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We summarize how OPTi draws the parameter space. Each
point in the picture of a parameter space corresponds to a group,
and the program colors the point according to whether the group
is discrete or indiscrete. Applying Jorgensen’s inequality to cer-
tain sets of generators, OPTi first tries to decide indiscreteness
of the group. If the process fails for generators up to a certain
depth, the program then tries to construct the Ford region. When
it succeeds in constructing the Ford region, Poincaré’s polyhe-
dron theorem guarantees the discreteness of the group.

1. INTRODUCTION

OPTi [Wada web site] is an application program for the
Macintosh that allows one to visualize how isometric cir-
cles, the Ford region, the limit set, etc., change as one
deforms the once-punctured torus group by moving the
mouse.

This article summarizes how OPTi draws the parame-
ter space. In the picture of a parameter space, the points
corresponding to discrete groups (quasi-Fuchsian groups)
are tiled using various colors, and those corresponding
to indiscrete groups are painted out in black. Apply-
ing Jorgensen’s inequality to certain sets of generators,
the program first tries to determine indiscreteness of the
groups, and paints the corresponding points black. If a
given group satisfies Jgrgensen’s inequality for generators
up to a certain depth, the group is considered to have a
high probability of being discrete. The program then
tries to construct the Ford region. When the program
succeeds in constructing the Ford region, a fundamental
region is obtained, and Poincaré’s polyhedron theorem
guarantees the discreteness of the group. In that case,
the corresponding point is painted with various colors
according to the combinatorial pattern of the Ford re-
gion.

If it is undetermined whether the group corresponding
to a point in the parameter space is discrete or indiscrete,
the point remains gray. There are two kinds of such gray
regions. One is a thin gray region sticking out of a cusp.
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The centerline of such a region contains infinitely many
points corresponding to the fundamental groups of cone
manifolds. Most of these groups are indiscrete, but the
Koebe groups, which are discrete, also reside in this re-
gion. The discreteness of groups in this region is difficult
to determine using Jgrgensen’s inequality. In the pro-
gram, you can choose “Fine” in the ParamSpace menu
to apply Jorgensen’s inequality for generators of depth
up to 1000, and most such gray regions disappear.

Another kind of gray region appears in the middle of
an area that is considered obviously discrete. The groups
in this region require an appropriate change of generators
before the Ford region is constructed. The algorithm in
this case is not yet complete.

2.  BASICS OF ONCE-PUNCTURED TORUS GROUPS

In this section we collect some facts about once-
punctured torus groups that we will need later. For
the details, the reader is referred to [Akiyoshi et al.
98, Akiyoshi et al. 00, Akiyoshi et al. 03].

Let A, B denote the meridian and the longitude of
the torus. The fundamental group of the once-punctured
torus is then the free group generated by A, B, but we im-
pose the condition that the puncture be a cusp; namely,
the commutator [A, B] is parabolic. Let

r=trd, y=trB, z=1trAB,

and assume that the Markov identity
m2+y2+z2 = TYz
holds. Dividing both sides of the above by xyz, we obtain
ag + a1 + as = 1.

The terms of the left-hand side of this equation, namely,

x Y z
ap = —, a1 =—_——, Qa2 = —,
yz zx Ty
are called a complex probability.

Conversely, given a complex probability (ag, a1, as),
we can restore the original group (A, B) as in Figure 1
(up to conjugacy of groups). Here, P is the Mdbius trans-
formation that represents a 180-degree rotation about
the geodesic connecting +i/z in the “hyperbolic” up-
per half-space. The circle centered at the origin is the
isometric circle of P. We define Q and R similarly.
Then K = RQP is a +1 translation, and we have
A=RQ=KP, B=PQ=K 'R, [A,B] = K%

FIGURE 1. Restoring the group from a complex probability.

In the above, the triple (P, @, R) of elements of order 2
is called an elliptic generator triple. It is a set of genera-
tors of the fundamental group of the (2,2, 2, co)-orbifold,
which has the once-punctured torus as a branched cover-
ing of index 2. Every consecutive triple from the infinite
sequence

.., K7'PK, K7'QK, K™'RK, P,Q,R,
KPK™', KQK™', KRK™!,

is also an elliptic generator triple.

If (P, Q, R) is an elliptic generator triple, (P, R, RQR)
is also an elliptic generator triple. This transformation
corresponds to a change of marking. We call it simply a
change of generators (Figure 2). In terms of the trace,
this operation corresponds to

(v,y,2) — (z,2,9),  (y+y =22),
and in terms of complex probability, to

apay a10a2
, .
ag +az ag+ az

(ao,al,GQ) [ — <a0 + az,

FIGURE 2. Change of generators.

For the infinite sequence obtained from (P,Q,R),
there are essentially three different changes of generators,
according to which of P, @, R is omitted. It is known that
all the elliptic generators can be obtained by the above
operations. Therefore, if we identify elliptic generators
belonging to the same infinite sequence and regard them
as a point, and regard a change of generators as an edge,
we obtain an infinite trivalent tree.



