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We propose a framework for unifying the sl(N) Khovanov–
Rozansky homology (for all N) with the knot Floer homology.
We argue that this unification should be accomplished by a
triply graded homology theory that categorifies the HOMFLY
polynomial. Moreover, this theory should have an additional
formal structure of a family of differentials. Roughly speak-
ing, the triply graded theory by itself captures the large-N
behavior of the sl(N) homology, and differentials capture non-
stable behavior for small N , including knot Floer homology.
The differentials themselves should come from another vari-
ant of sl(N) homology, namely the deformations of it studied
by Gornik, building on work of Lee.

While we do not give a mathematical definition of the triply
graded theory, the rich formal structure we propose is pow-
erful enough to make many nontrivial predictions about the
existing knot homologies that can then be checked directly.
We include many examples in which we can exhibit a likely
candidate for the triply graded theory, and these demonstrate
the internal consistency of our axioms. We conclude with a
detailed study of torus knots, developing a picture that gives
new predictions even for the original sl(2) Khovanov homol-
ogy.

1. INTRODUCTION

1.1 Knot Homologies

Here, we are interested in homology theories of knots in
S3 associated with the HOMFLY polynomial. For a knot
K, its HOMFLY polynomial P̄ (K) is determined by the
skein relation

aP̄
( )

− a−1P̄
( )

= (q − q−1)P̄
( )

,

together with the requirement P̄ (unknot) = (a −
a−1)/(q − q−1). The HOMFLY polynomial unifies the
quantum sl(N) polynomial invariants of K, which are
denoted by P̄N (K)(q) and are equal to P̄ (K)(a = qN , q).
Here, the original Jones polynomial J(K) is just P̄2(K).
The HOMFLY polynomial encodes the classical Alexan-
der polynomial as well.

A number of different knot homology theories have
been discovered related to these polynomial invariants.
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Although the details of these theories differ, the basic
idea is that for a knot K, one can construct a doubly
graded homology theory Hi,j(K) whose graded Euler
characteristic with respect to one of the gradings gives
a particular knot polynomial. Such a theory is referred
to as a categorification of the knot polynomial.

For example, the Jones polynomial J is the graded
Euler characteristic of the doubly graded Khovanov Ho-
mology HKh

i,j (K); that is,

J(q) =
∑
i,j

(−1)jqi dimHKh
i,j (K).

Here, the grading i is called the Jones grading, and j is
called the homological grading. Khovanov originally con-
structed HKh

i,j combinatorially in terms of skein theory
[Khovanov 99], but it is conjectured to be essentially the
same as Seidel and Smith’s symplectic Khovanov homol-
ogy, which is defined by considering the Floer homology
of a certain pair of Lagrangians [Seidel and Smith 04].

Khovanov’s theory was generalized by Khovanov and
Rozansky [Khovanov and Rozansky 05] to categorify the
quantum sl(N) polynomial invariant P̄N (q). Their ho-
mology HKR

N

i,j(K) satisfies

P̄N (q) =
∑
i,j

(−1)jqi dim HKR
N

i,j(K).

For N = 2, this theory is expected to be equivalent to
the original Khovanov homology. There are also impor-
tant deformations of the original Khovanov homology
[Lee 02b, Bar-Natan 05a, Khovanov 04b], as well as of
the sl(N) Khovanov–Rozansky homology [Gornik 04]. In
a sense, the deformed theory of Lee [Lee 02b] also can
be regarded as a categorification of the sl(1) polynomial
invariant.

Another knot homology theory that will play an im-
portant role here is knot Floer homology, ĤFKj(K; i),
introduced in [Ozsváth and Szabó 04a, Rasmussen 03].
It provides a categorification of the Alexander polyno-
mial:

∆(q) =
∑
i,j

(−1)jqi dim ĤFKj(K; i).

Unlike Khovanov–Rozansky homology, knot Floer ho-
mology is not known to admit a combinatorial definition;
in the end, computing ĤFK involves counting pseudo-
holomorphic curves.

The polynomials above are closely related; indeed,
they can all be derived from a single invariant, namely the
HOMFLY polynomial. While the above homology the-
ories categorify polynomial knot invariants in the same

class, their constructions are very different! Despite this,
our objective here is summarized in the following goal.

Goal 1.1. Unify the Khovanov–Rozansky sl(N) homology
(for all N), knot Floer homology, and various deforma-
tions thereof into a single theory.

We do not succeed here in defining such a unified the-
ory. Instead, we postulate a very detailed picture of
what such a theory should look like: it is a triply graded
homology theory categorifying the HOMFLY polyno-
mial together with a certain additional formal struc-
ture. Although we don’t know a definition of this triply
graded theory, our description of its properties is power-
ful enough to give us many nontrivial predictions about
knot homologies that can be verified directly.

             theory

triply graded
Kh'

KhsympN
KhR

BN

HFK

FIGURE 1. Triply graded theory as a unification of knot
homologies.

There are several reasons to hope for the type of
unified theory asked for in Goal 1.1. In the recent
work [Gukov et al. 05], a physical interpretation of the
Khovanov–Rozansky homology naturally led to the uni-
fication of the sl(N) homologies when N is sufficiently
large. At the small-N end, the sl(2) Khovanov homol-
ogy and ĤFK seem to be very closely related. For in-
stance, their total ranks are very often (but not always)
equal (see [Rasmussen 05a] for more). One hope for our
proposed theory is that it will explain the mysterious
fact that while the connections between HKR2 andHFK
hold very frequently, they are not universal.

1.2 The Superpolynomial

We now work toward a more precise statement of our
proposed unification, starting with a review of the work
[Gukov et al. 05]. To concisely describe the homology
groups HKR

N

i,j(K), it will be useful to introduce the
graded Poincaré polynomial KhRN (q, t) ∈ Z[q±1, t±1],



Dunfield et al.: The Superpolynomial for Knot Homologies 131

which encodes the dimensions of these groups via

KhRN (q, t) :=
∑
i,j

qitj dim HKR
N

i,j(K). (1–1)

The Khovanov–Rozansky homology has finite total di-
mension, so KhRN is a finite polynomial, that is, one
with only finitely many nonzero terms. The Euler char-
acteristic condition on HKR

N

i,j(K) is concisely expressed
by P̄N (q) = KhRN (q, t = −1).

The basic conjecture of [Gukov et al. 05] is as follows.

Conjecture 1.2. There exists a finite polynomial P̄(K) ∈
Z[a±1, q±1, t±1] such that

KhRN (q, t) =
1

q − q−1
P̄(a = qN , q, t) (1–2)

for all sufficiently large N .

We will refer to P̄(K) as the superpolynomial for K.
This conjecture essentially says that, for sufficiently large
N , the dimension of the sl(N) knot homology grows lin-
early in N , and the precise form of this growth can be
encoded in a finite set of the integer coefficients. There-
fore, if one knows the sl(N) knot homology for two differ-
ent values of N , both of which are in the “stable range”
N ≥ N0, one can use (1–2) to determine the sl(N) knot
homology for all other values of N ≥ N0.

In some examples, it seems that (1–2) holds true for
all values of N , not just large N . In [Gukov et al. 05], this
was used to compute P̄(K) for certain knots. However,
this is not always true. The simplest knot for which (1–2)
holds for all N ≥ 3 but not for N = 2 is the 8-crossing
knot 819. Notice that Conjecture 1.2 implies that for all
knots, the HOMFLY polynomial is a specialization of the
superpolynomial

P̄ (K)(a, q) =
1

q − q−1
P̄(a, q, t = −1). (1–3)

The motivation for Conjecture 1.2 in [Gukov et al. 05]
was based on the geometric interpretation of the sl(N)
knot homology and the 3-variable polynomial P̄(a, q, t).
In fact, we can offer two (related) geometric interpreta-
tions of P̄(a, q, t):

• as an index (cf. elliptic genus):

P̄(a, q, t) = StrH[aQqstr] = TrH[(−1)F aQqstr].

Here H = HBPS is a Z2 ⊕ Z ⊕ Z ⊕ Z-graded Hilbert
space of the so-called BPS states. Specifically, F

is the Z2 grading, and Q, s, and r are the three Z

gradings. Following the notation in [Gukov et al.
05], we also introduce the graded dimension of this
Hilbert space:

DQ,s,r := (−1)F dimHF,Q,s,r
BPS . (1–4)

Notice that the integer coefficients of the polynomial
P̄(a, q, t) are precisely the graded dimensions (1–4).

• as an enumerative invariant: The triply graded in-
tegers DQ,s,r are related to the dimensions of the
cohomology groups

Hk(Mg,Q), (1–5)

where Mg,Q is the moduli space of holomorphic Rie-
mann surfaces with boundary in a certain Calabi–
Yau 3-fold. We will return to this relationship in
Section 4.

1.3 Reduced Superpolynomial

The setup of the last section needs to be modified in or-
der to bring knot Floer homology into the picture. Let
P (K)(a, q) be the reduced or normalized HOMFLY poly-
nomial of the knot K, determined by the convention that
P (unknot) = 1. This switch brings the Alexander poly-
nomial naturally into the picture since it arises by a spe-
cialization ∆(q) = P (K)(a = 1, q). There is a categorifi-
cation of P (K)(a = qN , q) called the reduced Khovanov–
Rozansky homology (see [Khovanov 03, Section 3] and
[Khovanov and Rozansky 05, Section 7]). We will use
KhRN (K)(q, t) to denote the Poincaré polynomial of this
theory.

For this reduced theory, there is also a version of Con-
jecture 1.2. Essentially, it says that, for sufficiently large
N , the total dimension of the reduced sl(N) knot homol-
ogy is independent of N , and the graded dimensions of
the homology groups change linearly with N :

Conjecture 1.3. There exists a finite polynomial P(K) ∈
Z≥0[a±1, q±1, t±1] such that

KhRN (q, t) = P(a = qN , q, t) (1–6)

for all sufficiently large N .

In contrast with the previous case, in the reduced case
the superpolynomial is required to have nonnegative co-
efficients. This is forced merely by the form of (1–6),
since for large N distinct terms in P(a, q, t) cannot coa-
lesce when we specialize to a = qN . Moreover, one also
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has
P (K)(a, q) = P(a, q, t = −1). (1–7)

Thus we will view P(a, q, t) as the Poincaré polynomial
of some new triply graded homology theory Hi,j,k(K)
categorifying the normalized HOMFLY polynomial.

As with the unreduced theory, for some simple cases
(1–6) holds for all N ≥ 2. However, in general there will
be exceptional values of N for which this is not the case.
To account for this, we introduce an additional structure
on H∗(K): a family of differentials {dN} for N > 0.
The complete details of this structure we postpone until
Section 3, but the basic idea is this: The sl(N) homology
is the homology of H∗(K) with respect to the differential
dN . For large N , the differential dN is trivial, giving the
stabilization phenomena of Conjecture 1.3. The main
reason for expecting the presence of the differentials dN

comes from Gornik’s work on the sl(N) homology. In
particular, in [Gornik 04] Gornik describes a deformation
of Khovanov and Rozansky’s construction that gives rise
to a differential on HKRN .

We also postulate additional differentials for N ≤ 0.
After a somewhat mysterious regrading, the knot Floer
homology arises from the N = 0 differential. Consider
the Poincaré polynomial

HFK(q, t) :=
∑
i,j

qitj dim ĤFKj(K; i). (1–8)

In the simplest cases, we have the following relationship
between the knot Floer homology and the superpolyno-
mial:

HFK(q, t) = P(a = t−1, q, t).

For the more general situation, see Section 3.

1.4 Some Predictions

Our conjectures imply that the HOMFLY polynomial,
the knot Floer homology, and Khovanov–Rozansky ho-
mology should all be related. Unfortunately, this
relation is mediated by the triply graded homology
group Hi,j,k(K), which is often considerably larger than
ĤFK(K), HKR2(K), or the minimum size dictated by
P (K). Thus it seems unlikely that there will be a general
relation between the dimensions of either of these groups
and the HOMFLY polynomial. On the other hand, our
hypotheses about the structure of the triply graded the-
ory enable us to make testable predictions about the sl(2)
Khovanov homology and HOMFLY polynomial for some
specific families of knots. We list some of the more im-
portant ones here:

1. HKRN for small knots: Using conjectured properties
of the triply graded theory, we make exact predic-
tions for the group H(K) for many knots with 10
crossings or fewer. These are given in Sections 5
and 8. From them, it is easy to predict the form of
KhRN (K) for N > 2. These predictions have been
verified in simple cases [Rasmussen 05b]; to check
them in others requires better methods for calculat-
ing the Khovanov–Rozansky homology.

2. HOMFLY polynomials of thin knots. In Section 5.1,
we describe a class of H-thin knots whose triply
graded homology has an especially simple form. Let
K be such a knot, and let T be the (2, n) torus knot
with the same signature as K. Then our conjectures
imply that the quotient

P (K) − P (T )
(1 − a2q2)(1 − a2q−2)

should be an alternating polynomial. Two-bridge
knots are expected to be H-thin; we have verified
that the relation above holds for all such knots with
determinant less than 200.

3. A new pairing on Khovanov homology. Our con-
jectures suggest that for many knots, the Khovanov
polynomial should have the following form:

KhR2(K) = qmtn + (1 + q6t3)Q−(q, t),

where Q− is a polynomial with positive coefficients.
(See Section 5.6 for a complete discussion.) This
pattern is easily verified in examples, but so far as
we are aware, it had previously gone unnoticed.

4. Khovanov homology of torus knots: In Sections 6
and 7, we use our conjectures to make predictions
about the N = 2 Khovanov homology of torus knots
that can be checked against the computations made
by Bar-Natan [Bar-Natan 05b]. These predictions
provide some of the best evidence in favor of the
conjectures, since the Khovanov homology of torus
knots had previously seemed quite mysterious.

1.5 Candidate Theories for the Superpolynomial

The most immediate question raised by Conjecture 1.3
is how to define the underlying knot homology whose
Poincaré polynomial is the superpolynomial. In formu-
lating our conjectures, the approach we had in mind was
simply to take the inverse limit of KhRN as N → ∞.
This method rests on two basic principles. First, we
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should have some sort of map from the sl(N) homol-
ogy to the sl(M) homology for M < N , and second, for
a fixed knot K the dimension of HKRN (K) should be
bounded independent of N . We expect that the maps re-
quired by the first principle should be defined using the
work of Gornik [Gornik 04], although at the moment,
technical difficulties prevent us from giving a complete
proof of their existence. The proof of the second princi-
ple should be more elementary—it should be essentially
skein-theoretic in nature.

