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A prime number p is called elite if only finitely many Fer-
mat numbers 22n

+ 1 are quadratic residues modulo p. Pre-
viously, only fourteen elite primes were known explicitly, all of
them smaller than 35 million. Using computers, we searched
all primes less than 109 for other elite primes and discovered
p = 159 318 017 and p = 446 960 641 as the fifteenth and six-
teenth elite primes. Moreover, with another approach we found
26 other elite primes larger than a billion, the largest of which
has 1172 decimal digits. Finally, we derive some conjectures
about elite primes from the results of our computations.

1. INTRODUCTION

Fermat numbers are numbers of the form Fn := 22n

+ 1.
They were named after the French mathematician Pierre
de Fermat (1601–1665), who demonstrated that the five
numbers F0, F1, . . . , F4 are prime and conjectured that
these numbers might be prime for all Fn. This claim
was disproved by Euler, when he found the divisor 641
to F5. No Fermat prime has since been found, and it was
conjectured by Hardy and Wright [Hardy and Wright 79]
that their number is finite. For further open problems
on Fermat numbers see Richard Guy’s famous book [Guy
04]. We call a prime number p elite if there is an inte-
ger index m for which all Fn with n > m are quadratic
nonresidues modulo p, i.e., there is no solution to the
congruence x2 ≡ Fn mod p for all n > m.

Elite primes were defined and first studied by Alexan-
der Aigner [Aigner 86], who discovered 14 such numbers
with values less than 35 million. No other elite prime was
thereafter explicitly given, nor is it known whether there
are infinitely many of them. An important result in this
context is a theorem of Kř́ıžek, Luca, and Somer [Kř́ıžek
et al. 02] that the (possibly infinite) sum of the recipro-
cals of all elite primes is finite. Their method is based
on a study of the distribution of such numbers, showing
that the set of all elite primes is not sufficiently “dense”
to produce divergence.

The purpose of this paper is to present some new re-
sults about elite primes. In a computational search we
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were able to find 28 hitherto unknown elite primes. The
algorithms are based on a necessary and sufficient arith-
metic property proved in the following section. A final
section deals with a number of open problems and con-
jectures concerning elite primes.

2. PRELIMINARIES

Due to the well-known relation

Fn+1 = (Fn − 1)2 + 1 (2–1)

for Fermat numbers, it is obvious that for any prime num-
ber p, the congruences Fn mod p will eventually become
periodic. Aigner [Aigner 86] showed that for any prime
number written in the form p = 2rh + 1 with r ∈ N

and h ≥ 1 odd, this period begins at the latest with
the term Fr. We call L the length of the Fermat pe-
riod if L is the smallest natural number satisfying the
congruence Fr+L ≡ Fr mod p. The terms Fr+ν mod p
with ν = 0, . . . , L − 1 are called Fermat remainders of
p. Therefore, a prime number p is elite if and only if all
L Fermat remainders are quadratic nonresidues modulo
p. Moreover, it is known that for p > 10 it is a neces-
sary condition for eliteness that L be an even number
smaller than p−1

4 (see [Aigner 86]). The following result
gives another characterization of elite primes, one very
appropriate for practical use.

Theorem 2.1. Let p = 2rh+ 1 be a prime number with h
odd. Then p is elite if and only if the multiplicative order
of every Fermat remainder is a multiple of 2r modulo p.

Proof: Let p = 2rh + 1 be a prime number with h odd.
Let f be a Fermat remainder of p that is a quadratic
nonresidue modulo p. Since the multiplicative order
modulo p of any natural number has to be a divisor of
ϕ(p) = p − 1 = 2rh, the multiplicative order of f is of
the form d = 2qk with q ≤ r and k | h. Then by Euler’s
criterion, we obtain the congruence

f2r−1h ≡
(
f

p

)
= −1 mod p,

where
(

f
p

)
is the Legendre symbol. This implies that

q = r. If, on the other hand, the multiplicative order is
a multiple of 2r, then f cannot be a quadratic residue
modulo p, since we have f

p−1
2 �≡ 1 mod p, which again

with Euler is equivalent to
(

f
p

)
�= 1.

In practice, the Fermat periods of elite primes are of
particularly small lengths L. Indeed, for all examples

known to date, we have L ≤ 12, with a striking trend of
L = 4. For nonelite primes, on the other hand, in most
cases there exists among the very first Fermat remainders
one that fails Theorem 2.1. Therefore, it is quite simple
using computers to check any given prime number p for
eliteness.

3. THE METHOD

The algorithm for checking a given prime number p =
2rh + 1 for eliteness is based on Theorem 2.1. We have
seen that the Fermat period modulo p begins with the
term Fr; so, using relation (2–1) modulo p, the first Fer-
mat remainder Fr mod p can be easily computed. The
pseudocode of our eliteness test appears as Algorithm 3.1

Algorithm 3.1.
01 f [0] := (Fr mod p)

02 f := f [0]
03 bvar := false

04 WHILE bvar = false DO

05 k := (fh mod p)

06 IF k = 1 THEN bvar := true AND STOP FI

07 FOR var = 0 to r − 2 DO

08 k := (k2 mod p)

09 IF k = 1 THEN bvar := true AND STOP FI

10 OD

11 f := ((f − 1)2 + 1 mod p)

