1.
With PARI-GP we calculate L(f, 1)/Ωf = 1

4 . So the
term L(f, 1)/Ωf on the left cancels with deg(ϕ)/〈ef , ef 〉
on the right.

The ratio Ωd/
2Ωf Im(τ)√

d
does not depend on d, and we

have

Ωd = 2
Ωf Im(τ)√

d
.

The polynomials pd(x) defining the equations of the
twisted curves Ed have negative discriminant. So we have

L(f ⊗ ε−d)
2Ωf Im(τ)√

d

=
L(f ⊗ ε−d)

Ωd
=

|Xd|
∏

p cp,d

|Tor(Ed)|2 .

For the order of the group of torsion points of the (−d)-
twists of E, we have |Tor(Ed)| = 2.

Putting all this together gives us

|Xd| =
4m2

d∏
p cp,d

,

which gives us a way for calculating, with the coefficients
of the form g17, the values of |Xd|. Moreover, since the
order of X is known to be a square,√

|Xd| =
md√∏

p
cp,d

4

gives us a signed square root of |Xd| with the sign given
by the coefficient md. This is what we have calculated
for different elliptic curves of prime conductors and rank
zero.

4. EXPERIMENT AND OBSERVATIONS

By the procedure described above, we can calculate the
signed square root of the analytic value |Xd| for the
imaginary (−d)-quadratic twist Ed of a strong Weil curve
E of prime conductor N and rank zero.

This has been done for curves of conductors N =
11, 17, 19, 37, 67, 73, 89, 109, 139 and for N = 307, this
last one in the four existing isogeny classes of curves all
of rank zero.

To be more precise, we pick a strong Weil curve E of
prime conductor N and rank zero, and calculate between
3 and 10 million coefficients of the weight- 3

2 modular form
g associated with the weight-2 modular form f of the
elliptic curve E.

For those d such that (−d) is a fundamental discrim-
inant and

(−d
N

) �= 1 (that is, the sign of the functional
equation is +1), we have by the Gross formula and the
BSD conjecture that either both L(Ed, 1) and md equal
zero, or both are nonzero and we have a relationship
|Xd| = q2

dm2
d, where qd is a rational number that in-

volves the product of the fudge factors cp,d. Then the
(integer) number qdmd is a signed square root of the or-
der of the group Xd with the sign given by the coefficient
md. We will denote this number by Sd:

Sd =

{
qdmd if L(Ed, 1) �= 0,

0 if L(Ed, 1) = 0.
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The zero coefficients md with (−d) a fundamental dis-
criminant and

(−d
N

) �= 1 correspond to nontrivial zeros
of L(Ed, 1), so by counting these coefficients, we can ob-
tain the density of curves Ed such that the L-function
vanishes nontrivially at s = 1.

From this information we made graphs for the density
distribution of the Sd values obtained (over all of the d’s
with (−d) fundamental and

(−d
N

) �= 1).

4.1 Observations

Conrey, Keating, Rubinstein, and Snaith [Conrey et al.
04] have obtained conjectures for the value distribu-
tion of the Fourier coefficients md based on conjectures
from random-matrix theory for the value distribution of
L(Ed, 1). They observed that for primes p dividing the
order of the torsion group of E, the probability that the
Fourier coefficient md is divisible by p deviates from De-
launay’s prediction for the probability of |X| being di-
vided by a given prime.

In [Rubinstein 02], Rubinstein makes a graph of the
distribution of the coefficients md of the modular form
of weight 3

2 , normalized by the product of the fudge fac-
tors, for the elliptic curve of conductor N = 11. He points
out that in the histogram it is seen that primes 2 and 5
behave differently. He also compares the density of coef-
ficients divided by primes p with Delaunay’s prediction
[Delaunay 01] for the probability of |X| being divisible
by p among elliptic curves of rank zero.

We will state here the observations we made from our
experimental data and explain the density of Sd values di-
vided by p when p is an odd prime that divides |Tor(E)|.
From the graphs, it is clear that there is a symmetry in
the behavior of the positive and negative Sd values. The
sign of Sd seems to play no role. For this reason we will
sometimes restrict our attention to the positive part in
further analysis.

