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We present a numerical study for the first Dirichlet eigenvalue of
certain classes of planar regions. Based on this, we propose new
types of bounds and establish several conjectures regarding the
dependence of this eigenvalue on the perimeter and the area.

1. INTRODUCTION

The well-known Faber–Krahn inequality states that of all
sufficiently regular bounded domains with the same vol-
ume, the ball has the smallest first Dirichlet eigenvalue.
In the case of a planar domain Ω with area A, this can
be stated as

λ1(Ω) ≥ πj2
0,1

A
, (1–1)

where j0,1 is the first positive zero of the Bessel function
J0, and equality holds for the disk.

If we now restrict the class of domains under consid-
eration, it is possible to improve the above result. This
can be done in several different ways, of which we shall
now discuss some examples.

One possibility is to consider the class of n-polygons,
for which Pólya and Szegő proposed the following in
[Pólya and Szegő 51].

Conjecture 1.1. Of all n-polygons with the same area, the
regular n-polygon has the smallest first Dirichlet eigen-
value.

Using Steiner symmetrization, Pólya and Szegő proved
the conjecture for the case of triangles and quadrilaterals
in [Pólya and Szegő 51], and as far as we are aware, no
progress whatsoever has been made on this problem over
the last forty years.

If we denote by P reg
n the regular n-polygon of unit

area, Pólya and Szegő’s conjecture may be stated, in the
same fashion as (1–1), as the following inequality for the
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first Dirichlet eigenvalue of an n-polygon of area A:

λ1(Pn) ≥ 1
A

λ1(P reg
n ), (1–2)

with equality if and only if Pn is the regular n-polygon.
For the case of triangles and quadrilaterals this yields

λ1(P3) ≥ 4
√

3π2

3A
and λ1(P4) ≥ 2π2

A
.

These bounds are isoperimetric inequalities of the
same type as the Faber–Krahn bound, and indeed, if the
Pólya–Szegő conjecture holds, the Faber–Krahn inequal-
ity can be seen as the limit of (1–2) as n goes to infinity.
Their limitation is that since the estimate is based only
on the area of the domain under consideration, they do
not take into account any measure of the deviation from
the optimizer. In order to do this, one normally needs to
restrict more the class of domains for which the inequal-
ity will be applicable. If we consider, for instance, the
class of convex planar domains K, we have that for all
K ∈ K,

π2L2

16A2
≤ λ1(K) ≤ π2L2

4A2
, (1–3)

where A and L denote the area and boundary length
of K, respectively. The left-hand inequality is due to
Makai [Makai 62], while the right-hand inequality was
proven by Pólya in [Pólya 60], and as was pointed out
in [Osserman 77], it actually holds for arbitrary doubly
connected domains; see the examples regarding this issue
given in the last section. Note also that as has been
pointed out in [Freitas 06], it is possible to improve on
the lower bound in (1–3). This is done using Protter’s
bound [Protter 81]

λ1(K) ≥ π2

4

[
1
ρ2

+
1
d2

]
,

where ρ and d denote the in-radius and the diameter of
K, respectively. Following Makai’s argument one is then
led to

λ1(K) ≥ π2

4

[
L2

4A2
+

1
d2

]
.

All this suggests that one might try looking for im-
proved bounds of the same form as (1–3) under the re-
striction that K is now an n-polygon, which, in the case
of lower bounds, will be assumed to be convex. However,
since the right- and left-hand-side inequalities in (1–3)
are attained in the limiting case of a long thin rectangle
and a narrow circular sector, respectively, this will not be
possible in general, and one has thus to look for bounds

that include the quantities L and A in a more involved
way; see, however, Conjecture 5.1 and [Freitas 06].