Very recently, Khovanov and Rozansky have intro-
duced a triply graded theory categorifying the HOMFLY
polynomial [Khovanov and Rozansky 06], which gives an-
other candidate for our proposed theory. This theory
has some obvious advantages over the approach described
above; it is already known to be well-defined, and its def-
inition is in many respects simpler than that of the sl(N)
theory. At the same time, there are some gaps between
what the theory provides and what our conjectures sug-
gest that it should have. The most important of these is
the family of differentials dN alluded to above. One of
our aims in writing this paper is to encourage people to
look for these differentials, and, with luck, to find them!

Another approach to constructing a knot homology as-
sociated with the superpolynomial might be based on an
algebraic structure that unifies sl(N) (or gl(N)) Lie alge-
bras (for all N). A natural candidate for such structure
is the infinite-dimensional Lie algebra gl(λ), introduced
by Feigin [Feigin 88] as a generalization of gl(N) to non-
integer, complex values of the rank N . It is defined as
a Lie algebra of the following quotient of the universal
enveloping algebra of sl(2):

gl(λ) = Lie
(
U(sl(2))

/
C − λ(λ− 1)

2

)
,

where C is the Casimir operator in U(sl(2)). One can
also define gl(λ) as a Lie algebra of differential operators
on CP(1) of “degree of homogeneity” λ:

gl(λ) = Lie(Diffλ).

Representation theory of gl(λ) is very simple and has all
the properties that we need: for generic λ ∈ C, gl(λ) has
infinite-dimensional representations. Characters of these
representations appear in the superpolynomial of torus
knots! On the other hand, for λ = N , we get the usual
finite-dimensional representations of gl(N).

1.6 Generalizations

We expect many generalizations of this story. Thus, from
the physics point of view, it is clear that a categorifi-

cation of the quantum sl(N) invariant should exist for
arbitrary representation of Uq(sl(N)), not just the fun-
damental representation.

1.7 Contents of the Paper

In the next section we summarize our conventions and
notation. In Section 3, we introduce families of graded
differentials, which play a key role in the reduction to
different knot homologies, and give a precise statement
of our main conjecture. In Section 4, we explain the geo-
metric interpretation of the triply graded theory. Various
examples and patterns are discussed in Section 5; these
serve to illustrate the internal consistency of our proposed
axioms. Section 6 begins our study of torus knots, and
there we give a complete conjecture for the superpoly-
nomials of (2, n) and (3, n) torus knots. While we don’t
have a complete picture for general (n,m) torus knots,
in Section 7 we suggest a limiting “stable” picture as
m → ∞. Finally, Section 8 gives information about the
superpolynomial for certain 10 crossing knots discussed
in Section 5.

2. NOTATION AND CONVENTIONS

In this section, we give our conventions for knot polyno-
mials and the various homology theories. Some of these
differ from standard sources; in particular, we view the
sl(N) theory as homology rather than cohomology. Also,
our convention for the knot Floer homology is the mirror
of the standard one. The notation used throughout the
paper is collected in Table 1.

2.1 Crossings

Our conventions for crossings are given below:

positive = negative =

This convention agrees with [Gukov et al. 05], but dif-
fers from [Khovanov 04a, Figure 8] and [Khovanov and
Rozansky 05, Figure 45].

2.2 Torus Knots

The torus knot Ta,b is the knot lying on a standard solid
torus that wraps a times around in the longitudinal direc-
tion and b times in the meridional direction. For us, the
standard Ta,b has negative crossings. In particular, the
trefoil knot 31 in the standard tables [Rolfsen 76, Bar-
Natan 05c] is exactly T2,3 with our conventions. How-
ever, it is important to note that some other torus knots
in these tables are positive rather than negative (e.g., 819
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P (K)(a, q) The normalized HOMFLY polynomial of the knot K, where P (unknot) = 1.

P̄ (K)(a, q) The unnormalized HOMFLY polynomial of the knotK, where P̄ (unknot) = (a−a−1)/(q−q−1).

HKRN
i,j(K) The reduced sl(N) Khovanov–Rozansky homology of the knot K categorifying P (K). Here i is

the q-grading and j the homological grading.

HKR
N

i,j(K) The unreduced sl(N) Khovanov–Rozansky homology of the knot K categorifying P (K). Here
i is the q-grading and j the homological grading.

KhRN (K)(q, t) The Poincaré polynomial of the reduced sl(N) Khovanov–Rozansky homology of the knot K.
In particular, KhRN (q, t = −1) = P (a = qN , q).

KhRN (K)(q, t) The Poincaré polynomial of the unreduced sl(N) Khovanov–Rozansky homology of the knot K.
In particular, KhRN (q, t = −1) = P̄ (a = qN , q).

Hi,j,k(K) A triply graded homology theory that categorifies P (K). The indices i and j correspond to the
variables a and q of P (K) respectively, and k is the homological grading.

P(K)(a, q, t) The Poincaré polynomial of H∗(K), called the reduced superpolynomial of K. In particular,
P(K)(a, q, t = −1) = P (a, q).

P̄(K)(a, q, t) The unreduced superpolynomial of the knot K. This is the Poincaré polynomial of a triply
graded theory categorifying P̄ (K).

PN (q, t) The Poincaré polynomial of the homology of H∗(K) with respect to the differential dN .

∆(K)(q) The Alexander polynomial of the knot K. With our conventions, it is a polynomial in q2 and
is equal to P (a = 1, q).

ĤFK(K) The knot Floer homology of the knot K.

HFK(K)(q, t) The Poincaré polynomial of ĤFK(K), with q corresponding to the Alexander grading, and t
the homological grading.

TABLE 1. Notation.

and 10124), and this is why the superpolynomial for 10124

given in Section 8 differs from that in Section 6.

2.3 Signature

Our choice of sign for the signature σ(K) of a knot K
is such that σ(T2,3) = 2. That is, negative knots have
positive signatures.

2.4 Knot Polynomials

For us, the normalized HOMFLY polynomial P of an
oriented link L is determined by the skein relation

aP

( )
− a−1P

( )
= (q − q−1)P

( )
,

together with the requirement that P (unknot) = 1. The
unnormalized HOMFLY polynomial P̄ (L) is determined
by the alternative requirement that P̄ (unknot) = (a −
a−1)/(q − q−1).

Several different conventions for the HOMFLY polyno-
mial can be found in the literature; another common one

involves the change a → a1/2, q → q1/2. Also, sources
sometimes simultaneously switch a→ a−1 and q → q−1.
For the negative torus knot T2,3, the polynomial P (T2,3)
has all positive exponents of a.

For knots, our conventions are consistent with [Gukov
et al. 05] (for links, the skein relation here differs by a
sign). The papers of Khovanov and Rozansky [Khovanov
99, Khovanov 03, Khovanov and Rozansky 05, Khovanov
and Rozansky 06] use the convention that a and q are
replaced with their inverses. For the Knot atlas [Bar-
Natan 05c], the conventions for HOMFLY agree with ours
if you substitute z = q − q−1; however, the Knot atlas’s
conventions for the Jones polynomial differ from ours by
q → q−1.

2.5 Coefficients for Homology

All of our homology groups here, in whatever theory, are
with coefficients in Q. We expect that things would work
out similarly if we used a different field of coefficients; it
is less clear what would happen if we tried to use coeffi-
cients in Z.
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2.6 Khovanov—Rozansky Homology

For the Khovanov–Rozansky homology, there are at least
two separate choices needed to fix a normalization. The
first is the normalization of the HOMFLY polynomial,
and the second is whether you want to view the theory
as homology or cohomology. Most sources view it as co-
homology (e.g., [Khovanov 99, Bar-Natan 02]), but here
we choose to view it as a homology theory. To make
it a homology theory, we take the standard cohomolog-
ical chain complex and flip the homological grading by
i �→ −i, so that the differentials are now grading decreas-
ing. (One could also make it a homology theory by taking
the dual complex with dual differentials, but that is not
what we do.)

For instance, to put a Poincaré polynomial KhR2(q, t)
computed by the Knot Atlas [Bar-Natan 05c] or KhoHo
[Shumakovitch 04] into our conventions, one needs to sub-
stitute q → q−1 and t → t−1. (The first substitution is
due to the differing conventions for the Jones polyno-
mial.) Notice that this change has the same effect as
keeping the conventions fixed and replacing a knot by its
mirror image.

2.7 Knot Floer Homology

Our conventions for knot Floer homology ĤFK are
the opposite of the usual ones in [Ozsváth and Szabó
04a, Rasmussen 03]; in particular, our knot Floer homol-
ogy is the standard knot Floer homology of the mirror.
This has the effect of simultaneously flipping both the
homological and Alexander gradings (see, e.g., [Ozsváth
and Szabó 04a, equation 13]). In addition, we use differ-
ent conventions for writing Poincaré polynomials HFK
from those in [Rasmussen 05a]. For consistency with
viewing the Alexander polynomial ∆(K) as a special-
ization of the HOMFLY polynomial, we view ∆(K) as
the polynomial in q2 given by ∆(K) = P (K)(a = 1, q).
The variable t in HFK gives the homological grading.
In [Rasmussen 05a], t is the variable for ∆(K) and u is
used for the homological grading; one can translate in-
formation there into our conventions via the substitution
t �→ q−2, u �→ t−1.

3. FAMILIES OF DIFFERENTIALS AND RELATION TO
KNOT HOMOLOGIES

As discussed in Section 1.3, we can expect uniform be-
havior for the sl(N) homology only for large N . In this
section, we detail the additional structure that should
encode the sl(N) homology for all N , and knot Floer ho-
mology as well. We start by assuming homology groups

Hi,j,k(K) categorifying the reduced HOMFLY polyno-
mial P (K)(a, q). The Poincaré polynomial of this ho-
mology is the superpolynomial given by

P(K)(a, q, t) =
∑

aiqjtk dimHi,j,k(K).

In addition, H∗(K) should be equipped with a family of
differentials {dN} for N ∈ Z, which will give the different
homologies. The differentials should satisfy the following
axioms:

Grading: For N > 0, dN is triply graded of degree
(−2, 2N,−1), i.e.,

dN : Hi,j,k(K) → Hi−2,j+2N,k−1(K);

d0 is graded of degree (−2, 0,−3), and for N < 0,
dN has degree (−2, 2N,−1 + 2N).

Anticommutativity: dNdM = −dMdN for all N,M ∈
Z. In particular, d2

N = 0 for each N ∈ Z.

Symmetry: There is an involution φ : Hi,j,∗ → Hi,−j,∗
with the property that

φdN = d−Nφ for all N ∈ Z.

To build the connection to the other homology theories,
first notice that we get a categorification of PN (K) by
amalgamating groups to define

HN
p,k(K) =

⊕
iN+j=p

Hi,j,k(K).

The Poincaré polynomial of these new groups is just
P(K)(a = qN , q, t). For N > 0, the first two axioms
above imply that (HN

l,k(K), dN ) is a bigraded chain com-
plex. We can now state our main conjecture:

Conjecture 3.1. There is a homology theory H∗ categori-
fying the HOMFLY polynomial, equipped with differen-
tials {dN} satisfying the three axioms. For all N > 0,
the homology of (HN

∗ (K), dN ) is isomorphic to the sl(N)
Khovanov–Rozansky homology. For N = 0, (H0

∗(K), d0)
is isomorphic to the knot Floer homology.

For the last part of this conjecture, one must do
additional regrading of H0

∗(K) to make it precise; see
Section 3.2. Let us denote the Poincaré polynomial of
the bigraded homology of (HN

∗ (K), dN ) by PN (K); the
Khovanov–Rozansky part of the conjecture is thus sum-
marized as PN (K) = KhRN (K).

A few general comments are in order. First, for any
given knot K, the superpolynomial has finite support,
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so the grading condition forces dN to vanish for N suffi-
ciently large. Thus the earlier Conjecture 1.3 is a special
case of Conjecture 3.1.

Second, we remark that the symmetry property gen-
eralizes the well-known symmetry of the HOMFLY poly-
nomial:

P (K)(a, q) = P (K)(a, q−1).

Finally, the homological grading of dN for N < 0 may
strike the reader as somewhat peculiar. As we will ex-
plain in Section 3.3, it is a natural consequence of the
symmetry φ.

3.1 Examples

To illustrate the properties above, we consider three ex-
amples, starting with the easy case of the unknot.

Example 3.2. (The unknot.) For the unknot U , all the
sl(N) homology is known and KhRN (U) = 1 for all N >

0. Thus the superpolynomial is clearly given by P(U) =
1, where all the differentials dN are identically zero.

Example 3.3. (The trefoil.) The HOMFLY polynomial
of the negative trefoil knot T2,3 is given by P (T2,3) =
a2q−2 + a2q2 − a4. The corresponding superpolynomial
also has three terms:

P(T2,3) = a2q−2t0 + a2q2t2 + a4q0t3.

To illustrate the differentials, it is convenient to represent
H(K) by a dot diagram as shown in Figure 2.

a2q−2t0 a2q2t2

a4q0t3

d−1 d1

a

q

0

3

2

FIGURE 2. Nonzero differentials for the trefoil knot. Above
is a fully labeled diagram, and below is the more condensed
form that we will use from now on. The minimum a-grading
is 2.

We draw one dot for each term in the superpolynomial,
so that the total number of dots is equal to the dimension
of H(K). The dots’ position on horizontal axis records
the power of q, and on the vertical, the power of a. The
top image in Figure 2 shows such a diagram for the trefoil,
with each dot labeled by its corresponding monomial.

Since the relative a and q gradings are determined
by the position of the dots, we omit them from the di-
agram and just label each dot by its t-grading. To fix
the absolute a-grading, we record the a-grading of the
bottom row. Determining the absolute q-grading from
such a picture is easy, since the line q = 0 corresponds to
the vertical axis of symmetry. The nonzero components
of di are shown by arrows of slope −1/i. As indicated
by the figure, the trefoil has two nontrivial differentials:
d1 and d−1.