In all examples, the density graphs split essentially
into two, and this splitting corresponds to the parity of
the Sd values. We get two density curves: one for odd val-
ues of Sd and one for even values. Further, when the base
elliptic curve E has nontrivial torsion, these odd/even
density curves also seem to “split” or have a “shadow”
(see Figures 1 and 2).

The order of the group of torsion points of E(Q) seems
to affect the behavior of these graphs in the following
manner.

1. Curves E with odd nontrivial torsion: For elliptic
curves with conductors 11, 19, and 37, the groups of
torsion points of E(Q) have, respectively, orders 5, 3, 3,

71819

0
-160 160

FIGURE 1. Density distribution of Sd for N = 11,
|Tor(E)| = 5.

and these are the only cases of nontrivial odd torsion (as
for prime conductors, the order of the group of torsion
points is one or two—for conductors 64 plus a square—
except for the three cases above and for conductor 17, in
which case the torsion is 4). For these three cases, we get
two density curves that “split”: those above correspond
to odd values of Sd and those below to even values.

Graphically, it is remarked that those values of X
divided by the order of the group of torsion points have
a larger density. What we mean by this is (from right to
left) to choose a point in the density graph of (say) odd
values for (say) conductor N = 11 that has a “slightly”
greater density than its near points in the same “odd-
value curve.” The next point on the left with the same
“property” will be the fifth, and so on. The same goes
for N = 19, 67, and 3.

2. Curves E with trivial torsion: For conductors
67, 109, 139, and 307 the torsion group of the base ellip-
tic curves E is trivial, and we get two well-differentiated
density curves, separated into odd values of Sd for the
upper density curve and even values of Sd for the bottom
one.

3. Curves E with even torsion: The behavior for con-
ductors 17, 73, and 89 is different. The odd/even den-
sity curves cross each other. The orders of the groups
of torsion points of the elliptic curves are, respectively,
4, 2, and 2. In these cases, small even values of Sd have
greater densities than the odd ones; then they are equal,
and for larger values, odd Sd’s have greater densities than
even ones.

This “crossing” of the even/odd density curves is seen
more clearly in the logarithmic graph, as shown in Fig-
ure 3. Here again, the odd/even density graph splits,
with those Sd divided by |Tor(E)| = 4 or 2, depending
on the case, having greater densities than the remaining
ones.

All of this raises the following question: are Sd values
divided by 5 more frequent for N = 11 than for the other
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FIGURE 2. Density distribution of Sd for N = 67,
|Tor(E)| = 1.

conductors calculated? One has the same question for 3
and conductors N = 19, 37, for 4 and conductor N = 17,
and for 2 and conductors N = 73, 89.

These questions are the motivation for Table 1, in
which we calculated for each conductor the density of
those values Sd divided by all the orders of the torsion
groups as well as other small primes p.

In the table, T is the order of the group of torsion
points, I denotes the isogeny class, and mult n stands
for the density of curves Ed whose Sd value is a multiple
of n. “Zeros” is the density of curves Ed with positive
analytic rank, that is, the density of those curves in which
the corresponding L-series vanishes nontrivially at the
symmetry center s = 1 (recall that we are looking only
at quadratic twists in which the sign of the functional
equation is +1), and finally, m denotes the total number
(in millions) of d’s calculated.

CL is a Cohen–Lenstra heuristic on class numbers and
D is Delaunay’s heuristic for |X| being divisible by a
prime p. We will refer to this in the next sections.

This table is to be read by columns. For example,
there is, in general, around 40% of even Sd values, and
this percentage increases to 50% or more when the elliptic
curve E has even torsion (N = 17, 73, 89). If we look at
Sd values divided by 3, they are in the examples about
35%, except for conductors N = 19, 37, in which the
group of torsion points has order 3 and this percentage
increases to 40%. Something similar is seen for Sd values
divided by 4 and 5.

We will now give heuristics for the density of X val-
ues divided by the order of the group of torsion points for
conductors 11, 19, and 37 by the Cohen–Lenstra heuris-
tics [Cohen and Lenstra 84] on class groups of number
fields.