Since, as illustrated by the Pólya–Szegő conjecture,
these problems are notoriously difficult, we set out to
obtain numerical data that would allow us to uncover
any underlying structure of the dependence of the first
eigenvalue on L and A. For instance, since there is clearly
a relation between geometric and spectral isoperimetric
inequalities, an obvious question is whether for fixed area
there are any conditions under which the first eigenvalue
is a monotone function of the length of the boundary.
That this cannot be true for general convex domains may
be seen by considering an isosceles right triangle T with
area 1

2 , and a rectangle R of sides 5
4 and 2

5 , for which we
have

L(R) =
33
10

< 2 +
√

2 = L(T ),

while
λ1(R) =

689
100

π2 > 5π2 = λ1(T ).

We will see that even when we consider this issue in more
restricted classes such as triangles, there exists no direct
relation between the monotonicity of the perimeter and
that of the first Dirichlet eigenvalue.

The other point we address is the existence of more
precise bounds for the first eigenvalue, and what quanti-
ties should be involved here. It is our belief that at the
present stage, it would be useful to obtain some insight
into how the different quantities should be related, and
that this is best done numerically. Indeed, the data gath-
ered suggest some new and, we hope, fruitful research
directions in this area. As an example, we single out the
new type of bounds that take on the form of the func-
tions Fn defined below, and the fact that, depending on
the choice of parameters, one may obtain both upper and
lower bounds.

The main purpose of this paper is thus to investigate
numerically new types of bounds for the first Dirichlet
eigenvalue of polygons based on the considerations made
above. We will explore two different variations on this.
The first is to look for bounds that add a term that will
take into account the length of the boundary. A natural
way of doing this is to consider expressions of the form

c1

A
+ c2

L2 − κnA

A2
, (1–4)

where c1 and c2 are constants to be determined, and

κn = 4n tan
π

n

is the corresponding isoperimetric constant, that is, κn

is such that for any n-polygon one has L2 − κnA ≥ 0,
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with equality if and only if the polygon is regular. In
this way, one is including a correction due to what might
be called the isoperimetric defect of the polygon. Such
an idea is not new and was already used in [Payne and
Weinberger 61], where it was shown that for a bounded
simply connected domain Ω in R2, one has

λ1(Ω) ≤ πj2
0,1

A

[
1 +

(
1

J2
1 (j0,1)

− 1
)(

L2

4πA
− 1
)]

.

(1–5)
Here J1 is the Bessel function of the first kind of order 1.
What is new in our approach is that we study the possi-
bility of extending bounds of the above type to polygons
with n sides, and not only as upper bounds, but also
as lower bounds. Moreover, the limiting case we obtain
for the upper bounds as we let the number of sides go
to infinity suggests an upper bound for simply connected
domains that improves on (1–5) and is in agreement with
the numerical studies that were carried out; see Conjec-
ture 6.1.

Rewriting the terms in (1–4) in a more convenient way,
we shall thus look for bounds of the form

Fn(L,A, α, β) = π2 L2 − αA

βA2
,

where α and β are constants to be determined for each
n. We point out that if one writes down an explicit ex-
pression for the first eigenvalue of a rectangle in terms of
its area and perimeter, one is led to the expression

λ1(R) = F4(L,A, 8, 4) = π2 L2 − 8A

4A2
.

An interesting feature of these expressions is that, as
was mentioned above, depending on the values of the pa-
rameters α and β, the numerical data gathered indicate
that there exist both lower and upper bounds that are of
this form. In the case of the lower bound, we shall present
a conjecture that if true, implies Pólya and Szegő’s con-
jecture in the convex case; see Conjecture 5.2.

Another set of bounds that we shall explore in this
paper is related to the bounds given by (1–3). Namely,
we shall now consider the way in which the exponents in
those expressions are allowed to vary. To this end, we
shall consider functions of the form

Gn(L,A, α, q) = α
L2(q−1)

Aq
.

As with the case of the bounds given by Fn, this will
allow us to obtain both upper and lower bounds for the
first eigenvalue of n-polygons.