Now let’s substitute a = qN and take homology with
respect to dN . For N > 1, there are no differentials, and
so we just get PN (T2,3) = q2N−2t0 + q2N+2t2 + q2N t3.
For N = 1, the differential d1 kills the two right-hand
generators, and we are left with P1(T2,3) = 1. In this
case, it is possible to check directly that PN = KhRN

for all N > 0. Note that KhR1 of any knot is always
1 = q0t0, which is why d±1 must be nonzero even in such
a simple example as this.

Example 3.4. (T3,4.) A more complicated example is
provided by the negative (3, 4) torus knot, which is the
mirror of the knot 819. In this case, both the HOMFLY
polynomial and the superpolynomial have 11 nontrivial
terms:

P (T3,4) = a10 − a8(q−4 + q−2 + 1 + q2 + q4)

+ a6(q−6 + q−2 + 1 + q2 + q6),

P(T3,4) = a10t8 + a8(q−4t3 + q−2t5 + t5 + q2t7 + q4t7)

+ a6(q−6t0 + q−2t2 + t4 + q2t4 + q6t6).

The superpolynomial is illustrated by the dot diagram
in Figure 3.

Here there are five nontrivial differentials:
d−2, d−1, d0, d1, and d2. To understand the dif-
ferentials completely, think of the dots as representing
specific basis vectors for Hi,j,k; then an arrow means
that the corresponding dN takes the basis element at
its tail to ± the basis element at its tip. In this case,
the sign can be inferred from the diagram; those that
switch the sign have a small circle at their tails. (To
avoid clutter, hereinafter we will leave it to the reader
to choose appropriate signs for the differentials.) It
is now easy to check that all the dN anticommute.
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0 2 4 4 6

3 5 7

8

75

FIGURE 3. Differentials for T3,4.The bottom row of dots has
a-grading 6. The leftmost dot on that row has q-grading −6,
which you can determine by noting that the vertical axis of
symmetry corresponds to the line q = 0.

The symmetry involution φ corresponds to flipping the
diagram about its vertical axis of symmetry. For the H∗
off the line itself, φ permutes our preferred basis vectors;
on H10,0,8 and H8,0,5 it acts by −Id, but is the identity
on H6,0,4. You can now easily check the symmetry
axiom.

Substituting a = q2 and taking homology with respect
to d2 kills six generators, leaving

P2(T3,4) = q6t0 + q10t2 + q12t3 + q12t4 + q16t5,

which is the ordinary (N = 2) Khovanov homology of
T3,4. As before, P1(T3,4) = 1; only the bottom leftmost
term survives.

3.2 Relation to Knot Floer Homology

In order to recover the knot Floer homology, we must
introduce a new homological grading on H(K), which is
given by t′(x) = t(x)−a(x). In other words, the Poincaré
polynomial of H with respect to the new grading is

P ′(a, q, t) = P(a = at−1, q, t).

The differential d0 lowers the new grading t′ by 1.
Now forget the a-grading (i.e., substitute a = 1), and
take the homology with respect to d0. We denote the
Poincaré polynomial of this homology by P0(K)(q, t),
and this homology categorifies the Alexander polynomial
∆(K)(q2) = P (K)(a = 1, q). A precise statement of the
last part of Conjecture 3.1 is that P0(K) = HFK(K),
where HFK is the Poincaré polynomial of knot Floer ho-
mology defined in (1–8).

As a first example of this process, consider the trefoil
knot. Figure 4 shows the generators for H(T2,3) with re-
spect to the new homological grading t′. The differential
d0 is trivial, so we obtain

P0(T2,3) = P(T2,3)(a = t−1, q, t) = q−2t−2+q0t−1+q2t0,

which is indeed equal to HFK(T2,3).

−2 0

−1

FIGURE 4. Trefoil with new homological gradings.

Next we consider T3,4, for which d0 kills 6 of the 11
generators. We leave it to the reader to check that after
regrading and taking homology with respect to d0, we
are left with

P0(K) = q−6t−6 + q−4t−5 + q0t−2 + q4t−1 + q6t0,

which agrees with HFK(T3,4).

3.3 The δ-Grading and Symmetry

It is natural to consider a fourth grading on H(K), ob-
tained as a linear combination of the a, q, and t gradings.
It is defined by

δ(x) = t(x) − a(x) − q(x)/2.

When we specialize to ĤFK or HKR2, the δ-grading re-
duces to the δ-gradings on these two theories defined in
[Rasmussen 03]. Indeed, if q2 is the q-grading on HKR2

defined by setting a = q2, then

t(x) − a(x) − q(x)
2

= t(x) − 2a(x) + q(x)
2

= t(x) − q2(x)
2

,

where q2 denotes the q-grading on HKR2 and the right-
most expression is the definition of the δ-grading on
HKR2. Similarly, if t′ is the homological grading on ĤFK,
defined by setting a = 1/t, then

t(x) − a(x) − q(x)/2 = t′(x) − q(x)/2,

where the right-hand side is the definition of the δ-
grading on ĤFK.

We can use the δ-grading to justify the somewhat pe-
culiar behavior of di for i < 0 with respect to the homo-
logical grading. In analogy with knot Floer homology,
where the δ-grading is preserved by the conjugation sym-
metry, we expect that the δ-grading will be preserved by
the symmetry φ of Conjecture 3.1. For i > 0, the differ-
ential di lowers the δ-grading by 1− i. Since φ exchanges
di and d−i, the differential d−i should lower the δ grading
by 1− i as well. It is then easy to see that d−i lowers the
homological grading by −1 − 2i.
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3.4 Canceling Differentials

Let (C, d) be a chain complex. We say that d is a can-
celing differential on C if the homology of C with re-
spect to d is one-dimensional. The presence of a cancel-
ing differential is an important feature of all the reduced
knot homologies. For ĤFK, this was known from the
start—essentially, it is the fact that ĤF(S3) ∼= Z. For
the sl(2) Khovanov homology, it follows from work of
Turner [Turner 04], which itself builds on work of Lee
[Lee 02b] and Bar-Natan [Bar-Natan 05a]. Finally, the
existence of such a differential for HKRN can be derived
by combining Turner’s results with the work of Gornik
[Gornik 04] in the unreduced case.

Conjecture 3.1 provides a unified explanation for the
presence of these canceling differentials. Indeed, for any
knot K, P1(K) = 1, which implies that d1 should be
a canceling differential on H(K). We expect that the
known differentials on the various specializations of H
are all induced by the action of d1.

To state this more precisely, let us suppose that Con-
jecture 3.1 is true. Since d1 anticommutes with dN , the
pair (H(K), d1 + dN ) is also a chain complex. Consider
the grading on H(K) obtained by setting a = qN . This
grading is preserved by dN , but is strictly lowered by d1.
In other words, it makes (H(K), d1 + dN ) into a filtered
complex whose associated graded complex is (H(K), dN ).
Since we are using rational coefficients, we can reduce this
complex to a chain-homotopy-equivalent complex of the
form (H∗(H(K), dN ), d′1). (See Lemma 4.5 of [Rasmussen
03] for a proof.)

Proposition 3.5. If we assume that Conjecture 3.1 holds,
then d′1 is a canceling differential on H∗(H(K), dN )
whenever N 	= 1.

Proof: We again consider the complex (H(K), d1 + dN ),
but with a different grading, namely, the one defined by
setting a = q. It is easy to see that d1 preserves the new
grading, while dN strictly raises it, so this grading also
makes (H(K), d1+dN ) into a filtered complex. Reducing
as before, we obtain a chain-homotopy-equivalent com-
plex (H∗(H(K), d1), d′N ). Assuming that the conjecture
is true, H∗(H(K), d1) ∼= HKR1(K) is one-dimensional,
so

H∗(H∗(H(K), dN ), d′1) ∼= H∗(H(K), d1 + dN )
∼= H∗(H∗(H(K), d1), d′N )
∼= H∗(H(K), d1)

is one-dimensional as well.

An interesting consequence of Conjecture 3.1 is that
it predicts the existence of a second canceling differential
on HKRN . Indeed, the symmetry property implies that
d−1 is also a canceling differential on H, and the same
argument used for d1 implies that it should descend to a
differential on any specialization of H.

In the case of ĤFK, it is well known that two such dif-
ferentials exist, and that they are exchanged by the con-
jugation symmetry (see, e.g., [Rasmussen 03, Proposition
4.2]). To illustrate this fact, we consider the knot Floer
homology of the trefoil. There, ĤFK(T2,3) has three gen-
erators, corresponding to monomials q−2t−2, q0t−1, and
q2t0 in the Poincaré polynomial. Looking at Figure 4, we
see that the differential induced by d−1 takes the second
generator to the first, while the differential induced by d1

takes the second generator to the third. This is indeed
the differential structure on ĤFK(T2,3).

In general, the differential induced by d−1 should cor-
respond to the usual differential on ĤFK (that is, the
one that lowers the Alexander grading), while the differ-
ential induced by d1 corresponds to its conjugate sym-
metric partner. As a check, let us consider how the two
induced differentials behave with respect to the homolog-
ical grading t′. Since both d0 and d−1 lower the homo-
logical grading by 1, the induced map d−1∗ will lower t′

by 1 as well. This is in accordance with the behavior of
the usual differential on ĤFK. In contrast, d1 raises t′ by
1, so the behavior of d1∗ with respect to t′ is somewhat
more complicated. In fact, it is not hard to see that if
some component of d1∗ raises the q-grading by 2k, it will
raise t′ by 2k−1. This is precisely the behavior exhibited
by the “conjugate” differentials in knot Floer homology.

In contrast, the differential dN that gets us from H(K)
to HKRN (K) lowers the usual homological grading on
H(K) by 1, as does d1. Thus the differential induced
by d1 on HKRN (K) will respect the homological grading
on that group. We expect that d1∗ corresponds to the
differential of Lee, Turner, and Gornik. As an example
consider the sl(2) homology of the trefoil. Here, we have
P2(T2,3) = q2t0 +q6t2 +q8t3, and the differential induced
by d1 takes the third term to the second. This agrees
with the standard canceling differential on the reduced
Khovanov homology.

As far as we are aware, the presence of a second can-
celing differential on the Khovanov homology has not
been considered before. Although we do not know how
to construct such a differential directly, in Section 5.6
we describe some evidence that supports the idea that
HKR2 admits an additional canceling differential induced
by d−1.
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3.5 Analogue of s and τ

Given a canceling differential on a filtered chain complex,
one can define a simple invariant by considering the fil-
tration grading of the (unique) generator on homology.
Applying this fact to knot Floer homology, Ozsváth and
Szabó [Ozsváth and Szabó 03b] defined a knot invari-
ant τ(K), which carries information about the four-ball
genus of K. Subsequently, an analogous invariant s was
defined using the Khovanov homology [Rasmussen 04].

On the triply graded homology theory H(K), the can-
celing differential d1 can be used to define a similar in-
variant. Since there are two polynomial gradings on
H(K), it initially looks as though we should get two in-
variants. In reality, however, the generator of the ho-
mology with respect to d1 always lies on the line where
q(x) = −a(x). This is because when we specialize to the
sl(1) theory by substituting a = q, the generator corre-
sponds to the unique term in P1(K) = 1. After taking
homology with respect to d1, the surviving term will have
the form aSq−St0. The number S will be an invariant of
K analogous to s and τ .

For example, if K is the (3, 4) torus knot, a glance at
Figure 3 shows that S(K) = 6. This example illustrates
an interesting feature of S, namely, that it is in some
sense easier to compute than either s or τ . Indeed, to
compute S, we need only consider those generators of
H(K) that lie along the line a(x) = −q(x). In many
cases (like the one above) the number of generators we
need to consider is quite small.

In analogy with the known properties of S and τ ,
we expect that S will be a lower bound for the four-
ball genus of K (see Section 5.4). It is not clear, how-
ever, whether it contains any new information, since in
all the examples we have considered, it appears that
S(K) = s(K) = 2τ(K). We hope that further consid-
eration of the construction of S will shed new light on
the relationship between s and τ , either by proving that
all three quantities are equal, or by suggesting where to
look for a counterexample.

3.6 Motivation for the Conjecture

We conclude this section by briefly sketching the back-
ground to Conjecture 3.1, and indicating how strongly
we believe its various parts. Our main reason for ex-
pecting the presence of the differentials dN for N > 0
comes from Gornik’s work on the sl(M) homology. In
[Gornik 04], Gornik describes a deformation of Khovanov
and Rozansky’s construction that gives rise to a cancel-
ing differential on HKRM . In fact, this construction may

be easily modified to obtain a whole family of deforma-
tions, one for each monic polynomial of degree M . It
follows that any monic polynomial of degree M gives rise
to a differential on HKRM . If we let d(M)

N be the dif-
ferential corresponding to the polynomial XM −XN , we
expect that the differential dN of the conjecture can be
obtained as the limit of d(M)

N asM → ∞. In analogy with
Gornik’s work, we expect that taking the homology of
HKRM (K) with respect to this differential d(M)

N will give
the group HKRN (K), thus matching the behavior pre-
dicted by Conjecture 3.1. (Indeed, this observation was
the genesis of the conjecture.) For N > 0, the behavior
expressed by the grading axiom was chosen to agree with
the known behavior of d(M)

N . Finally, the fact that dN1

and dN2 (N1, N2 > 0) anticommute should follow from
the linearity of the space of deformations. More precisely,
if we let d(M)

N1,N2
be the differential corresponding to the

polynomialXM−XN1−XN2 , then d(M)
N1,N2

= d
(M)
N1

+d(M)
N2

,

so the fact that
(
d
(M)
N1,N2

)2 = 0 implies that d(M)
N1

and d(M)
N2

anticommute.
The rest of the conjecture is more speculative. Our

original reason for expecting the presence of the differen-
tials dN for N ≤ 0 was based on analogy with the knot
Floer homology. We believe that the strong internal con-
sistency of the theory, as seen in the examples of Sec-
tion 5, together with the apparently correct predictions
it makes (such as the computations of the stable sl(2)
Khovanov homology of the torus knots in Section 7.3),
indicate that there must be something meaningful going
on. It is possible, however, that we have erred in stating
the exact details. Below, we outline some potential weak
points of Conjecture 3.1.