4.2 The Hurwitz Class Number

Let −d be a negative discriminant and K the imaginary
quadratic extension of Q, K = Q(

√−d). Let O be an

order of discriminant −d in K, and denote by h(O) the
order of the finite group Pic(O) and by u(O) the order
of O∗/Z∗. Then u(O) = 1 unless d = −3,−4, which give
3, 2 respectively.

The Hurwitz class number is given by

H(d) = H(O) =
∑

O⊂O′⊂OK

h(O′)
u(O′)

.

As stated in [Gross 87], the prime N is used to define the
modified invariant HN (d) by

HN (d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if N splits in O,

H(O) if N is inert in O,
1
2H(O) if N is ramified in O but does

not divide the conductor of O,

HN (d/N2) if N divides the conductor
of O,

which is zero unless −d ≡ 0, 1 (mod 4) and
(−d

N

) �= 1,
and if W =

∏n
i=1 wi, then WHN (d) is integral.

If d is such that (−d) is a fundamental discriminant,
then O = OK and H(OK) = hd/u(OK), where OK is the
ring of integers in K and hd is the class number. Fur-
thermore, if we request that

(−d
N

) �= 1, then N is either
inert or ramifies in OK and then HN (d) becomes

HN (d) =

⎧⎨⎩
hd

u(OK) if N is inert in K,

1
2

hd

u(OK) if N is ramified in K.

Recall that u(OK) = 1, except for exactly 2 values of d.

4.3 The Cohen–Lenstra Heuristics and |X| Divisibility
by 5 for Conductor N =11

Let G be the weight- 3
2 Eisenstein series defined by

G =
n∑

i=1

1
wi

gi,

where gi are the theta series of the lattices S0
i in the

quaternion algebra ramified at N and ∞, and wi is half
the number of units of the right orders Ri, as stated
previously.

Gross has proved that G has Fourier expansion

G =
N − 1

24
+
∑
d>0

HN (d)qd

and mentions, for N = 11, the following congruence be-
tween the modular form of weight 3

2 , g11, and the weight-
3
2 Eisenstein series G11:

2g11 = −2g1 + 2g2 ≡ 3g1 + 2g2 = 6G11 (mod 5M∗)
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N T I zeros mult 2 mult 3 mult 4 mult 5 mult 7 mult 11 m
11 5 A 0.042 0.369 0.353 0.185 0.234 0.146 0.097 10
17 4 A 0.079 0.592 0.353 0.303 0.210 0.156 0.115 10
19 3 A 0.065 0.371 0.407 0.189 0.206 0.150 0.105 3
37 3 B 0.054 0.440 0.413 0.223 0.207 0.149 0.101 10
67 1 A 0.058 0.403 0.355 0.204 0.208 0.150 0.103 10
73 2 A 0.086 0.539 0.356 0.269 0.212 3
89 2 B 0.072 0.507 0.354 0.257 0.209 3
109 1 A 0.076 0.391 0.322 0.199 0.208 0.153 0.109 3
139 1 A 0.073 0.394 0.354 0.192 0.209 3
307 1 A 0.091 0.390 0.354 0.200 0.210 3
307 1 B 0.087 0.405 0.354 0.208 0.210 3
307 1 C 0.076 0.391 0.354 0.199 0.207 3
307 1 D 0.071 0.401 0.354 0.205 0.209 3
D - - - 0.580 0.360 - 0.206 0.145 0.091
CL - - - - 0.439 - 0.239 0.163 0.099

26 3 A 0.043 - 0.415 - 0.207 0.147 0.098 10
26 7 B 0.036 - 0.353 - 0.207 0.160 0.095 10

TABLE 1. Density of Sd values divisible by 2, 3, 4, 5, 7, 11.

(where M∗ is the lattice defined in Section 1), and in
particular,

md ≡ 3H11(d) (mod 5).

We shall now use this congruence and the Cohen–
Lenstra heuristics for class numbers to explain the den-
sity of |X| divisible by 5 in the family of quadratic twists
of the elliptic curve [0,−1, 1,−10,−20] of conductor 11.
The order of Xd is given by m2

d divided by a power of 2.
So the density of Sd values divided by 5 is the density of
the md’s divided by 5.