12 IF f = f [0] THEN bvar := true FI

13 OD

The algorithm generates the Fermat remainders f of
p: the first one in line 02, the following ones in line 11.
For every given f the algorithm checks whether its mul-
tiplicative order modulo p is a multiple of 2r (lines 06 to
10). Thus the program has two ways in which it can end:
First, the WHILE loop terminates when the condition f =

f[0] in line 12 is satisfied, i.e., an entire Fermat period
(of length L) has been successfully checked. So, if the
algorithm ends with the results bvar = true and f =

f[0], then p is elite. The second possibility for termina-
tion occurs at line 06 or in the FOR loop after line 09. In
such cases we have found a Fermat remainder that fails
the condition of Theorem 2.1, and hence p is not elite.
Both possibilities need a worst-case number of arbitrary
precision multiplications of O(L ·r). However, during our
computations nonelite primes p generally produced Fer-
mat remainders, leading very quickly to the end of the
computation in line 06 or 09.
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The question still remaining is how to find the prime
numbers p. Our first goal was to search for all elite primes
in the range up to one billion. For this, with the help of
a variation of the well-known sieve method of Eratos-
thenes, we produced a list of all primes in the interval[
2, 109

]
, followed by some preliminary checks based on

a congruence criterion already proved by Aigner in his
above-mentioned paper. These checks disqualified a large
number of primes. The remaining prime numbers were
tested one by one using Algorithm 3.1. A second ap-
proach made use of the fact that all of the larger elite
primes found previously have the form p = 2rh+ 1 with
r ≥ 3 and h odd. Especially when r is large enough for
2r to be larger than h, the numbers p can very easily
be checked for primality with the following well-known
criterion.

Theorem 3.2. Let r ≥ 2, 2r > h odd, and p = 2r · h + 1
a quadratic nonresidue modulo q for some odd prime q.
Then a necessary and sufficient condition for p to be a
prime is that

q
p−1
2 ≡ −1 mod p.

This result is Theorem 102 of [Hardy and Wright 79],
where a proof is given. Considering this, we searched all
prime numbers of the form 2rh+1 with 2r > h, r ≤ 1000
for h ≤ 5001, and r ≤ 500 for 5003 ≤ h ≤ 15001 odd.
These again were checked one by one for eliteness.

4. THE RESULTS

Our first approach, i.e., searching all elite primes in the
interval

[
2, 109

]
, ended up with two previously unknown

elite primes. Thus there are altogether 16 elite primes
less than one billion. These are as follows:

3, 5, 7, 41, 15 361, 23 041, 26 881, 61 441, 87 041,

163 841, 544 001, 604 801, 6 684 673, 14 172 161,

159 318 017, 446 960 641.

The first 14 of these numbers were discovered by Aigner
in 1986. The two new items have Fermat periods of
lengths 8 and 4. These results are summarized in se-
quence A102742 of Neil Sloane’s On-Line Encyclopedia
of Integer Sequences [Sloane 05]. In our second compu-
tational project we found 23 further elite primes greater
than one billion. Their parameters are listed in Table 1.

A glance at this table shows that the parameter h = 15
appears to be quite favorable to the production of elite
primes. That is why we extended the search to numbers

h r L digits h r L digits

5 55 4 18 855 478 4 147
15 37 4 13 949 142 12 46
15 900 4 273 969 273 8 86
17 471 8 144 1875 172 4 56

165 352 4 109 3717 351 6 110
255 71 4 24 3865 82 4 29
395 839 4 256 3985 52 4 20
425 31 4 12 4365 35 4 15
645 113 4 37 4545 23 4 11
745 138 4 45 7701 156 8 51
765 22 4 10 9575 145 4 48

10425 135 4 45

TABLE 1. Large elite primes of the form 2rh + 1.

of the form p = 2r · 15 + 1 with r < 5000. And in-
deed, three further elite prime numbers were found with
21518 · 15 + 1, 22875 · 15 + 1, and 23888 · 15 + 1. These
three elite primes all have Fermat period of length L = 4
and respectively 459, 867, and 1172 decimal digits. The
computations were carried out on a PC with a Pentium-I
processor and on two Pentium-III computers. The search
among all the numbers up to 109 took an average CPU
time of 910 seconds (just over 15 minutes) per interval of
one million numbers, so that for this part of the project
some 253 hours of CPU time were needed. The computa-
tions that yielded the large elite primes consumed about
60 CPU hours.

5. CONJECTURES

Considering the results of our computations, we would
like to formulate some conjectures on some unsolved
problems related to elite primes.

Conjecture 5.1. The number of elite primes is infinite.

Conjecture 5.2. The number of elite primes of the form
2r · 15 + 1 is infinite.

These two conjectures seem anything but easy to set-
tle. But if they are true (or at least the first one), it
makes sense to make an additional conjecture:

Conjecture 5.3. The lengths of the Fermat periods of elite
primes are unbounded. That is, there are elite primes
with arbitrarily large L.

In 2002, Kř́ıžek, Luca, and Somer [Kř́ıžek et al. 02]
proved that the number N(x) of elite primes less than or
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equal to x has the asymptotic bound

N(x) = O

(
x

(log x)2

)
as x → ∞. It seems that this upper bound is probably
too coarse. The trend given by our computations indi-
cates a much lower bound.

Conjecture 5.4. There exists a constant c ≥ 1 such that
N(x) = O(logc x) as x→ ∞.

Perhaps we can choose c = 1.
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