3. INDISCRETENESS DETERMINATION BY
JORGENSEN’S INEQUALITY

Jorgensen’s inequality [Jgrgensen 76| asserts that if two
elements F, G in SL(2,C) generate a nonelementary dis-
crete group, then

[tr? F — 4|+ [tr[F,G] — 2| > 1.

We apply this for FF = K, G = P, @, or R. In this
case, the condition of being nonelementary always holds,
and we obtain the following criterion: If the radius of the
isometric circle of any one of P,Q, R is greater than 1,
then P, @, R generate an indiscrete group.

The algorithm is the following: Starting from the gen-
erators P, @, R, perform changes of generators succes-
sively, and apply this criterion to each newly obtained
generator. Checking the criterion for generators of depth
up to n may seem to require 3 - 2" checks, but this is not
the case.

Computer experiments reveal that among the three
changes of generators applicable to P, Q, R, at least one
leads to the situation in which the radius of the isometric
circle quickly becomes very small as one keeps changing
generators. Thus there is no need to apply Jérgensen’s
inequality in that direction. This fact is supported not
only by computer experiments, but also theoretically by
Bowditch [Bowditch 98]. Therefore, we can fix a radius,
and once the isometric circle of a generator has radius
smaller than that, we can stop searching in that direc-
tion. This allows us to check Jgrgensen’s inequality for
generators of depth up to n essentially in linear time.

This check is quite effective. The groups not deter-
mined to be indiscrete by this check up to, say, depth
1000 are almost 100% discrete, except for the special
case mentioned below. This is the author’s feeling ac-
quired through various experiments using OPTi. In fact,
in the ParamSpace menu in OPTi, “Coarse,” “Medium,”
and “Fine” correspond respectively to checks of depth
10,100, 1000, and while the “Coarse” setting may show
some gray regions, the “Medium” setting already leaves
very little gray.

Let us now consider the special case in which the group
is indiscrete and yet passes the check by Jgrgensen’s in-
equality. This corresponds to the thin curved gray region
coming out of a cusp in the parameter space shown by
OPTi. Choosing points in such a region in OPTi and in-
vestigating the groups reveals that for such a group some
successive changes of generators lead to a kind of “ro-
tating pattern,” and the radius of the isometric circles
becomes neither large nor small. For most such groups,

Wada: OPTi’s Algorithm for Discreteness Determination 63

sufficiently many changes of generators produce an iso-
metric circle of radius greater than 1 after all, and the
group is determined to be indiscrete. That is, the larger
we make the depth n of the check by Jgrgensen’s inequal-
ity, the thinner such a gray region becomes.

However, in the center of such a region, there sup-
posedly lies a 1-dimensional family of groups for which
some successive changes of generators produce a rotating
pattern ad infinitum, and thus such a region never dis-
appears completely. There are very special cases of these
groups in which k changes of generators put the gener-
These are the
Koebe groups. The Koebe groups are discrete, and sat-
isfy Jorgensen’s inequality. Between the Koebe groups,
it is supposed that there lies a 1-dimensional family of
groups for which changes of generators produce, so to

ators back into their original positions.

speak, an irrational rotation pattern. But nothing is

known about this theoretically.

4. THE FORD REGION FOR ONCE-PUNCTURED
TORUS GROUPS

If a group has not been determined to be indiscrete by
passing the above check by Jgrgensen’s inequality, the
program tries to construct the Ford region, which will be
explained in detail in the next section. But first, let us
give an account of Jergensen’s theory of the Ford region
for once-punctured torus groups.

One way of defining the Ford region is to consider all
the isometric hemispheres of the elements of the group
not fixing infinity, and to define these as the boundary
pattern (projected down onto the complex plane) of the
union of these solid hemispheres.
punctured torus groups, it is known that we may restrict

In the case of once-

to the isometric hemispheres of elliptic generators only.

Figure 3 shows an example of a typical once-punctured
torus group. Solid lines represent the Ford region,
and various dotted lines represent complex probabilities.
Starting from the lowermost complex probability in the
picture, one can see how generators are changed four
times to reach the topmost complex probability. Looking
at it carefully, one notices that the triangle pattern pro-
duced by the complex probabilities is dual to the Ford
region in the combinatorial sense.

Jorgensen [Jorgensen 03] claims that the Ford region
of every geometrically finite once-punctured torus group
is, as in this example, combinatorially dual to the tri-
angle pattern obtained by applying an appropriate finite
changes of generators to some complex probability. We
leave the details to [Akiyoshi et al. 03]. Therefore, of
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FIGURE 3. A typical once-punctured torus group.

the isometric hemispheres of infinitely many sequences
of elliptic generators, only the isometric hemispheres of
those along a finite path in the infinite tree are “visible
from above.” Let us call these sequences of elliptic gen-
erators (and the complex probabilities) corresponding to
the Ford region the Ford sequence.

Now, according to Jgrgensen’s theory, given a complex
probability belonging to the Ford sequence, one can de-
termine as follows which of the three possible changes of
generators lead to the upper and lower adjacent complex
probabilities.