Denote by hd the class number of the quadratic field
Q(

√−d). Then the congruence above shows that

{d : md ≡ 0 (mod 5)} = {d : hd ≡ 0 (mod 5)} ,

where both sets are taken over d’s with −d a fundamental
discriminant and

(−d
11

) �= 1. If we make the assumption
that class number being divisible by a prime p and hav-
ing a particular Kronecker symbol are independent facts,
which at least numerically is so, then we have

|{0 < d < X : hd ≡ 0 (mod 5) and
(−d

11

) �= 1
} |

|{0 < d < X :
(−d

11

) �= 1
} |

∼ | {0 < d < X : hd ≡ 0 (mod 5)} |
| {0 < d < X} |

as X → ∞, where, as before, the sets are taken over d’s
such that −d is a fundamental discriminant.

Here is where the Cohen–Lenstra heuristics come in
[Cohen and Lenstra 84]. These are heuristics for the
probability that the class number of a quadratic imag-
inary extension of Q is divisible by a prime p:

lim
X→∞

| {0 < d < X : hd ≡ 0 (mod p)} |
| {0 < d < X} | = f(p),

where

f(p) = 1 −
∏
i≥0

(
1 − 1

pi

)
=

1
p

+
1
p2

− 1
p3

− 1
p7

+ · · · .

By the assumption made above we can say that f(5) ≈
0.239 is the probability of Sd being divisible by 5 among
negative quadratic twists for conductor N = 11.

4.4 |X| Divisibility by 3 for N = 19 and N =37

This exact argument explains the density of X values di-
vided by 3 for conductors N = 19 and N = 37, since the
following congruence holds among the respective weight-
3
2 modular form and Eisenstein series, for both conduc-
tors

g ≡ G (mod 3M∗).

Then we have in these two cases that the density of X
values divisible by 3 is f(3) ≈ 0.439.

This is general and can also be applied when the con-
ductor N is not prime: if p is an odd prime that divides
|Tor(E)|, then the density of |X| ≡ 0 (mod p) in the
family of negative quadratic twists of E is given by the
Cohen–Lenstra heuristics on class numbers in quadratic
imaginary extensions of Q being divisible by p. We are
still working out the details and will return to the topic
in the future.

In order to compare data, in Table 1 we have cal-
culated the densities of |X| divisible by p for curves
26A and 26B (as in Cremona’s tables), which have, re-
spectively, groups of torsion points of orders 3 and 7.
The ternary forms and linear combination that gives the
weight- 3

2 modular forms have been taken from Tornaria’s
data [Tornaria 04]. We restricted for simplicity to d’s
coprime to the conductor, and we have an additional re-
striction on the sign of

(
−d
p

)
for primes p dividing N .

Only these can be obtained by this method.
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-2.3782

-13.084
0 125

FIGURE 3. Logarithmic graph for curve E of conductor
N = 17 of even torsion.

It is clearly seen that p = 3 and p = 7 have bigger
density for curves 26A and 26B respectively, and though
the size of the experiment is rather small, these densities
are not far from Cohen–Lenstra’s prediction. We did not
take into account p = 2, since we have not divided by the
fudge factors to obtain the order of X.

For completeness we also compared our results with
Delaunay’s heuristics for the probability of the order of
X being divided by a prime p. We remark that De-
launay’s heuristics are for elliptic curves of rank zero,
ordered by conductor. However, for small odd primes p

this prediction seem to be applicable to families of even-
rank negative quadratic twists of an elliptic curve. This
density is denoted by D in Table 1. Although for p = 2
this prediction does not seem to apply, since in general
the density of even values of X is less than 50%, it does
seem to be applicable for N = 17. If we are to suppose
that if a prime p divides Tor(E) then the density of |X|
values divided by p is bigger than if it does not, then this
case goes in the same direction, since the group of torsion
points of E is of order 4.

4.5 More Observations

Our next question refers to the nature of the density
curves. In trying to understand the density distribution
and expecting an exponential type, we made graphs for
the logarithm of positive Sd values. In the logarithmic
graphs one can see clearly the consequences of the pre-
vious assertion about the curves corresponding to even
and odd values of Sd crossing each other (see Figure 3)
for twists of elliptic curves E of even torsion, instead of
the typical situation of odd Sd values remaining above
even ones.