The organization of the paper is as follows. We begin
by describing the numerical method used. In Section 3 we
investigate the behavior of the first eigenvalue of convex
polygons of fixed area and show that even in the case of
triangles, λ1 does not behave monotonically with respect
to the perimeter.

Then, in Sections 4 and 5, we present numerical data
obtained for one- and two-term bounds, of the form Gn

and Fn, respectively, and, based on the results obtained,
present a series of conjectures. In the last section we
discuss the results obtained.

2. THE NUMERICAL METHOD

Let Ω ⊂ R2 be a bounded domain. We will consider
the two-dimensional Dirichlet eigenvalue problem for the
Laplace operator. This is equivalent to determining the
resonance frequencies κ that satisfy the Dirichlet problem
for the Helmholtz equation

∆u + κ2u = 0 in Ω,

u = 0 on ∂Ω,
(2–1)

for a nonnull function u.
We will describe the approach to this problem with a

mesh-free method, the method of fundamental solutions.
For details, see [Alves and Antunes 05].

A fundamental solution Φκ of the Helmholtz equation
satisfies

(∆ + κ2)Φκ = −δ,

where δ is the Dirac delta distribution. In the two-
dimensional case, we take

Φκ(x) =
i

4
H

(1)
0 (κ |x|),

where H
(1)
0 is the first Hänkel function.

Let Γ̂ be, for instance, the boundary of a bounded
open set Ω̂ ⊃ Ω̄, considering Γ̂ as surrounding ∂Ω. A
density result obtained in 2000 by Alves [Alves 00] states
that if κ is not an eigenfrequency, then

span
{

Φκ(x − y)|x∈∂Ω : y ∈ Γ̂
}

= L2(∂Ω).

This result allows us to approximate an L2 function de-
fined on ∂Ω, with complex values, using a sequence of
functions

um(x) =
m∑

j=1

αm,jΦκ(x − ym,j) (2–2)
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that converges to u |Γ in L2(∂Ω). Every function of the
form (2–2) satisfies the Helmholtz equation in the domain
Ω because

⋃m
j=1 {ym,j} ⊂ Ω̄C .

We will define m collocation points xi ∈ ∂Ω and m

source points ym,j ∈ Γ̂ to obtain the system

m∑
j=1

αm,jΦκ(xi − ym,j) = 0, xi ∈ ∂Ω.

This allows us to approximate the boundary condition
of problem (2–1). Therefore the numerical algorithm to
calculate the eigenfrequencies is to find the values κ for
which the m × m matrix

A(κ) = [Φκ(xi − yj)]m×m

has a null determinant. We consider a particular choice of
the points x1, . . . , xm ∈ ∂Ω and y1, . . . , ym ∈ Γ̂ described
in [Alves and Antunes 05].

The components of the matrix A(κ) are complex num-
bers, so the determinant is also a complex number. We
consider the real function g(κ) = |det[A(κ)]|. If κ is an
eigenfrequency, κ is a minimizer where g(κ) = 0. To
approximate the eigenfrequencies we calculate the points
where the local minima are attained using an algorithm
based on the golden-ratio search method.

Once we have an eigenfrequency determined, we may
obtain the eigenvalue just by calculating λ = κ2.

To obtain an eigenfunction associated with the eigen-
frequencies κ1, κ2, . . . , we use a collocation method on
m+1 points, with x1, . . . , xm on ∂Ω and a point xm+1 ∈
Ω. Then, the approximated eigenfunction is given by

ũ(x) =
m+1∑
k=1

αkΦki
(x − yk),

and to exclude the solution ũ(x) ≡ 0, the coefficients αk

are determined by the resolution of the system

ũ(xi) = 0, i = 1, . . . ,m,

ũ(xm+1) = 1.
(2–3)

3. RESULTS FOR λ1 ON POLYGONS

As a first approach we considered a series of polygons
with the number of sides varying between three and eight,
and plotted the first Dirichlet eigenvalue as a function of
the perimeter; see Figure 1.