First, draw all the isometric circles of the elliptic gen-
erators corresponding to the given complex probability.
If all these circles face the upper region in the complex
plane along arcs, the given complex probability corre-
sponds to the upper end of the Ford sequence (Figure 4).
For each edge of the “line graph” corresponding to the
complex probability, consider the triangle defined by the
two endpoints and the upper intersection of the isomet-
ric circles of the two generators corresponding to these
endpoints. Then, the above condition is equivalent to
the condition that these triangles do not intersect in the
interior.

When we draw the triangles along the line graph,
if a pair of adjacent triangles intersect in the interior,

FIGURE 4. Upper end of the Ford sequence. The triangles
do not intersect.

FIGURE 5.
change of generators discarding the generator “S” between
the two intersecting triangles leads to the upper adjacent
complex probability.

Case in which two triangles intersect. The

the change of generators that throws away the generator
corresponding to the common endpoints of the adjacent
edges leads to the upper adjacent complex probability in
the Ford sequence (Figure 5).

If two adjacent pairs of triangles both intersect, we
need to decide which of the generators to throw away.
This can be done as follows. Let a,b,c be consecutive
edges of the line graph corresponding to the given com-
plex probability, and assume that both the triangles for
a, b and those for b, ¢ intersect in the interior (Figure 6).
Draw the line segment a connecting the two intersection
points of the isometric circles of the generators corre-
sponding to the two endpoints of the edge a. Also draw
analogous line segments (3, for the edges b, c. Then, the
line segments « and ~ both intersect the line segment
B in the upper side of the edge b. Now, according to
which of o and v meets § at a closer point to the edge b,
the change of generators discarding the generator corre-
sponding to the endpoint of b on the side of a or ¢ leads
to the upper adjacent complex probability in the Ford
sequence.

FIGURE 6. Case that two pairs of triangles intersect.



In the above, we have only described how to deter-
mine the upper adjacent complex probability. The lower
adjacent complex probability in the Ford sequence can
also be determined by a similar criterion. Therefore, if
we have a complex probability in the Ford sequence, we
can determine the Ford sequence by computing the up-
per and lower adjacent complex probabilities one by one,
and thus construct the Ford region.

Note that this can be done only under the assump-
tion that a complex probability in the Ford sequence is
given. In general, when an arbitrary complex probability
is given, no easy way of determining whether it belongs
to the Ford sequence is known.

5. DISCRETENESS DETERMINATION

OPTi tries to determine discreteness as follows. Given a
complex probability, assume that it belongs to the Ford
sequence, and consider computing the upper and lower
adjacent complex probabilities as explained in the previ-
ous section. We first need to draw the triangles above and
below the line graph obtained from the complex proba-
bility. There are cases in which the triangle inequality
fails to hold, and we cannot construct the triangles. In
such a case, the isometric hemisphere of the generator
corresponding to the common endpoints of two adjacent
short edges is completely covered by the isometric hemi-
spheres of the adjacent generators. Hence the generator
is obviously not a member of the Ford sequence. There-
fore we perform the change of generators that discards
such a generator.

If the triangle inequality holds everywhere, we con-
struct the triangles above and below and try to com-
pute the upper and lower adjacent complex probabilities.
There are cases in which first computing the upper adja-
cent complex probability and then its lower adjacent one
does not give the original complex probability. If this
happens, we know that the original complex probability
was not a member of the Ford sequence. In such a case,
we throw away all the complex probabilities thus far ob-
tained and restart the algorithm from the point where
the inconsistency occurred.

This way we keep constructing a sequence of com-
plex probabilities while paying attention to the consis-
tency mentioned above.
tent sequence including the upper and lower ends satis-

If we have obtained a consis-

fying the criteria for the Ford sequence explained in the
previous section, we can show that the complement in
the hyperbolic space of the union of the (solid) isometric
hemispheres of the generators appearing in the sequence
satisfies the conditions of Poincaré’s polyhedron theorem,
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and hence is a fundamental region. Therefore the group
is discrete.

Actually, a problematic situation may occur in the
above process. Namely, the line graph corresponding to
the complex probability appearing in the process may
have self-intersections. It is not true that such a com-
plex probability always comes from an indiscrete group.
In fact, if we start from a complex probability belonging
to the Ford sequence of a discrete group, and perform
changes of generators several times in the third direc-
tion, which does not correspond to the Ford sequence,
we often obtain a complex probability of self-intersecting
type. Now if we are given such a complex probability of
self-intersecting type at the beginning, we know that the
group itself is discrete.

It is obvious that a complex probability of self-
intersecting type is never a member of the Ford sequence.
The question is how we can determine which of the three
possible changes of generators leads to the Ford sequence.
While Bowditch [Bowditch 98] gives an answer to the
question theoretically, it is an open question at the mo-
ment whether a practical method can be implemented.
To make the point clear, when a complex probability of
self-intersecting type appears in the process, OPTi draws
the corresponding point gray. The gray regions appear-
ing here and there in the picture of parameter space are
such regions.
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