• We are not currently aware of any construction that
might give rise to the dN ’s for N ≤ 0. Our rea-
sons for expecting their existence are based on anal-
ogy with the case N > 1, which suggests that
there should be a differential d0 giving rise to knot
Floer homology, and with knot Floer homology it-
self, whose symmetries suggest the presence of dN

for N < 0.

• The statement in the conjecture about the gradings
of differentials is somewhat stronger than would be
expected from Gornik’s work. A priori, the differen-
tials coming from Gornik’s theory should shift the
(a, q) bigrading by some multiple of (−2, 2N). The
requirement that this multiple be always one is im-
posed to ensure that dN shifts both t and t′ by a
constant amount. (Some further support for this
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idea is provided by the fact that there are a num-
ber of ten-crossing knots that at first glance look
as if d1 might lower the (a, q) bigrading by (−4, 4).
In all these examples, however, further examination
suggests that this is not the case.)

• Finally, there is some chance that taking homol-
ogy with respect to d0 does not give the knot Floer
homology, but some other categorification of the
Alexander polynomial that happens to look a lot
like it. An interesting test case for this possibility
is provided by the presence of mutant knots with
different genera. For example, there are several mu-
tant pairs of 11-crossing knots, one of which has
genus one bigger than the other. These knots have
the same HOMFLY polynomial and KhR2, but their
knot Floer homologies must differ. It is an interest-
ing question to determine whether these knots have
the same superpolynomial and (if they do) the same
differentials.

4. GEOMETRIC INTERPRETATION

In this section, we explain in more detail the geometric
interpretation of the triply graded knot homology in the
language of open Gromov–Witten theory. As discussed
in Section 1.2, this relation was part of the original mo-
tivation for the triply graded theory, and we hope it can
be useful for developing both sides of the correspondence.
In this section, we mainly consider the unreduced homol-
ogy, which has a more direct relation to the geometry of
holomorphic curves.

The geometric setup consists of the following data:
a noncompact Calabi–Yau 3-fold X and a Lagrangian
submanifold L ⊂ X. Therefore, for every knot K ⊂ S3,
we need to define X and L. The Calabi–Yau space X is
independent of the knot; it is defined as the total space
of the O(−1) ⊕O(−1) bundle over CP1:

O(−1) ⊕O(−1) → CP1. (4–1)

On the other hand, the information about the knot K is
encoded in the topology of the Lagrangian submanifold,
which we denote by LK to emphasize that it is deter-
mined by the knot:

K � LK .

A systematic construction of the Lagrangian submanifold
LK from a braid diagram of K was proposed by Taubes
[Taubes 01]. It involves two steps. First, one constructs
a two-dimensional noncompact Lagrangian submanifold

L(2)
K ⊂ C2, which has the property that its intersection

with a large-radius 3-sphere S3 ⊂ C2 is isotopic to the
knot K. Then, we identify C2 ⊗O(−1) with a fiber of X
and define LK to be a particular subbundle L(2)

K → S1

of the bundle (4–1) restricted to the equator S1 ⊂ CP1.
The construction is such that LK is Lagrangian with re-
spect to the standard Kähler form on X. Moreover, for
every knot K, the resulting 3-manifold LK has the first
Betti number b1(LK) = 1.

Given a Calabi–Yau space X and a Lagrangian sub-
manifold LK ⊂ X, it is natural to study holomorphic
Riemann surfaces in X with Lagrangian boundary con-
ditions on LK :

(Σ, ∂Σ) ↪→ (X,LK). (4–2)

Specifically, we consider embedded surfaces Σ that satisfy
the following conditions:

1. Σ is a holomorphic Riemann surface with a fixed
genus g and one boundary component, ∂Σ ∼= S1.

2. [Σ] = Q with Q a fixed class in H2(X,LK ; Z) ∼= Z.

3. [∂Σ] = γ, where γ generates the free part of the
homology group H1(LK ,Z) ∼= Zγ (modulo torsion).

Now we are ready to define the moduli spaces that ap-
pear in the geometric interpretation of the triply graded
theory, cf. (1–5). Let Σ be an embedded Riemann sur-
face that satisfies the three conditions and let A ∈ Ω1(Σ)
be a flat U(1) gauge connection on Σ,

FA = 0.

We define Mg,Q(X,LK) to be moduli “space” of the
embedded Riemann surfaces Σ with a gauge connec-
tion A, modulo the gauge equivalence, A → A + df ,
where f ∈ Ω0(Σ). Assuming that the dependence on
X and LK is clear from the context, we often refer to
this moduli space simply as Mg,Q. The cohomology
groups Hk(Mg,Q) are labeled by three integers: the de-
gree k, the genus g, and the relative homology class
Q ∈ H2(X,LK ; Z) ∼= Z. These are the three gradings
of our triply graded theory.

Remark 4.1. Since in general Mg,Q may be singular and
noncompact, one needs to be careful about the definition
of Hk(Mg,Q). This problem is familiar in the closely re-
lated context of Gromov–Witten theory, where instead of
embedded Riemann surfaces with a flat connection one
“counts” stable holomorphic maps (possibly with bound-
ary). In Gromov–Witten theory, there is a way to define
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cohomology classes and intersection theory on the mod-
uli spaces of stable maps (see [Katz and Liu 02, Li and
Song 02, Graber and Zaslow 02] for some recent work
on the mathematical formulation and calculation of the
open Gromov–Witten invariants). Similarly, the physi-
cal interpretation of the sl(N) knot homology [Gukov et
al. 05] suggests that, at least in the present case, there
should exist a suitable definition of Mg,Q such that the
cohomology groups Hk(Mg,Q) can be identified with the
triply graded knot homology groups.

Example 4.2. (The unknot.) In this case, the only
nontrivial holomorphic curves are holomorphic disks
wrapped on the northern and the southern hemispheres
of CP1 ⊂ X. Their moduli spaces are isolated points,
Mg,Q

∼= pt for g = 0 and Q = ±1, which correspond to
the two terms a and a−1 in the unreduced superpolyno-
mial for the unknot P̄(a, q, t) = a− a−1.

4.1 Genus Expansion and Symmetry

Now let us look more closely at the structure of the mod-
uli space Mg,Q, assuming that it is well-defined. Let Σ
be a nondegenerate Riemann surface of genus g. The
moduli space of gauge equivalence classes of flat U(1)
connections A ∈ Ω1(Σ) is isomorphic to a 2g-dimensional
torus,

Hom(π1(Σ);U(1))/U(1) ∼= T 2g.

Therefore, Mg,Q has the structure of a fibration

T 2g → Mg,Q

↓
Mgeom

g,Q

(4–3)

where Mgeom
g,Q is the moduli space of embedded Riemann

surfaces (4–2) that satisfy the three conditions given ear-
lier. In many cases, the fibration structure (4–3) can be
recognized directly in the structure of the superpolyno-
mial written in terms of the variables a, t, and y, where
y = (qt1/2 + q−1t−1/2)2. In particular, the contribution
of an isolated Riemann surface with genus g and relative
homology class Q looks like [Gukov et al. 05]

aQtr(qt1/2 + q−1t−1/2)2g,

where the last factor is the familiar Poincaré polynomial
of T 2g. In general, the superpolynomial P̄(K) should
have the structure

P̄(K) =
∑
g,Q,i

D̂Q,g,ia
Qti(qt1/2 + q−1t−1/2)2g, (4–4)

where D̂Q,g,i ∈ Z encode the geometry of the fibration
(4–3). We refer to the expansion (4–4) as the genus ex-
pansion. It is natural to expect a similar structure also
in the case of the reduced superpolynomial P(K). Notice
that in the reduced case, the expansion of the form (4–4)
is equivalent to the existence of the symmetry

φ : Hi,j,∗(K) → Hi,−j,∗(K) (4–5)

that we discussed earlier, in Section 3. In the geometric
interpretation, this symmetry follows from the fibration
structure (4–3).

For the genus expansion of the reduced superpolyno-
mial, let us also define the holomorphic genus, gh(K),
to be the maximum value of g that occurs in the sum
(4–4). It has a clear geometric meaning as the maximum
genus of the holomorphic Riemann surface (4–2) that sat-
isfies the three conditions. With this definition, 2gh(K)
is equal to the maximum power of q that appears in the
reduced superpolynomial. The conjectured relation with
knot Floer homology suggests the following bound:

g3(K) ≤ gh(K), (4–6)

where g3(K) is the Seifert genus of K.

4.2 Relation to Gromov–Witten Invariants

Let us conclude this section by noting that taking the
Euler characteristic in the triply graded knot homology
H∗(K) translates into taking the Euler characteristic in
H∗(Mg,Q). On the other hand, the invariants χ(Mg,Q),
which in the physics literature are called “integer BPS in-
variants,” contain the information about all-genus open
Gromov–Witten invariants of (X,LK) [Ooguri and Vafa
00, Labastida et al. 00]. The relation between the
open Gromov–Witten invariants and the integer BPS in-
variants is highly nontrivial. For example, the genus-
counting parameter u in the open Gromov–Witten theory
is related to the variable q that we use via the following
change of variables (also familiar in the context of the
closed Gromov–Witten theory [Maulik et al. 05]):

q = eiu. (4–7)

Via this relation, all the information about the rela-
tive Gromov–Witten theory of (X,LK) can be compactly
recorded in a finite set of nonzero integer BPS invariants.
One can use this relationship both ways. In particular,
one can find the Euler characteristic χ(Mg,Q) by com-
puting the open Gromov–Witten invariants, say via the
localization technique [Graber and Zaslow 02, Katz and



142 Experimental Mathematics, Vol. 15 (2006), No. 2

Liu 02, Li and Song 02]. It would be interesting to ex-
tend the existing techniques to compute the dimensions
of the individual cohomology groups Hk(Mg,Q).

5. EXAMPLES AND PATTERNS

We now describe the superpolynomials associated with
some specific knots with 10 or fewer crossings. Although
we lack a definition for the triply graded theory and are
unable to compute the sl(N) homology in general, we
can still make intelligent guesses as to the form of the su-
perpolynomial, based on Conjecture 3.1 and the known
values of ĤFK and HKR2. These example illustrate the
internal consistency of the structure proposed in Conjec-
ture 3.1. Once we have looked at these examples, we
explore some patterns observed there in more detail in
Sections 5.3–5.6.

5.1 Thin Knots

In both knot Floer homology and sl(2) Khovanov ho-
mology, the smallest knots exhibit the following simple
behavior: If we plot the homological grading versus the
polynomial grading, all the generators line up along a sin-
gle line. Moreover, this line always has the same slope,
which corresponds to the appropriate δ-grading being
constant (see Section 3.3 for definitions). Such knots are
called thin (with respect to either ĤFK or HKR2). In the
triply graded case, we can define thinness analogously:

Definition 5.1. A knot K is H–thin if all generators of
H(K) have the same δ-grading.

For an H–thin knot, the t-grading of a term of P(K)
is determined by the a- and q- gradings. Thus, there can
be no cancellation when we specialize P(K) to P (K),
and so P(K) is completely determined by its HOMFLY
polynomial and the common δ-grading of its generators.
Noting that the common δ-grading is equal to −S(K)/2,
the precise relationship between P(K) and P (K) is con-
cisely expressed by

PK(a, q, t) = (−t)−S(K)/2PK(at, iqt1/2).

If K is thin, the dimension of H(K) is equal to the
determinant of K. Moreover, all differentials other than
d1 and d−1 automatically vanish, since these differen-
tials lower the δ-grading. Finally, the fact that d1 and
d−1 anticommute and each has one-dimensional homol-
ogy implies that H(K) can be decomposed as the direct
sum of a number of “squares” with Poincaré polynomial

aiqjtk(1 + a−2q2t−1)(1 + a−2q−2t−3) and a single “saw-
tooth” summand isomorphic to H(T2,k) for some value
of k. It follows that

PK(a, q, t) = PT2,k
(a, q, t)

+ (1 + a−2q2t−1)(1 + a−2q−2t−3)Q(a, q, t),

where Q is a polynomial with positive coefficients. We
thus obtain a restriction on the HOMFLY polynomial of
a thin knot: if T2,k is a torus knot whose signature is
equal to S(K), the polynomial

P (K) − P (T2,k)
(1 − a−2q2)(1 − a−2q−2)

must be alternating.
As with ĤFK and HKR2, we expect that some classes

of simple knots are H–thin. In particular, we make the
following conjecture:

Conjecture 5.2. If K is a two-bridge knot, then K is
H–thin, and S(K) = σ(K).

Since two-bridge knots are alternating and hence thin
for ĤFK and HKR2 [Ozsváth and Szabó 03a, Lee 02a], it
is easy to check that Conjecture 5.2 holds for N = 0, 1, 2.
Thus, to prove it one needs to show that for N ≥ 3,

KhRN (K)(q, t) = (−t)−σ(K)/2P (K)(qN t, iqt1/2). (5–1)

Most of Conjecture 5.2 has been proved in [Rasmussen
05b], where it is shown that (5–1) holds for all N ≥ 5.
The proof uses only elementary properties of Khovanov
and Rozansky’s original definition, in particular the skein
exact sequence. The approach has difficulties for N = 3
or 4, and this portion of Conjecture 5.2 remains open. All
knots with fewer than 8 crossings are two-bridge. Their
superpolynomials (assuming the conjecture) are shown
in Table 2.