The results obtained show that in general, λ1 is not
necessarily increasing with the length of the boundary.
An example of this can be seen by considering the two

FIGURE 1. Plots of λ1(L) for convex n-polygons of
unit area with n = 3, 4, 5, 6, 7, 8.
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FIGURE 2. Plot of the triangles T1 (thin line) and T2

(bold line).

triangles T1 and T2 with unit area, which are shown in
Figure 2.
We believe that all the digits presented in Table 1 for the
values of λ1 are correct. The triangle T2 has a smaller
perimeter than T1, and we shall prove numerically that
T2 has a larger value of λ1. In order to do this, we will
use a result from [Fox et al. 67] that was simplified and
extended in [Moler and Payne 68].

T1 T2

59.05014828 60.49209561
angles (degrees) 57.74089539 56.97940476

63.20895633 62.52849962
L 4.56271413 4.56271232
λ1 22.81833704 22.81835620

TABLE 1. Perimeter and λ1 for the triangles T1 and T2.
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Let λ and u be an eigenvalue and eigenfunction satis-
fying the Dirichlet problem

−∆u = λu in Ω,

u = 0 on ∂Ω.
(3–1)

In general, the numerical method that is used allows
us to obtain λ̃ and ũ, an approximate eigenvalue and
eigenfunction satisfying not problem (3–1), but

−∆ũ = λ̃ũ in Ω,

ũ = ε(x) on ∂Ω,
(3–2)

where ε(x) is a function that is small on ∂Ω.

Theorem 3.1. If λ̃ and ũ satisfy problem (3–2), there
exists an (exact) eigenvalue λk of problem (3–1) such
that ∣∣∣λk − λ̃

∣∣∣
λk

≤ θ, (3–3)

where

θ =

√
A supx∈∂Ω |ε(x)|

‖ũ‖L2(Ω)

. (3–4)

If in addition, ‖ũ‖L2(Ω) = 1 and uk is the normalized
orthogonal projection of u onto the eigenspace of λk, then

‖uk − ũ‖L2(Ω) ≤
θ

ρk

(
1 +

θ2

ρ2
k

)1/2

, (3–5)

where

ρk := min
λn �=λk

∣∣∣λn − λ̃
∣∣∣

λn
. (3–6)

Using inequality (3–3) we obtain(
1

1 + θ

)
λ̃ ≤ λk ≤

(
1

1 − θ

)
λ̃, (3–7)

yielding the results for the triangles T1 and T2 shown in
Table 2, where the eigenfunction was obtained with the
procedure described in Section 2 and the integral was
calculated numerically. To obtain an approximation for
supx∈∂Ω |ε(x)| we calculate maxi |ũ(zi)|, where the zi are
1001 points on ∂Ω.

T1 T2

supx∈∂Ω ε(x) 4.077068 × 10−8 8.0378213 × 10−8

‖ũ‖L2(Ω) 0.637602 0.620147

TABLE 2. Results for the approximations of the eigen-
functions of T1 and T2.

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

FIGURE 3. Plot of the boundary of the polygons Q1

(bold line), Q2 (thin line), and the square (dashed
line).

Q1 Q2 P reg
4

L 4.00219305 4.00221975 4

λ1 19.782509 19.752103 19.739208

TABLE 3. Perimeter and λ1 for the quadrilaterals Q1,
Q2 and P reg

4 .

Applying the bounds (3–7), we obtain

22.81835437 < λ1(T2) < 22.81835803

and
22.81833558 < λ1(T1) < 22.81833850,

so
λ1(T1) < λ1(T2).

The lack of general monotonicity on the perimeter for
the case of convex quadrilaterals is easier to observe. Let
Q1 and Q2 be the quadrilaterals with unit area shown
in Figure 3. Here Q1 is a rectangle with side lengths
3101/3000 and 3000/3101, and Q2 has vertices(

−1
2
,−1

2

)
,

(
1
2
,−1

2

)
,

(
1
2
,

7
15

)
,

(
−1

2
,

8
15

)
.