Though for the first examples calculated (N =
11, 17, 19, 37), these logarithmic density graphs seemed
to behave linearly for even values of Sd, for N =
67 this was not the case. In other examples (N =
73, 89, 109, 139, 307), it is seen that we cannot assume
a linear behavior, since for small values of Sd we get a

-2.8033

-14.249
0 261

FIGURE 4. Logarithmic graph for conductor N = 67.

-3.1406

-16.134
0 239

FIGURE 5. Logarithmic graph and best linear approxima-
tion for conductor N = 11.

(greater or lesser) separation (above) from the line. In-
stead, it is clear that the logarithm of odd Sd values is
not linear, having greater densities for small values and
aligning with the even-Sd graph. There is one exception
to this, for conductor N = 37, in which both even and
odd logarithmic values behave almost linearly. We ob-
serve, for what it’s worth, that this elliptic curve is the
only one in the examples analyzed that has two connected
components over the real numbers.

The typical situation for curves E of trivial or odd
torsion is shown in Figures 4 and 5. The situation is the
same for density logarithmic graphs of curves E of even
torsion.

4.6 About Theta Series

Graphs have been made for densities of the coefficients
ad of each of the weight- 3

2 theta series gi involved in the
linear combination that gives the theta series g associ-
ated with the elliptic curve E. Most of the coefficients
are zero. Between the nonzero ones there is no evidence
of the order of the group of torsion points of the ellip-
tic curve E in the density of the coefficients divided by
2, 3, 4, 5 as in the S-values, even if we restrict to those d’s
that are fundamental discriminants and with the correct
Kronecker symbol.

It is surprising, however, that for conductor 11 the
density distribution for the coefficients of one of the theta
series is a graph that separates into five density curves,
which is the order of the group of torsion points. Odd



364 Experimental Mathematics, Vol. 15 (2006), No. 3

11394

0
0 6804

FIGURE 6. Density distribution of theta coefficients g1;
ternary form has four automorphisms, E of conductor 11.

7529

0
1 2124

FIGURE 7. Density distribution of theta coefficients g1;
ternary form has four automorphisms, E of conductor 19.

coefficients are insignificant, and the even ones split ac-
cording to their congruence modulo 24. The same occurs
for N = 19 and 37: the graph for the density distribution
of the coefficients of the theta series splits into three, cor-
responding to the congruence of the coefficients modulo 8
or 4 (depending on the case). For N = 17 we also have a
graph that splits into five density curves, similar to that
for conductor 11, according to congruency modulo 24.

The only difference we can point out at the moment
in the examples calculated is that when the order of the
group of torsion points of E is greater than 2, we obtain
“cloudy” graphs.

When the elliptic curve E has torsion 1 or 2, the sit-
uation in the examples calculated seems to be clearer.
We get neat graphs and the shapes of these density co-
efficient graphs seem to depend on the number of au-
tomorphisms of the corresponding ternary form. The
density graphs for nonzero coefficients divide essentially
in two, depending on the number of automorphisms of
the ternary form involved. For ternary forms that have
one automorphism, the coefficients split essentially into
even/odd ones, with major density for the even ones. For
two automorphisms, odd coefficients are in a much lower
proportion than even ones. The density curve for the
even coefficients splits in two, depending on congruence
modulo 4. For four automorphisms, odd coefficients are
in an insignificant proportion. The typical situation is ex-
emplified in Figures 8 and 9 for a curve E of conductor

18958

0
1 1154

FIGURE 8. N = 67, coefficient density for theta series of
ternary form with two automorphisms.

12047

0
1 1168

FIGURE 9. N = 67, coefficient density for theta series of
ternary form with one automorphism.

N = 67 of torsion 1. All these graphs can be found on-
line at http://www.expmath.org/expmath/volumes/15/
15.3/quattrini/.

Of the graphs available at the web site,
twistN rtshadist.ps gives the density distribu-
tion of the signed square roots of X for the elliptic curve
of conductor N with sign given by the d-coefficient md.
The graphs for the density distribution of the coefficients
of the theta series gi are in twistN distgi.ps. The
theta series are numbered accordingly with ternary
forms, which we do not give explicitly here, but they are
at the web site. The graph twistN distg.ps gives the
coefficient distribution of the linear combination g that
corresponds to f .
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