It is well known [Ozsváth and Szabó 03a], [Lee 02a]
that alternating knots are thin with respect to both ĤFK
and HKR2. However, the analogous statement for H–
thinness cannot be true. To see why, we introduce the
notion of a knot having an alternating HOMFLY polyno-
mial. We say that P (K) is alternating if the sign of the
coefficient of a2iq2j is ±(−1)j , where the factor of ± is the
same for all coefficients. It is not difficult to see that if K
is H–thin, then P (K) is alternating. On the other hand,
there are examples of alternating knots whose HOMFLY
polynomials are not alternating, the smallest being 11a

263

(numbering from Knotscape [Hoste and Thistlethwaite
99]).
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Knot P

31 a2q−2 + a2q2t2 + a4t3

41 a−2t−2 + q−2t−1 + 1 + q2t+ a2t2

51 a4q−4 + a4t2 + a6q−2t3 + a4q4t4 + a6q2t5

52 a2q−2 + a2t+ a2q2t2 + a4q−2t2 + a4t3 + a4q2t4 + a6t5

61 a−2t−2 + q−2t−1 + 2 + q2t+ a2q−2t+ a2t2 + a2q2t3 + a4t4

62 q−2t−2 + a2q−4t−1 + a2q−2 + q2 + 2ta2 + a4q−2t2 + a2q2t2

+ a2q4t3 + a4t3 + a4q2t4

63 a−2q−2t−3 + a−2t−2 + q−4t−2 + q−2t−1 + a−2q2t−1 + 3

+ a2q−2t+ q2t+ a2t2 + q4t2 + a2q2t3

71 a6q−6 + a6q−2t2 + a8q−4t3 + a6q2t4 + a8t5 + a6q6t6 + a8q4t7

72 a2q−2 + a2t+ a4q−2t2 + a2q2t2 + 2a4t3 + a6q−2t4 + a4q2t4

+ a6t5 + a6q2t6 + a8t7

73 a−4q4 + a−8q−2t−7 + a−6q−4t−6 + a−6q−2t−5 + a−8q2t−5 + 2a−6t−4

+ a−4q−4t−4 + a−6q−2t−3 + a−6q2t−3 + a−4t−2 + a−6q4t−2 + a−4q2t−1

74 a−2q2 + a−8t−7 + a−6q−2t−6 + 2a−6t−5 + 2a−4q−2t−4 + a−6q2t−4

+ 2a−4t−3 + a−2q−2t−2 + 2a−4q2t−2 + 2a−2t−1

75 a4q−4 + a4q−2t+ 2a4t2 + a6q−4t2 + 2a6q−2t3 + a4q2t3 + 2a6t4

+ a4q4t4 + a8q−2t5 + 2a6q2t5 + a8t6 + a6q4t6 + a8q2t7

76 2a2q−2 + q2 + q−2t−2 + t−1 + a2q−4t−1 + 3a2t+ 2a4q−2t2

+ 2a2q2t2 + 2a4t3 + a2q4t3 + 2a4q2t4 + a6t5

77 a−4t−4 + 2a−2q−2t−3 + 2a−2t−2 + q−4t−2 + 2q−2t−1 + 2a−2q2t−1

+ 4 + a2q−2t+ 2q2t+ 2a2t2 + q4t2 + a2q2t3

TABLE 2. Reduced superpolynomial for prime knots with up to 8 crossings.

Conversely, knots with alternating HOMFLY polyno-
mials need not be H–thin. The knot 942 (numbering
from Rolfsen [Rolfsen 76]) is a good example of this phe-
nomenon. It has HOMFLY polynomial

P (942) = a−2q−2 + a−2q2 − q−4 − 1− q4 + a2q−2 + a2q2,

which is certainly alternating. If we assume that H(942)
is thin and try to endow it with differentials satisfying
Conjecture 3.1, however, we arrive at a contradiction.

The requirement that d1 and d−1 have one-dimensional
homology and anticommute with each other quickly leads
to the dot diagram shown on the left-hand side of Fig-
ure 5. However, in that diagram both d1 and d−1 do not
square to zero. The problem is resolved by postulating
the presence of an additional two generators at the center
of the diagram, as shown on the right-hand side of Fig-
ure 5. The resulting diagram correctly predicts ĤFK(942)
and HKR2(942).
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1−1

−2

4

31

2

0

0

FIGURE 5. Two possible dot diagrams for the knot 942. The
left-hand diagram assumes that H(942) is thin and arrives
at a contradiction: d2

1 �= 0. The right-hand diagram corrects
this problem by introducing a pair of additional generators.

5.2 Thick Knots

Some knots are easily identified as being H–thick. In
particular, if a knot is thick with respect to either ĤFK
or HKR2, it is necessarily H–thick as well. The knots
with fewer than 11 crossings that fit this criterion are

819, 942, 10124, 10128, 10132, 10136, 10139, 10145,

10152, 10153, 10154, 10161.

We have already described the first two of these in Fig-
ures 3 and 5. In Section 8, we give dot diagrams il-
lustrating what we believe are the superpolynomials of
the 10-crossing knots in the list above. For most of these
knots, our reasons for asserting that this is the superpoly-
nomial are purely internal: it seems difficult to produce
another diagram satisfying all the hypotheses of Conjec-
ture 3.1. In addition, there are skein-theoretic arguments
that support our calculations for 819 and 10128, although
these currently fall short of a complete proof. In both
of these cases, the skein-theoretic calculation gave the
answer we had previously guessed based on our conjec-
ture, and we view this as at least some evidence that our
calculations are on the right track.

The interesting examples provided by these thick
knots allow us to probe the rich structure of the triply
graded theory. Even the simple thick knots we considered
exhibit some very different types of behavior. Some thick
knots, such as 942, 10132, 10136, and 10145, have “in-
visible” generators that cannot be seen from the HOM-
FLY polynomial. Others, like 819 and 10124, have no
invisible generators, but have nontrivial d−2, d0, and d2.
Many exhibit both features. There are cases, like 10145,
where the gradings in the superpolynomial are such that
d2 might conceivably be nontrivial, but the requirement
that the differentials anticommute prohibits it.

Although the sample of knots we consider here is ad-
mittedly small, a number of interesting patterns may be
observed from it. The rest of this section is devoted to
describing a few of these.

5.3 Dimension of ĤFK and HKR2

It is an interesting and rather puzzling fact that the knot
Floer homology and sl(2) Khovanov homology of a given
knot often have the same dimension [Rasmussen 05a].
Indeed, explaining this was one of our motivations for
considering a triply graded theory. At first glance, how-
ever, the triply graded theory we have described does not
seem to help all that much. One case in which it does
provide insight is for those knots for which d2 and d0

both vanish (thin knots, but also some thick examples
such as 942). In this case, the correspondence is obvious:
the dimensions of ĤFK and HKR2 are both equal to that
of H. However, there are many knots for which d2 and d0

are nontrivial but the two dimensions still agree. To con-
sider an extreme example, our proposal for H(10128) has
dimension 27, while the dimensions of ĤFK and HKR2

are both 13.
The fact that the correspondence still holds in such

cases suggests that we should look for an explanation of
why the part of H killed by d2 should have the same
dimension as the part killed by d0. Examining the di-
agrams in Section 8, a rather striking pattern comes to
light: for knots with S ≥ 0, any dot that has a nonzero
image under one of d2, d0, and d−2 must have a nonzero
image under the other two as well! (For S < 0, the re-
quirement is reversed: any generator that is in the image
of one differential is in the image of the other two as
well.) Although we don’t have any explanation for this
phenomenon, it seems clear that if we understood it, we
would be well on the way to understanding why ĤFK
and HKR2 have the same dimension for so many knots.

5.4 Braid Index and Estimates on S

It is well known that the minimum braid index of a knot
is bounded by the difference between the maximum and
minimum exponents of a in its HOMFLY polynomial.
The same principle applies to the superpolynomial. More
generally, we have the following proposition:

Proposition 5.3. Let amax(P(K)) and amin(P(K)) be the
maximum and minimum powers of a appearing in P(K).
Then for any planar diagram D of K,

w(D) − c(D) + 1 ≤ amin(P(K)) ≤ amax(P(K))

≤ w(D) + c(D) − 1,

where w(D) is the writhe of D and C(D) the number of
components in its oriented resolution.
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The analogue of this theorem for the HOMFLY poly-
nomial was proved by Morton in [Morton 86]. As we
now describe, Morton’s argument carries through to the
setting of superpolynomials. Since we don’t have a defi-
nition of P(K), this statement can be taken in two ways.
The first is that, like the sl(N) homology, the triply
graded theory should satisfy a skein exact triangle. Mor-
ton’s proof is purely skein-theoretic, and it is not hard
to see that it carries over to any theory that has a skein
exact triangle. The other point of view is that this is a
limiting statement about the sl(N) homology as N → ∞.
In particular, using the skein exact triangle one can show
that

N (w(D) − c(D) + 1) − E

≤ qmin(KhRN (K)) ≤ qmax(KhRN (K)) (5–2)

≤ N (w(D) + c(D) − 1) + E,

where |E| is uniformly bounded independent of N . If
Conjecture 1.3 holds, we have

lim
N→∞

1
N
qmin(KhRN (K)) = amin(P(K))

and similarly for amax(P(K)). The proposition then fol-
lows by taking the limit of (5–2) as N → ∞.

In the same paper, Morton asked whether there might
be a connection between amin(P (K)) and the bound on
the genus of a knot provided by Bennequin’s inequality.
Since Bennequin’s inequality actually provides a lower
bound for the four-ball genus g∗ of K [Rudolph 95], one
might ask whether the same is true for amin(P (K)):

2g∗(K)
??≥ amin(P (K)). (5–3)

Although it is true in many examples, this inequality is
false in general. For knots with fewer than 11 crossings,
the knot K = 10132 is the only counterexample; there
g∗(K) = 1, but amin(P (K)) = 4. A brief inspection of
the proposed dot diagram for 10132 in Section 8 suggests
an explanation for what has gone wrong: amin(P(K)) =
2, but the terms with lowest degree in a are not visible
in the HOMFLY polynomial.

If we replace amin(P (K)) by amin(P(K)) in (5–3), we
expect that the resulting inequality will be true. In-
deed, it is clear from the definition that amin(P(K)) ≤
S(K) ≤ amax(P(K)). If S(K) provides a lower bound
for the four-ball genus of K (which seems quite likely),
amin(P(K)) will do so as well. Continuing in this vein, we
can combine Proposition 5.3 with the previous inequality
to obtain the following estimate for S:

w(D) − c(D) + 1 ≤ S(K) ≤ w(D) + c(D) − 1,

where D is any planar diagram of K. Zoltán Szabó
pointed out to us that using the work of Livingston [Liv-
ingston 04], it is not difficult to see that s and τ satisfy
similar estimates. We sketch the proof of this fact for τ ;
the argument for s is the same.

Suppose K has a planar diagram D, and let n±(K)
denote the number of positive and negative crossings. If
we change all the negative crossings to positive, we obtain
a new knot K+, and [Livingston 04] and [Rudolph 99] tell
us that

2τ(K+) = n+(D) + n−(D) − c(D) + 1.

To get back to K, we must change n−(D) crossings from
positive to negative, which can lower τ by at most n−(D).
Thus

2τ(K) ≥ n+(D) − n−(D) − c(D) + 1

= w(D) − c(D) + 1.

Similarly, changing all of D’s positive crossings to nega-
tive, we see that

2τ(K) ≤ w(D) + c(D) + 1.

5.5 d1 and the Unreduced Homology

Although we have focused on reduced homology, we ex-
pect that our work also has relations with the unreduced
theory. In general, the unreduced homology HKRN (K)
is related to HKRN (K) by a spectral sequence that has
E1 term equal to HKRN (K)⊗Q[X]/(XN ). WhenN = 2,
the differential in this spectral sequence seems to be re-
lated to the Lee/Turner differential on HKR2. For exam-
ple, if K is thin, the presence of the Lee/Turner differen-
tial implies that

KhR2(K) = qs(K) + (1 + q2t)KhR′
2(K), (5–4)

where KhR′
2(K) is a polynomial with positive coeffi-

cients. The unreduced homology can also be expressed
in terms of KhR′

2:

KhR2(K) = (q+q−1)qs(K)+(q−1+q3t)KhR′
2(K). (5–5)

This suggests that the differential on the E1 term of the
spectral sequence is determined by the relation dE1(a) =
Xd1∗(a), where d1∗ denotes the Lee/Turner differential.

The analogue for the superpolynomial is that for any
knot K we have

P(K) =
(
a

q

)S(K)

+ (1 + ta2q−2)Q+(a, q, t), (5–6)
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where Q+(a, q, t) is a polynomial with positive coeffi-
cients. This follows immediately from the existence of the
canceling differential d1 given by Conjecture 3.1. (The
reason that the standard canceling differential on HKR2

does not always force (5–4) is that, unlike d1 on H∗, it is
not necessarily homogeneous in its behavior with respect
to the grading.) When K is thin, we expect that the
differential in the spectral sequence will again be deter-
mined by d1∗: dEN−1(a) = XN−1d1∗(a). This suggests
the following analogue of (5–5):

KhRN (K) = q(N−1)S(K)

(
qN − q−N

q − q−1

)
+ (q−1 + q2N−1t)

(
qN−1 − q−N+1

q − q−1

)
×Q+(a = qN , q, t).

Expressing this in terms of the unreduced superpolyno-
mial, we get

P̄(K) = (a− a−1)
(a
q

)S(K)

(5–7)

+ (q−1 + a2q−1t)(aq−1 − a−1q)Q+(a, q, t).

Let us illustrate the structure of the unreduced super-
polynomial with the following example.

Example 5.4. (The figure-eight knot.) Since the figure-
eight knot 41 is H–thin, its reduced superpolynomial is
easy to determine. The result is presented in Table 2. It
has the expected structure (5–6) with S(41) = 0 and

P ′(41) =
1
a2t2

+ q2t. (5–8)

Substituting this into (5–7), we obtain the unreduced
superpolynomial for the figure-eight knot:

P̄(41) = a− a−1 (5–9)

+ (q−1 + a2q−1t)(aq−1 − a−1q)(a−2t−2 + q2t).

It is easy to check that specializing to t = −1 and a = q2

we reproduce, respectively, the correct expressions for
the unnormalized HOMFLY polynomial and the sl(2)
Khovanov homology. Moreover, substituting (5–9) into
(1–2), we obtain the following prediction for the unre-
duced sl(N) homology:

KhRN (41) =
N−1∑
i=0

q2i−N+1 (5–10)

+ (1 + q2N t)(q−2N t−2 + q2t)
N−2∑
i=0

q2i−N+1.

5.6 d−1 and Three-Step Pairings

As discussed in Section 3.4, Conjecture 3.1 requires that
H admit two distinct canceling differentials: d1 and d−1.
This implies that HKRN should admit a second cancel-
ing differential as well. We end this section by describ-
ing some empirical evidence that supports the idea that
HKR2 admits an additional canceling differential.