We obtain the results shown in Table 3. All the dig-
its presented for the values of P reg

4 and Q1 are correct,
since we have an explicit expression for the eigenvalues

3 4 5 6 7 8 9

19

20

21

22

πj0,1
2

FIGURE 4. λ1(n) for the polygons P reg
n with unit area,

3 ≤ n ≤ 9.
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3 4 5 6 7 8

1

1.025

1.05

1.075

1.1

1.125

1.15

FIGURE 5. qn for the polygons P reg
n with unit area,

3 ≤ n ≤ 8.

of rectangles. We believe that all the digits presented for
Q2 are correct.

In Figure 4 we represent the first eigenvalue λ1 for the
first seven regular polygons P reg

n with unit area. The dot-
ted curve denotes the limiting case of the first eigenvalue
of the disk. In Figure 5 we represent the quotients

qn :=
λ1 (P reg

n )
λ1

(
P reg

n+1

) .
These results suggest the following conjecture.

Conjecture 3.2. It is conjectured that

λ1 (P reg
3 ) > λ1 (P reg

4 ) > · · · > λ1 (B) ,

where B is the disk. Furthermore, we have q3 > q4 >

q5 > · · · .

Remark 3.3. Note that Conjecture 1.1 trivially implies
the first part of Conjecture 3.2.

4. ONE-TERM BOUNDS

In the introduction, we recalled some known estimates
involving the terms 1/A and L2/A2. These are particular
instances of more general terms of the type

L2(q−1)

Aq
, q ≥ 1.

We shall now consider bounds based on

Gn(L,A, α, q) = α
L2(q−1)

Aq
, q ≥ 1. (4–1)

Consider first the case of triangles, for which we shall
determine the value of α as a function of the exponent
q, so that equality holds for the case of the equilateral
triangle. This yields

α = 3(1−3q/2)4(2−q)π2.

FIGURE 6. Plots of λ1(L) and the corresponding lower
and upper bounds for triangles and quadrilaterals of
unit area.

Then we choose the values of q giving lower and upper
bounds for all the triangles considered. Proceeding in
this way, we are led to the following estimates:

λ1(L,A) ≤ G3(L,A, α0, q), q ≥ q0,

λ1(L,A) ≥ G3(L,A, α0, q), q ≤ q1,

with q0 ≈ 1.76 and q1 ≈ 1.68.
In Figure 6 we show the plots of λ1(L) together with

the corresponding lower and upper bounds for the case
of triangles of unit area.

For the case of quadrilaterals, we observed numerically
that the best lower bound gives equality in the cases of
both the square and the equilateral triangle. We obtain
α = 2(5−4q)π2, q0 ≈ 2.96, and q1 ≈ 1.54. The corre-
sponding results are shown in Figure 6.

For the remaining n-polygons we followed the same
procedure to determine the two constants q0 and q1 giv-
ing lower and upper bounds, respectively. We observed
numerically that choosing the value of the parameters α

and q such that equality holds in the case of regular poly-
gons P reg

n and P reg
n−1 yields lower bounds. In this case the

system to obtain the parameters is nonlinear, but it can
easily be solved, for instance, with Newton’s method for
systems.

5. TWO-TERM BOUNDS

5.1 Triangles

We shall now present our results for bounds of the type
(1–4). As before, we begin with the case of triangles, for
which we look for bounds of the type

E3(L,A, θ) := F3

(
L,A, 12

√
3 − 4π2

√
3θ

,
π2

θ

)
=

4π2

√
3A

+ θ
L2 − 12

√
3A

A2
.