To begin with, we show that the unique term that
is not canceled by d−1 has grading (aqt)S(K). This is
because d−1 is interchanged with d1 by the symmetry
φ: the uncanceled term for d1 is aS(K)q−S(K)t0, which is
taken to aS(K)qS(K)tn by φ, and n can then be computed
by using that φ preserves the δ-grading. We thus have
the following analogue of (5–6):

P(K) = (aqt)S(K) + (1 + a2q2t3)Q−(a, q, t), (5–11)

where Q−(a, q, t) is a polynomial with positive coeffi-
cients.

If K is H-thin, we can substitute a = q2 to obtain
the following prediction for the sl(2) Khovanov homology
of K:

KhR2(K) = (q3t)S(K) + (1 + q6t3)Q−(a = q2, q, t).
(5–12)

Independent of this, given a HKR2–thin knot K, we have

KhR2(K) = (−t)−S(K)/2J(K)(q2 = −q2t),

where J(K) is the Jones polynomial P (K)(a = q2, q).
Combining this with the fact that J(K)(q2)−1 is divisible
by 1 − q6 (see, e.g., Proposition 12.5 of [Jones 87]), it is
not difficult to see that (5–12) holds for some polynomial
Q−(q, t). It is not clear that this polynomial should have
positive coefficients, as predicted by (5–11), but for thin
knots with fewer than 12 crossings, we have checked that
this is the case. More generally, we have the following:

Definition 5.5. We say a knot K has a three-step pairing
on KhR2 if for some m,n ∈ Z, we have

KhR2(K) = qmtn + (1 + q6t3)Q−(q, t),

where Q− is a polynomial with positive coefficients.

A knot that admits a three-step pairing has an ob-
vious candidate for the canceling differential induced by
d−1, though of course a canceling differential need not
force a three-step pairing. Such knots are surprisingly
common. In addition to the thin knots mentioned above,
we checked some 5,000 knots with fewer than 16 cross-
ings that happen to be (1, 1) knots and found that all of
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them had three-step pairings. A number of these knots
are complicated enough that they do not satisfy (5–4),
which makes this all the more remarkable.

6. TORUS KNOTS

Let Tn,m be a torus knot of type (n,m), where n and m
are relatively prime integers, n < m. In this section, we
propose an explicit expression for the superpolynomial
for all torus knots of type (2,m) and (3,m), and discuss
its structure for general torus knots Tn,m. We consider
reduction to the sl(N) knot homology and to the knot
Floer homology, and show that our predictions are con-
sistent with the known results. The differentials dN play
an important role in this discussion.

Let us begin by recalling the expression for the HOM-
FLY polynomial of a torus knot Tn,m.

6.1 HOMFLY Polynomial

The explicit expression for P (Tn,m) was found by
Jones [Jones 87]:

P (Tn,m) =
am(n−1)[1]q

[n]q

n−1∑
β=0

(−1)n−1−β q−m(2β−n+1)

[β]q![n− 1 − β]q!

×
β∏

j=β−n+1
j �=0

(
qja− q−ja−1

)
, (6–1)

where [n]q = qn − q−n is the “quantum dimension” of n
written in a slightly unconventional normalization, and

[n]q! = [n]q[n− 1]q · · · [1]q with [0]q! = 1. (6–2)

One can manipulate the expression (6–1) into the follow-
ing form, which will be useful to us below:

P (Tn,m) = (aq)(n−1)(m−1) 1 − q−2

1 − q−2n
(6–3)

×
n−1∑
β=0

q−2mβ

(
β∏

i=1

a2q2i − 1
q2i − 1

)⎛⎝n−1−β∏
j=1

a2 − q2j

1 − q2j

⎞⎠ .

Assuming that all the terms in the superpolynomial
P(Tn,m) are “visible” in the HOMFLY polynomial, one
might hope to obtain P(Tn,m) by inserting powers of (−t)
in the expression for P (Tn,m). In order to do this, it is
convenient to simplify (6–1) further and write it as a sum
of terms without denominators. For example, for n = 2
and m = 2k + 1, we obtain

P (T2,2k+1) =
a2k+1

(q2 − q−2)

[
− a(q2k − q−2k) (6–4)

+ a−1
(
q2k+2 − q−2k−2

)]
= −a2k+2

k∑
i=1

q4i−2k−2 + a2k
k∑

i=0

q4i−2k,

where in the first two lines we combined the terms with
the same power of a. Similarly, for (3,m) torus knots,
we obtain

P (T3,3k+1) = a6k
k∑

j=0

3j∑
i=0

q6j−4i − a6k+2
k∑

j=1

6j−2∑
i=0

q6j−2i−2

+ a6k+4
k−1∑
j=0

3j∑
i=0

q6j−4i (6–5)

and

P (T3,3k+2) = a6k+2
k∑

j=0

3j+1∑
i=0

q6j−4i+2

− a6k+4
k∑

j=0

6j∑
i=0

q6j−2i (6–6)

+ a6k+6
k−1∑
j=0

3j+1∑
i=0

q6j−4i+2.

In general, P (Tn,m) has the following structure, which
follows directly from (6–3):

P (Tn,m) =
n−1∑
J=0

a(m−1)(n−1)+2JP (J)(q), (6–7)

where each P (J) ∈ Z[q, q−1] can be written in terms of
n− 1 repeated sums; cf. (6–4)–(6–6).

6.2 The Structure of the Superpolynomial

We wish to find an explicit form of the superpolynomial
for torus knots Tn,m, that has all the right properties
to be the Poincaré polynomial of the triply graded ho-
mology theory H. Before we proceed to a more detailed
analysis, let us make a few general remarks about the ex-
pected structure of the superpolynomial for torus knots
Tn,m. Simple examples of torus knots of type (2,m) and
(3,m) already appeared in Sections 3 and 5. In these
examples, all the terms in the reduced superpolynomial
P(Tn,m) are “visible” in the HOMFLY polynomial. We
will assume that this is also the case for more general
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torus knots. In particular, this means that the struc-
ture of the superpolynomial P(Tn,m) is similar to that
of (6–7):

P(Tn,m) =
n−1∑
J=0

a(m−1)(n−1)+2JP(J)(q, t), (6–8)

where
P(J) ∈ Z≥0 [q, q−1, t].

Notice that only nonnegative powers of t appear in
P(J)(q, t). Moreover, the examples of T2,m and T3,m

torus knots studied below suggest that only even (re-
spectively odd) powers of t appear in P(J)(q, t) for even
(respectively odd) values of J , and the maximal degree
of t does not exceed (m− 1)(n− 1) + J .

The structure of the superpolynomial P(Tn,m) should
also be consistent with the action of the differentials d1

and d−1. In particular, it should be consistent with (5–6)
and (5–11):

P(Tn,m) = aSq−S + (a2q−2t+ 1)Q+(a, q, t) (6–9)

and

P(Tn,m) = (aqt)S + (a2q2t3 + 1)Q−(a, q, t), (6–10)

where for a torus knot Tn,m,

S(Tn,m) = (n− 1)(m− 1) (6–11)

and Q± ∈ Z≥0[a, q, t]. Similarly, the unreduced super-
polynomial should have the structure

P̄(Tn,m) =
(
a

q

)S

(a− a−1) + (a−1 + at)P̄ ′(a, q, t),

(6–12)
cf. (5–7), where P̄ ′ ∈ Z[a±1, q±1, t±1].

We believe that for any torus knot Tn,m there exists an
explicit expression for the superpolynomial with all the
required properties. We were able to find such an expres-
sion for all torus knots of type (2,m) and (3,m), and to
obtain some partial results for arbitrary torus knots Tn,m.

6.3 Torus Knots T2,2k+1

The (2, 2k + 1) torus knots are in many respects the
simplest of all knots. There are several different ways
to determine their superpolynomials (reduced and unre-
duced), all of which lead to the same result. One reason
for this—which was already used for simple examples of
(2, 2k+1) torus knots in [Gukov et al. 05] and in Sections
3 and 5 here—is that all the terms in the sl(2) homol-
ogy of T2,2k+1 are “visible” in the HOMFLY polynomial.

In particular, for torus knots of type (2, 2k + 1), Con-
jectures 1.2 and 1.3 hold for all values of N ≥ 2. This
nice property can be used to determine the superpoly-
nomial of T2,2k+1 either by combining the information
about the HOMFLY polynomial and the sl(2) homology,
or by comparing the sl(2) and sl(3) knot homologies, or
in some other way.

For example, the HOMFLY polynomial of T2,2k+1 is
given by (6–4), namely

P (T2,2k+1) = −a2k+2
k∑

i=1

q4i−2k−2 + a2k
k∑

i=0

q4i−2k,

while the sl(2) Khovanov homology is

KhR2(T2,2k+1) = q2kt0 + q2k+4t2 + q2k+6t3 + · · ·
+ q6k+2t2k+1.

If we substitute a = q2 and compare terms, it is easy to
guess the formula in the following proposition:

Proposition 6.1. The reduced superpolynomial P(T2,2k+1)
has the form (6–8), that is,

P(T2,2k+1) = a2kP(0) + a2k+2P(1), (6–13)

where

P(0) =
k∑

i=0

q4i−2kt2i and P(1) =
k∑

i=1

q4i−2k−2t2i+1.

(6–14)

Of course, T2,2k+1 is a two-bridge knot, and therefore
a particular case of Conjecture 5.2. This is a very useful
family of examples to have in mind, however, so it is
worth considering them in greater detail. Note that we
have stated the formula above as a proposition. As usual,
this is to be interpreted as a statement about KhRN for
N 
 0. Its proof follows immediately from the proof of
Conjecture 5.2 given in [Rasmussen 05b].

Let us check that H(T2,2k+1) satisfies the conditions
of Conjecture 3.1. First, observe that H(T2,2k+1) is thin:
all generators have δ-grading −k. For i 	= 0, di lowers
the δ-grading by |i|, while d0 lowers the δ-grading by 1.
Thus d1 and d−1 must be the only nontrivial differentials.
Their action is illustrated in Figure 6. From the figure,
it is obvious that the symmetry property holds. Finally,
if we substitute a = 1/t, the reduced superpolynomial
specializes to HFK(T2,2k+1):

HFK(T2,2k+1) = q−2kt−2k+q−2kt−2k(1+q−2t−1)
k∑

i=1

q4it2i.

(6–15)
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FIGURE 6. Dot diagram for the superpolynomial of T2,2k+1.

We remark that the vanishing of dN for N 	= 1,−1
is really quite special. As we shall see in the next sec-
tion, the situation is qualitatively different for torus knots
Tn,m with n > 2, where any differential dN can poten-
tially be nontrivial for a fixed value of n and sufficiently
large m.

Now let us turn to the unreduced superpolynomial
of T2,2k+1. The unnormalized HOMFLY polynomial of
T2,2k+1 can be easily obtained from (6–4) by multiplying
it by P̄ (unknot) = (a− a−1)/(q − q−1):

P̄ (T2,2k+1) =
1

q − q−1

[
− a2k+3

k∑
i=1

q4i−2k−2 (6–16)

+ a2k+1
2k∑
i=0

q2i−2k − a2k−1
k∑

i=0

q4i−2k
]
.

On the other hand, the unreduced sl(2) homology of T2,m

is known to be given by [Khovanov 99]

KhR2(T2,2k+1) = (q + q−1)q2k +
k∑

i=1

q4i+2k−1t2i

+
k∑

i=1

q4i+2k+3t2i+1. (6–17)

Now one can use the conjectured relation (1–2) to find the
superpolynomial P̄(T2,2k+1). Namely, multiplying both
(6–16) and (6–17) by (q−q−1), we obtain two expressions,
which are supposed to be specializations of P̄(T2,2k+1) to
t = −1 and a = q2, respectively:

(q − q−1)P̄ (T2,2k+1) = (a− a−1)
(
a

q

)2k

+ a2k(aq−2 − a3q−2 − a−1 + a)
k∑

i=1

q4i−2k

and

(q − q−1)KhR2(T2,2k+1)

= (q2 − q−2)q2k + (1 + q4t− q−2 − q2t)
k∑

i=1

q4i+2kt2i.

By matching the corresponding terms in these two ex-
pressions, we arrive at the formula contained in the fol-
lowing proposition, which is a special case of (5–7):

Proposition 6.2. For a torus knot T2,2k+1, the unreduced
superpolynomial P̄(T2,2k+1) is given by

P̄(T2,2k+1) = (a− a−1)
(
a

q

)2k

(6–18)

+ a2k(a2q−2 − 1)(a−1 + at)
k∑

i=1

q4i−2kt2i.

As a mathematical statement, this is to be interpreted
in terms of Conjecture 1.2. In other words, it says that
for N > 1, the sl(N) knot homology of T2,2k+1 is given
by

KhRN (T2,2k+1) = q(2k−1)(N−1) (6–19)

×
[N−1∑

i=0

q2i + (1 + q2N t)
k∑

i=1

N−2∑
j=0

q4i+2jt2i
]
.

Again, this formula can be confirmed by direct calcu-
lation. Perhaps the easiest approach is to start from
Proposition 6.1 and use the spectral sequence relating
reduced and unreduced homology. All the differentials in
this spectral sequence vanish for dimensional reasons ex-
cept for dN−1, which is potentially nonzero on k different
elements. To verify the nontriviality of dN−1, one can use
Gornik’s theorem [Gornik 04] that there is a differential
on HKRN (K) whose homology is supported in dimension
zero. This cannot be the case unless all components of
dN−1 that can be nonzero actually are nonzero.

6.4 Torus Knots T3,m

In this and the following section, we consider torus knots
of type (3,m), and we will mainly discuss the reduced
theory. We start by summarizing our prediction for the
superpolynomial of T3,m:

Conjecture 6.3. For a torus knot T3,m, the reduced su-
perpolynomial P(T3,m) has the form (6–8):

P(T3,m) = a2m−2P(0) + a2mP(1) + a2m+2P(2), (6–20)

where for m = 3k + 1,

P(0) =
k∑

j=0

3j∑
i=0

q6j−4it4k+2j−2i,

P(1) =
k∑

j=1

6j−2∑
i=0

q6j−2i−2t4k+2j−2�i/2�+1, (6–21)
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where �x� denotes the integer part of x,

P(2) =
k−1∑
j=0

3j∑
i=0

q6j−4it4k+2j−2i+4,

whereas for m = 3k + 2,

P(0) =
k∑

j=0

3j+1∑
i=0

q6j−4i+2t4k+2j−2i+2,

P(1) =
k∑

j=0

6j∑
i=0

q6j−2it4k+2j−2�i/2�+3, (6–22)

P(2) =
k−1∑
j=0

3j+1∑
i=0

q6j−4i+2t4k+2j−2i+6.

Below we summarize some checks of (6–20)–(6–22):

1. If we set t = −1, we recover the correct expres-
sion for the normalized HOMFLY polynomial (6–5)–
(6–6).

2. It is easy to verify that (6–20)–(6–22) have the struc-
ture of (6–9) and (6–10), where S(T3,m) = 2(m−1).

3. The general result (6–20)–(6–22) is consistent with
our computations of P(T3,m) for small values of m
(see examples in Sections 3 and 5).

4. Taking homology with respect to d2 gives the correct
result for KhR2(T3,m).

5. Taking homology with respect to d0 gives the correct
result for HFK(T3,m).

The first three checks are fairly straightforward. We ver-
ify the properties (4) and (5) in the following two sec-
tions, where we also give the definitions of d2 and d0.
Another consistency check is that P(T3,m) has the ex-
pected symmetry φ. Indeed, using the explicit form of
the superpolynomial in (6–13) and (6–20), it is easy to
verify the following result:

Proposition 6.4. For n = 2 and n = 3, there is an invo-
lution

φ : Hi,j,∗(Tn,m) → Hi,−j,∗(Tn,m). (6–23)

In other words, for torus knots T2,m and T3,m, the re-
duced superpolynomial P(Tn,m) can be written as a poly-
nomial in a, t, and y = (q−1t−1/2 + qt1/2)2, in agreement
with the genus expansion structure (4–4).

6.5 Reduction to KhR

As we explained in Section 3, the reduction to the sl(N)
knot homology involves taking cohomology with respect
to the differentials dN and specializing to a = qN . Un-
like the case of (2,m) torus knots discussed earlier in
this section, the triply graded theory of T3,m is compli-
cated enough that any differential dN can be potentially
nonzero if m is sufficiently large. In order to see this,
we recall that dN is graded of degree (−2, 2N,−1) for
N ≥ 1. In particular, since it lowers the a-grading by
2 units and t-grading by 1 unit, it should necessarily in-
volve the terms from P(1) in (6–20).

First, let us consider the case m = 3k+ 1. It is conve-
nient to split the sum over i in the expression (6–21) for
P(1)(T3,3k+1) into a sum over even and odd values of i,
and rewrite the result as

P(1)
+ (T3,3k+1) = a6k+2

k∑
j=1

3j−1∑
i=0

q6j−4i−2t4k+2j−2i+1,

(6–24)

P(1)
− (T3,3k+1) = a6k+2

k∑
j=1

3j−2∑
i=0

q6j−4i−4t4k+2j−2i+1.

(6–25)

Now we want to study what happens to these terms un-
der the action of dN . Notice that here we tacitly identify
the elements of the homology groups H with the corre-
sponding terms in the superpolynomial. For example, in
this terminology, a nontrivial action of the graded differ-
ential dN is described by a multiplication by a−2q2N t−1.
Applying this to (6–24)–(6–25) and rearranging the sum,
we obtain

a6k
k+N−1∑

j=N

3j+1−2N∑
i=N−1

q6j−4it4k+2j−2i, (6–26)

a6k
k+N−2∑
j=N−1

3j+2−2N∑
i=N−2

q6j−4it4k+2j−2i. (6–27)

In this form, it is easy to recognize some of the terms
from P(0)(T3,3k+1). Indeed, comparing the range of the
summation in (6–24) and (6–25) with that in (6–21), we
conclude that dN can be potentially nontrivial for torus
knots T3,3k+1 with k ≥ N − 1.

Similarly, we find that the terms in the expressions
(6–24) and (6–25) can potentially be in the image of dN
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acting on the following terms in P(2)(T3,3k+1):

a6k+4
k+1−N∑
j=2−N

3j+2N−2∑
i=2−N

q6j−4it4k+2j−2i+4, (6–28)

a6k+4
k−N∑

j=1−N

3j+2N−1∑
i=1−N

q6j−4it4k+2j−2i+4. (6–29)

Again, comparing these expressions with (6–21), we con-
clude that dN has to be trivial, unless k ≥ N − 1.

Summarizing, we find that for torus knots T3,3k+1, all
differentials dN with N ≤ k + 1 can potentially be non-
trivial. Notice, in particular, that there are terms in
P(1)(T3,3k+1) that have the right grading to be in the
image of dN as well as to map under dN to some other
terms in P(0). Unfortunately, in this case, the structure
of our triply graded theory alone does not uniquely de-
termine the action of dN for general N . For N = 2, we
find that d2 acts on the terms

a6k+2
k+2−N∑

j=1

3j−2∑
i=0

q6j−4i−4t4k+2j−2i+1 (6–30)

+ a6k+4
k+1−N∑

j=0

3j∑
i=0

q6j−4it4k+2j−2i+4

in P(1)
− (T3,3k+1) and P(2)(T3,3k+1) and maps them to the

corresponding terms in P(0)(T3,3k+1) and P(1)
+ (T3,3k+1).

Indeed, subtracting all these terms from P(T3,3k+1) and
specializing to a = q2, we obtain

P2(T3,3k+1) = P(q2, q, t) (6–31)

− (1 + t)q12k
k∑

j=1

3j−2∑
i=0

q6j−4it4k+2j−2i

− (1 + t−1)q12k+8
k−1∑
j=0

3j∑
i=0

q6j−4it4k+2j−2i+4

= (1 + q4t2 + q6t3 + q10t5)
k−1∑
i=0

q6k+6it4i

+ q12kt4k, (6–32)

which agrees with the values of KhR2(T3,3k+1) computed
by Shumakovitch and Bar-Natan. (Although we will not
prove it here, this formula is almost certainly true in
general; using [Bar-Natan 05c], it can be easily checked
for k < 100, for example.)

For T3,3k+2, the analysis is similar. Again, we ob-
tain several possibilities for how dN might act on various

terms in the superpolynomial P(T3,3k+2):

a6k+6
k+1−N∑

j=0

3j+1∑
i=0

q6j−4i+2t4k+2j−2i+6 (6–33)

→ a6k+4
k∑

j=N−1

3j−2N+2∑
i=N−2

q6j−4it4k+2j−2i+3,

a6k+6
k−N∑
j=0

3j+1∑
i=0

q6j−4i+2t4k+2j−2i+6 (6–34)

→ a6k+4
k∑

j=N

3j−2N∑
i=N−1

q6j−4i−2t4k+2j−2i+3,

a6k+4
k−N+1∑

j=0

3j∑
i=0

q6j−4it4k+2j−2i+3 (6–35)

→ a6k+2
k∑

j=N−1

3j−2N+2∑
i=N−1

q6j−4i+2t4k+2j−2i+2,

a6k+4
k−N+2∑

j=0

3j−1∑
i=0

q6j−4i−2t4k+2j−2i+3 (6–36)

→ a6k+2
k∑

j=N−2

3j+3−2N∑
i=N−2

q6j−4i+2t4k+2j−2i+2.

By analogy with (3, 3k+1) torus knots, one might expect
that in the present case d2 acts as in (6–33) and (6–36).
In other words, one might expect that d2 acts on the
following terms in P(T3,3k+2):

a6k+6
k+1−N∑

j=0

3j+1∑
i=0

q6j−4i+2t4k+2j−2i+6 (6–37)

+ a6k+4
k−N+2∑

j=0

3j−1∑
i=0

q6j−4i−2t4k+2j−2i+3.

Indeed, this leads to the following result for the sl(2)
homology:

KhR2(T3,3k+2) = (1 + q4t2 + q6t3 + q10t5) (6–38)

×
k∑

i=0

q6k+2+6it4i − q12(k+1)t4k+5,

which again agrees with the calculated value.

Remark 6.5. As we pointed out earlier, our prediction for
H(T3,m) enjoys a symmetry (6–23), which means that the
superpolynomial P(T3,m) can be written as a polynomial
in a, t, and y = (q−1t−1/2 + qt1/2)2, in agreement with
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the genus expansion structure. What is more surprising
is that dN acts in a way that respects this structure!
Indeed, it easy to verify that both expressions in (6–30)
and (6–37) can be written in terms of the variables a, t,
and y.

6.6 Reduction to HFK

We find that for all (3,m) torus knots, the differential d0

acts on the same terms as d2. Indeed, following the same
steps as in (6–31), we obtain for m = 3k + 1,

P0(T3,3k+1) = P(a = t−1, q, t)

− (1 + t−1)
k∑

j=1

3j−2∑
i=0

q6j−4i−4t−2k+2j−2i−1

− (1 + t−1)
k−1∑
j=0

3j∑
i=0

q6j−4it−2k+2j−2i

= t−2k
[
1 +

k∑
i=1

(
q6it2i + q6i−2t2i−1 + q−6i+2t−4i+1

+ q−6it−4i
)]
,

and for m = 3k + 2,

P0(T3,3k+2) = t−2k−1
[(
q2t+ 1 +

1
q2t

)
+

k∑
i=1

(
q6i+2t2i+1 + q6it2i + q−6it−4i + q−6i−2t−4i−1

)]
.

In both cases, this agrees with the known expressions for
HFK(T3,m).

6.7 Partial Results for Tn,m

Hoping to extend the above results to all torus knots
Tn,m, one would like to have a more direct way of de-
riving the superpolynomial from the general expression
(6–3) for the HOMFLY polynomial. For example, our ex-
pression (6–13)–(6–14) for the reduced superpolynomial
of T2,m can be obtained directly from the general formula
(6–3) for the HOMFLY polynomial by inserting powers
of (−t) and expanding the denominator in a power series:

P(T2,m) = (−aqt)m−1

(
1 − q−2t−2

1 − q−4t−2

)
(6–39)

×
[

1 + a2q−2t

1 − q−2t−2
+ q−2m(−t)2−m a2 + q−2t−3

1 − q−2t−2

]
.

Observe that the two terms inside the square brackets
correspond to the β = 0 and β = 1 terms in (6–3). Sim-
ilarly, for n = 3, one has three terms in (6–3), which

correspond to β = 0, 1, and 2. Comparing the structure
of these terms with the corresponding terms in the su-
perpolynomial (6–20), we find that again, certain parts
of the superpolynomial can be obtained directly from the
HOMFLY polynomial. Namely, these are the terms that
correspond to β = 0 and β = 2. They have a form sim-
ilar to that of the β = 0 and β = 1 terms in (6–39) and
suggest that for a general torus knot Tn,m, certain parts
of the superpolynomial are also given by a simple mod-
ification of the terms with β = 0 and β = n − 1 in the
HOMFLY polynomial (6–3). Namely, up to an overall
power of a, q, and t, the contribution of the β = 0 term
to the superpolynomial looks like

n−1∏
j=1

1 + a2q−2jt

1 − t−2q−2(j+1)
, (6–40)

and the contribution of the β = n− 1 term looks like

n−1∏
j=1

a2 + q−2jt−3

1 − t−2q−2(j+1)
, (6–41)

where the terms in the denominator are understood to be
expanded in a power series. We analyze the contribution
of the β = 0 term more carefully in the following section.

7. STABLE HOMOLOGY OF TORUS KNOTS

Although we were unable to produce a general formula for
the superpolynomial of Tm,n, we can make a prediction
about its behavior asm→ ∞. To be precise, let us define

Ps(Tm,n) = (a−1q)(m−1)(n−1)P(Tm,n). (7–1)

This has the effect of translating the dot diagram for
P(Tm,n) in such a way that the leftmost dot is always at
the origin of the (a, q) coordinate system. We then let

Ps(Tn) = lim
m→∞Ps(Tm,n).

Assuming that the limit exists, we refer to Ps(Tn) as the
stable superpolynomial of Tn. For example, when n =
2, the calculations of Section 6.3 show that the stable
superpolynomial is given by

Ps(T2) = (1 + a2q2t3)
∞∑

i=0

q4it2i.

As a dot diagram, this would be represented by an up-
and-down chain of dots, starting at the origin of coordi-
nates and carrying on indefinitely to the right. This is
illustrated in Figure 7.
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4

7

6

9

80 2

53

FIGURE 7. Dot diagram for the stable superpolynomial of
T2, obtained as the limit of the dot diagrams in Figure 6.

Conjecture 7.1. For all n, the limit of (7–1) exists and
is given by

Ps(Tn) =
(1 + a2q2t3)(1 + a2q4t5) · · · (1 + a2q2n−2t2n−1)

(1 − q4t2)(1 − q6t4) · · · (1 − q2nt2n−2)
,

(7–2)
where terms in the denominator are understood to be ex-
panded as a series in positive powers of q and t.

Of course, we should verify that if we substitute t =
−1, our prediction for the stable superpolynomial reduces
to the stable HOMFLY polynomial of Tn.

Lemma 7.2. If Ps(Tn) is the expression given in (7–2)
then

Ps(Tn)
∣∣
t=−1

= lim
m→∞(qa−1)(m−1)(n−1)P (Tm,n).

Proof: Using the formula given in (6–3) together with
the symmetry PK(a, q) = PK(a, q−1), we see that

(qa−1)(m−1)(n−1)P (Tm,n) =
1 − q2

1 − q2n
(7–3)

×
∑

β+γ=n−1
β,γ≥0

q2mβ
( β∏

i=1

a2 − q2i

1 − q2i

)( γ∏
j=1

1 − a2q2j

1 − q2j

)
.

As m → ∞, all terms of the sum will contribute higher
and higher powers of q, with the exception of the term
for which β = 0. We thus obtain

Ps(Tn) = lim
m→∞(qa−1)(m−1)(n−1)P (Tm,n), (7–4)

=
1 − q2

1 − q2n

( n−1∏
j=1

1 − a2q2j

1 − q2j

)
, (7–5)

which agrees with the expression obtained by substitut-
ing t = −1 in (7–2).

Observe that our conjectured expression for the stable
superpolynomial has the minimum size dictated by the
stable HOMFLY polynomial. Indeed, it is easy to see
from equation (7–2) that the homological grading of any
term in Ps(Tn) is congruent to half its a-grading mod-
ulo 2. Thus if we substitute t = −1, all terms with a

given power of a will have the same sign. In contrast,
the sl(2) Khovanov homology of a torus knot is usually
much larger than the minimum size predicted by its Jones
polynomial.