(5–1)

From the values obtained for the triangles considered,
we conjecture that

λ1(L,A) ≤ E3(L,A, θ), θ ≥ θ0,

λ1(L,A) ≥ E3(L,A, θ), θ ≤ θ1,
(5–2)
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with θ0 ≈ 0.77 and θ1 ≈ 0.67 (see Figure 7). In par-
ticular, we conjecture that for triangles there is a simple
upper bound that is better than the more general bound
of Pólya’s given in (1–3):

Conjecture 5.1. For any triangle T we have

λ1(T ) ≤ π2L2

9A2
.

In this respect, we remark that for a triangle T with
sides of lengths �1 ≤ �2 ≤ �3, it has recently been proven
in [Freitas 06] that

π2

(
4
�23

+
�23

4A2

)
≤ λ1(T ) ≤ π2

3A2

(
�21 + �22 + �23

)
. (5–3)

In the first plot of Figure 7 we present the values of
λ1(L) for the unit-area triangles considered. We plot
the lower and upper bounds that we obtained (bounds
(5–2)); we also show (with a dashed line) the bound in
Conjecture 5.1.

5.2 Quadrilaterals

A similar analysis may be carried out for quadrilaterals,
and with the values obtained, we conjecture that we now
have

π2 (2
√

3 − 3)L2 + 4
√

3A

6(3
√

3 − 4)A2
≤ λ1(Q) ≤ π2 L2 − 8A

4A2
. (5–4)

The numerical evidence gathered seems to indicate
that these will be the best estimates involving the terms
1
A and L2

A2 . Equality for the lower bound is again attained
in the case of both the square and the equilateral triangle.
Equality holds in the upper bound for rectangles. Note
that now, in contrast to the case of triangles, it is not pos-
sible to have an upper bound of the form c(L/A)2 that
would improve on that of Pólya in inequality (1–3), since
this latter bound is attained asymptotically for long thin
rectangles; we can also see that the value of θ for which
we have only the (L/A)2 term is no longer within the
range giving upper bounds. Based on the upper bound
for triangles in (5–3), we will, however, be able to suggest
another class of bounds of that type for general polygons;
see Section 5.3 below. In the case of a quadrilateral of
side lengths �i, i = 1, . . . , 4, this reduces to

λ1(Q) ≤ π2

2A2

4∑
i=1

�2i ,

which is known to hold in the case of parallelograms
[Hersch 66].

FIGURE 7. Plots of λ1(L) and the corresponding
bounds for triangles and quadrilaterals.

The results for quadrilaterals (bounds (5–4)) are
shown in the second plot in Figure 7.

5.2.1 Rhombic Membranes. The special case of the
rhombus received considerable attention in the 1960s, not
just theoretically but also from a numerical perspective
[Hooker and Protter 60/61, Moler 69, Stadter 66]. The
reasons for this are twofold. One the one hand, and as
was stated in [Hooker and Protter 60/61], “it is a re-
markable fact that the exact value is unknown in analytic
form except in the case of a square (and the degenerate
case of a slit or a strip).” On the other hand, the rhom-
bus turns up naturally in the process of applying Steiner
symmetrization to quadrilaterals.

In this section we compare our results for λ1/π2 to
those given in [Moler 69, Stadter 66, Kuttler and Sigillito
85] for skew angles φ, as shown in Figure 8.

FIGURE 8. Rhombic domain.

Our bounds are obtained using Theorem 3.1, and
so their accuracy depends on the approximation of the
eigenfunction on the boundary of the domain. We are not
able to obtain bounds better than Stadter’s or Kuttler–
Sigillito’s bounds for large φ, since the approximations
for the eigenfunctions are too large on the boundary.
However, for small φ our results are better than those
of Stadter, Moler, and Kuttler–Sigillito. See Table 4.
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φ = 15o

Stadter’s Moler’s K–S’s Ours
2.1137 2.1163 2.1138 2.1150 2.1142 2.1146 2.1143 2.1145

φ = 30o

Stadter’s Moler’s K–S’s Ours
2.5210 2.5307 2.5192 2.5261 2.5216 2.5239 2.5219 2.5269

φ = 45o

Stadter’s K–S’s Ours
3.5170 3.5491 3.5157 3.5257 3.5167 3.5346

TABLE 4. Comparison of Stadter’s, Moler’s, Kuttler–
Sigillito’s (K–S), and our bounds for λ1/π2 on rhom-
bical domains.

5.3 General Polygons

For other n-polygons the situation is similar, and we
looked for bounds of the type

En(L,A, θ) := Fn

(
L,A, κn − λ1(P reg

n )
θ

,
π2

θ

)
=

λ1(P reg
n )

A
+ θ

L2 − κnA

A2
.

(5–5)

For each value of n, we obtained

λ1(L,A) ≤ En(L,A, θ) , θ ≥ θ0,

λ1(L,A) ≥ En(L,A, θ) , θ ≤ θ1,
(5–6)

for certain positive constants θ0 and θ1. In the case of
pentagons we get θ0 ≈ 2.467401 and θ1 ≈ 0.558268. Note
that the constant θ1 is chosen such that equality is at-
tained not only for P reg

n but also in the case of the regular
(n − 1)-polygon. Based on this, we conjecture that for
n-polygons it will be possible to obtain a bound of the
form

λ1 ≥ α
1
A

+ β
L2

A2
, (5–7)

where α and β are such that we have equality in the cases
of the regular polygons P reg

n and P reg
n−1. More precisely,

we have the following conjecture.

Conjecture 5.2. For convex n-polygons Pn we have

λ1(Pn) ≥ κn−1λ1(P reg
n ) − κnλ1(P

reg
n−1)

(κn−1 − κn) A

+

[
λ1(P

reg
n−1) − λ1(P reg

n )
]
L2

(κn−1 − κn) A2

=
λ1(P reg

n )
A

+
λ1(P

reg
n−1) − λ1(P reg

n )
κn−1 − κn

(
L2 − κnA

A2

)
.

Remark 5.3. Note that Conjecture 5.2 implies Conjec-
ture 1.1 and the first part of Conjecture 3.2 in the convex
case.

We remark that we do not expect to obtain a new type
of bound in the limiting case as n goes to infinity. In fact,
we conjecture that we have

lim
n→∞

λ1(P
reg
n−1) − λ1(P reg

n )
κn−1 − κn

= 0,

thus recovering the Faber–Krahn inequality.
In the case of upper bounds, and although it is possible

to obtain the values of θ1 numerically, an explicit conjec-
ture is not obvious, since it is not clear for which case
other than the regular polygon one should force equality
to hold. One possibility is to take into account the bound
(5–4) for quadrilaterals, and in the case of general poly-
gons, look for bounds that would give equality not only
for the regular n-polygon but also for asymptotically long
thin rectangles. Proceeding in this way, we are led to a
bound of the form given by (5–5) with θ = π2/4.

Conjecture 5.4. For n-polygons Pn we have

λ1(Pn) ≤ λ1(P reg
n )

A
+

π2

4
L2 − κnA

A2
.

An alternative type of upper bound was already men-
tioned in the section on quadrilaterals, and was inspired
by the upper bound for triangles obtained in [Freitas 06].
More precisely, based on this and on the numerical data
available, we present the following conjecture.

Conjecture 5.5. For n-polygons Pn with side lengths �i,
i = 1, . . . , n, we have

λ1(Pn) ≤
(

n

κnA2

n∑
i=1

�2i

)
λ1(P reg

n ),

with equality only for the regular n-polygon.

6. DISCUSSION

As was mentioned in the introduction, our numerical
studies point to the fact that the upper bound given by
(5–5) remains bounded as n goes to infinity, suggesting
a possible upper bound for more general domains, which
is clear from Conjecture 5.4. Based on further numerical
results we conjecture that it will in fact hold for simply
connected domains.