7.1 Origin of the Conjecture

Conjecture 7.1 was derived from the following geometric
ansatz, which is in many ways more revealing. Here,
Hs(Tn) is the homology group with Poincaré polynomial
Ps(Tn).

Conjecture 7.3. Hs(Tn) is the smallest complex satisfying
the following properties:

(i) Ps(Tn) ∈ Z[a, q, t].

(ii) Hs(Tn) contains Hs(Tn−1) as a subcomplex.

(iii) Hs(Tn) is acyclic with respect to d−1, d−2,

. . . , d−n+1.

(iv) The homology of H(Tn) with respect to d1 is one-
dimensional and generated by the monomial 1 ap-
pearing in Ps(Tn).

To illustrate how (7–2) is derived from these proper-
ties, consider the simplest case, when n = 2. We begin
the stable superpolynomial with the term 1, which gen-
erates the homology with respect to d1. By property (i),
d−1(1) = 0. Thus for the homology with respect to d−1

to vanish, we must add a term a2q2t3. Next, we must
kill this new term under d1. If it is in the image of d1,
anticommutativity of d1 and d−1 will force 1 to be in the
image of d−1, which violates property (iv). Thus we are
forced to add a third term q4t2 that is in the image of
a2q2t3 under d1.

At this point, all the hypotheses are satisfied, with
the exception of the fact that q4t2 is not killed by d−1.
Thus we are in the same situation in which we began,
only shifted over by a factor of q4t2. Repeating the argu-
ments above, we see that we must add a2q6t5+q8t4, then
a2q10t7 + q12t6, and so on indefinitely. Thus the stable
superpolynomial has the form

Ps(T2) = 1 + (a2q2t3 + q4t2)
∞∑

i=0

(q4t2)i

= 1 +
a2q2t3 + q4t2

1 − q4t2

=
1 + a2q2t3

1 − q4t2
.
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The general case is not much different. By property
(ii), we start out with Hs(Tn−1), which we may induc-
tively assume satisfies properties (i)–(iv), except that it is
not acyclic with respect to d−n+1, which is triply graded
of degree (−2,−2n+ 2,−2n+ 1), and so in order to kill
H(Tn−1) we must add another copy of it shifted up by
(2, 2n − 2, 2n − 1). The result is acyclic with respect to
d−i for 0 < i ≤ n− 1, but has the wrong homology with
respect to d1. To rectify this, we add another copy of
Hs(Tn−1), shifted by (−2, 2,−1) relative to the second
copy. We are now back where we started, but shifted
over by (0, 2n, 2n − 2). Repeating, we see that Hs(Tn)
has the general form shown in Figure 8, where the blocks
labeled Ai,n and Bi,n each represent an appropriately
shifted copy of Hs(Tn−1).

A 0,n

B 0,n

A1,n A 2,n

B 1,n B 2,n B3,n

d −n+1 d −n+1 d −n+1

d1d 1 d1

FIGURE 8. Schematic diagram of the stable complex for Tn.
Although we’ve drawn each Ai,n and Bi,n as a finite box,
they actually extend indefinitely to the right of the diagram.

We compute

Ps(Tn) = Ps(Tn−1)
(
1 +

(
a2q2n−2t2n−1 + q2nt2n−2

)
×

∞∑
i=0

(q2nt2n−2)i
)

= Ps(Tn−1)
(

1 +
a2q2n−2t2n−1 + q2nt2n−2

1 − q2nt2n−2

)
= Ps(Tn−1)

(
1 + a2q2n−2t2n−1

1 − q2nt2n−2

)
,

which clearly gives the formula of (7–2).

7.2 Reduction to HFK

Currently, it is difficult to compute KhRN (Tm,n) for val-
ues of m,n, and N that are all larger than 2, so we have
no way to check Conjecture 7.1 directly. As an indirect
check, however, we can compare the homology of Hs(Tn)
with respect to d0 and d2 to what is known about the
knot Floer homology and sl(2) Khovanov homology of
torus knots.

The stable knot Floer homology of Tn is easily calcu-
lated from its stable Alexander polynomial. When we
substitute a = 1 into the formula for the stable HOM-
FLY polynomial in (7–5), all the terms in the product

cancel, and we are left with

∆s(Tn) =
1 − q2

1 − q2n
= (1 − q2)

∞∑
i=0

q2ni.

Using Ozsváth and Szabó’s calculation of ĤFK for torus
knots in [Ozsváth and Szabó 04b], it follows that

HFKs(Tn) = (1 + q2t)
∞∑

i=0

q2nit2(n−1)i. (7–6)

We want to define a differential d0 on Hs(Tn) that an-
ticommutes with the other di’s and whose homology is
given by the expression above. As in the construction of
Hs(Tn), we proceed inductively. When n = 2, d0 is nec-
essarily trivial. For general n, we refer to the schematic
diagram of Hs(Tn) in Figure 8. By the induction hypoth-
esis, we can assume that we have already constructed the
differential d0 on each block.

To describe the part of d0 that goes between blocks,
observe that Hs(Tn−1) has a subcomplex Cn−1 ob-
tained by omitting A0,n−1 and B0,n−1 from the anal-
ogous diagram for Hs(Tn−1). There is a chain map
ψ : Hs(Tn−1) → Hs(Tn−1) that shifts the entire complex
over one unit to the right and that defines an isomor-
phism from Hs(Tn−1) to Cn−1. We define the component
of d0 that maps Ai,n to Bi,n to be given by ψ, and as-
sume that all other components of d0 between the blocks
are trivial.

First, we should check that d0 has the correct grading.
The grading of Ai,n is shifted by a factor of (2, 2n−2, 2n−
1) relative to that of Bi,n, while the grading of Cn−1 is
shifted by

(2, 2n− 4, 2n− 3) + (−2, 2,−1) = (0, 2n− 2, 2n− 4).

Thus d0 shifts the grading by (−2, 0,−3), as it should.
It follows easily from the definition that d0 anticom-

mutes with the other differentials. Thus it remains
only to check that it has the correct homology. To see
this, note that with respect to d0, Hs(Tn) decomposes
as a direct sum of complexes Di,n, where as a group,
Di,n = Ai,n ⊕ Bi,n. Since Di,n is just D0,n shifted over
by a factor of (q2nt2n−2)i, we see that the Poincaré poly-
nomial of the homology with respect to d0 is

P0(Tn) = P(D0,n)
∞∑

i=0

q2nit2(n−1)i.

On the other hand, it follows from the definition of ψ
that H∗(Di,n, d0) ∼= H∗(Di,n−1, d0), so

P(D0,n) = P(D0,n−1) = · · · = P(D0,2) = 1 + a2q2t3.
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Finally, we substitute a = 1/t to obtain

P0(Tn) = (1 + q2t)
∞∑

i=0

q2nit2(n−1)i,

which agrees with (7–6).

7.3 Reduction to KhR2

As a final check on Conjecture 7.1, we use it to make
some predictions about the sl(2) Khovanov homology of
torus knots. Although there is not a huge amount of
data with which to compare our predictions, what there
is provides some of the most convincing evidence for our
conjectures. Our results match perfectly with the known
computations, which had previously seemed quite diffi-
cult to explain.

To predict KhR2,s(Tn), we must understand the ac-
tion of d2 on Hs(Tn). As in the previous sections, we
proceed inductively, starting with n = 2. In this case,
d2 must vanish for dimensional reasons, and we obtain
the formula for the stable Khovanov homology simply by
substituting a = q2 and n = 2 into (7–2):

KhR2,s(T2) = (1 + q6t3)(1 + q4t2 + q8t4 + · · · )
= 1 + q4t2 + q6t3 + q8t4 + q10t5 + · · · .

The Khovanov homology of T2,m is given by

KhR2(T2,m) = qm−1(1 + q4t2 + q6t3 + · · · + q2mtm).

After shifting by q1−m, this agrees with the stable homol-
ogy up through terms of degree q2m. In general, we ex-
pect that q−mnKh(Tm,n) should also agree withKhs(Tn)
in degrees up to q2m. Indeed, if we substitute a = q2, the
lowest-degree term appearing in the expression (7–3) for
P (Tn,m) that does not come from the term where β = 0
is q2m+2.

Next, we consider the case n = 3. Referring to Fig-
ure 8, we observe that since d−2 lowers the δ-grading by
1 and d1 preserves it, the δ-grading of all terms in Ai,3 is
i + 1, while the δ-grading of Bi,3 is i. Now, d2 lowers δ
by 1, so the only possible components of d2 go from Ai,3

to Bi,3, from Ai+1,3 to Ai,3, and from Bi+1,3 to Bi,3.
In particular, Fk =

⊕
i<k Di,3 defines a filtration with

respect to d2. We compute using the spectral sequence
associated with this filtration. The differential on the E0

term is given by the restriction of d2 to Di,3. We hypoth-
esize that d2 : Ai,3 → Bi,3 is nontrivial and compute its
image. Now, Ai,3 is isomorphic to Bi,3, but shifted in
grading by (2, 4, 5), and d2 shifts grading by (−2, 4,−1).
Thus the image of Ai,3 under d2 will be isomorphic to

Bi,3, but shifted by (0, 8, 4), and the homology in Di,3

will be generated by the first four terms in Bi,3. The
Poincaré polynomial of the E1 term is given by

P(E1) =
∞∑

i=0

P(Di,3)

= P(D0,3)
∞∑

i=0

q6it4i (7–7)

=
(1 + a2q2t3 + q4t2 + a2q6t5)

1 − q6t4
.

This is illustrated in Figure 9. For dimensional reasons,
there can be no further differentials. Substituting a = q2

in (7–7), we obtain

KhR2,s(T3) =
(1 + q4t2 + q6t3 + q10t5)

1 − q6t4
. (7–8)

This expression agrees with the pattern observed from
direct computation. For example, Figure 10 shows
KhR2(T3,8), courtesy of Shumakovitch [Shumakovitch
04]. As expected, the homology agrees with (7–8) up
through powers of q30 (here 30 = 14 + 2 · 8 ).

B1,3 B2,3B0,3

δ = 0 δ = 1 δ = 2

FIGURE 9. What’s left in H(T3) after taking homology with
respect to d2. Four generators from each Bi,3 survive.

In comparing these figures, it is convenient to label
generators by their δ-grading, since this tells us on which
diagonal they lie. For example, the first four generators
of Figure 9 have δ-grading zero. They correspond to
the four generators on the highest occupied diagonal in
Figure 10. The next four generators have δ = 1 and lie
on the next diagonal, and so forth.

The case n = 4 is somewhat more complicated. To
simplify things, we assume that as in the previous case,
Fk =

⊕
i<k Di,4 defines a filtration with respect to d2.

Thus we are again faced with the problem of determining
the component of d2 that maps Ai,4 to Bi,4. The situa-
tion is illustrated in Figure 11. Possible differentials are
indicated by arrows. If we assume that these are all non-
trivial in rational homology (in integral homology, they
are most likely given by multiplication by 2), we arrive
at the following expression for the Poincaré polynomial
of D0,4:

P(D0,4) = (1 + a2q2t3)
[
1 + q4t2 +

q6t4(1 + a2q4t5)
1 − q6t4

]
.
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0 1 2 3 4 5 6 7 8 9 10 11

32 1

30 1 1

28

26 1 1

24 1 1

22

20 1 1

18 1

16

14 1

FIGURE 10. The reduced Khovanov homology of T3,8. Here
the horizontal axis corresponds to t, and the vertical axis
to q.

0

0

0

0

1

1 1

1 2

2

2

2

3

2

2

2

2

3

3 3

3 4

FIGURE 11. Component of d2 from A0,4 (hollow circles) to
B0,4 (solid circles). Possible differentials (which we assume
are all nonvanishing) are shown by arrows. The labels be-
neath each generator show the value of δ.

As before, it is easy to see there can be no further differ-
entials, so summing up the contributions from all Di,4,
we get the following prediction:

KhR2,s(T4) =
1 + q6t3

1 − q8t6

[
1 + q4t2 +

q6t4(1 + q8t5)
1 − q6t4

]
.

For comparison, Figure 12 shows the Khovanov homology
of T4,7, again computed by [Shumakovitch 04].

We leave it to the reader to check that the part of the
homology in degrees less than or equal to 18 + 2 · 7 = 32
agrees with the expression above.

As a final test, we compare with Bar-Natan’s calcula-
tion of KhR2(T5,9) [Bar-Natan 05b]. Rather than com-
puting a general formula for n = 5, we simply write out
enough of the complex to give us the stable homology
up to powers of q24. The results of the calculation are
illustrated in Figure 14. The top half of the figure shows
potential differentials between A0,5 (hollow circles) and
B0,5 (solid circles). Again, we assume that all these dif-
ferentials induce nontrivial maps on rational cohomology.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

38 1 1

36 2 1

34

32 2 1

30 1 2

28 1

26 1

24 1 1

22 1

20

18 1

FIGURE 12. The reduced Khovanov homology of T4,7. Here
the horizontal axis corresponds to t, and the vertical axis
to q.

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

-10 1 1 1

-11 1 2 2 2 1

-12 2 1 3 1 1

-13 1 2 2 3 1 1

-14 1 1 2 1 1

-15 1 1

-16 1 1 1 1

FIGURE 13. The reduced Khovanov homology of T5,9, de-
rived from [Bar-Natan 05b]. To save space, we plot genera-
tors versus their (q, δ)-gradings, rather than (t, q) as in the
previous figures.

FIGURE 14. Computing the stable Khovanov homology of
T5. Generators are labeled by their δ-grading.
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The bottom half of the figure shows the generators of
Hs(T5) that survive after taking homology. The dashed
lines indicate their q-grading after we substitute a = q2.
By way of comparison, Figure 13 shows what we ex-
pect is the reduced Khovanov homology of T5,9, based
on Bar-Natan’s calculation of the unreduced homology.
As expected, the two agree up through powers of q50

(50 = 32 + 2 · 9).

8. DOT DIAGRAMS FOR TEN-CROSSING KNOTS
0−4−4
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(d1 and d−1 are not shown.)
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