Conjecture 6.1. For any planar simply connected domain
Ω we have

λ1(Ω) ≤ πj2
01

A
+

π2

4
L2 − 4πA

A2
. (6–1)
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In this case, equality holds if Ω is either a disk or,
asymptotically, a rectangle with one side length going to
infinity. If true, the above conjecture would provide an
improvement on the Pólya bound given by (1–3) in the
case of simply connected domains, and also of the Payne
and Weinberger bound (1–5). In fact, Conjecture 6.1
states that the sharp constant in bounds of the form of
the Payne and Weinberger bound is actually what gives
equality asymptotically for rectangles having the length
of one side going to infinity.

To see that (6–1) always gives a better bound than
(1–5), it is sufficient to notice that this is equivalent to
having

πj2
01

A
+

π2

4
L2 − 4πA

A2

≤ πj2
0,1

A

[
1 +

(
1

J2
1 (j0,1)

− 1
)(

L2

4πA
− 1
)]

,

which in turn is equivalent to

1 ≤ j2
01

π2

(
1

J2
1 (j01)

− 1
)

≈ 1.58817.

If true, the above conjecture would also provide an
improvement on the Pólya bound given by (1–3) in the
case of simply connected domains.

We also remark that the conjecture is false if doubly
connected domains are allowed. To see this, we consid-
ered the domain H1 = D1\D2, where D1 and D2 are
concentric balls with respective radii 4 and 1.3, which are
shown in Figure 9. The value of λ1(H1) together with the
corresponding values given by (6–1) and Pólya’s bound
are shown in Table 5.

FIGURE 9. The domains H1 and H3.

H1 H3

λ1 1.31398304 0.68710829
Conj. 6.1 1.06829136 0.46436210

Pólya 1.35385519 0.63101864

TABLE 5. Values for λ1, (6–1), and Pólya’s bound for
domains H1 and H3.

We also considered a domain H3 with three holes,
which is the ball with center at the origin and radius
5, with three circular holes of radius 0.4 with centers at
the points

(−1,
√

3
)
,
(−1,−√

3
)
, and (2, 0), for which

the value provided by Pólya’s expression no longer gives
an upper bound, but we were unable to find a similar
example with only two holes. From the numerical point
of view, as was proven in [Chen et al. 05], the method
of fundamental solutions needs a special treatment when
one is dealing with multiply connected domains, since
then there might exist spurious eigenvalues. However,
this problem never occurs in calculating the first eigen-
value.

We proceeded as in the case of the triangles to show
that these domains provide counterexamples to Conjec-
ture 6.1 and the upper bound (1–3). The results obtained
for the domains H1 and H3 are shown in Table 6.

H1 H3

supx∈∂Ω ε(x) 4.91215 × 10−9 2.03185 × 10−12

‖ũ‖L2(Ω) 5.30986 5.02033

TABLE 6. Results for the approximations of the eigen-
functions of H1 and H3.

Applying the bounds (3–7) we obtain

1.31398303186 < λ1(H1) < 1.31398304814

and

0.68710829922007 < λ1(H3) < 0.68710829922495,

showing that these domains provide the desired coun-
terexamples.
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valeurs propres de membranes vibrantes.” Z. Angew. Math.
Phys. 17 (1966), 457–460.

[Hooker and Protter 60/61] W. Hooker and M. H. Protter.
“Bounds for the First Eigenvalue of a Rhombic Membrane.”
J. Math. and Phys. 39 (1960/1961), 18–34.

[Kuttler and Sigillito 85] J. R. Kuttler and V. G. Sigillito.
Estimating Eigenvalues with A Posteriori/A Priori In-
equalities, Pitman Research Notes in Mathematics, 135.
Boston: Pitman, 1985.

[Makai 62] E. Makai. “On the Principal Frequency of a Mem-
brane and the Torsional Rigidity of a Beam.” In Studies
in Mathematical Analysis and Related Topics: Essays in
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