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In 1934 Hardy, Littlewood, and Pólya generalized Hilbert’s in-
equality to the case in which the parameters are not conjugate.
Determination of the best constant in this generalization is still
an unsolved problem. An experimental approach is presented
that yields numerical values that agree with theory in the cases
in which an exact answer is known. The results may be a guide
to a further theoretical approach.

1. INTRODUCTION

Hilbert’s integral inequality is the following well-known
theorem.

Theorem 1.1. If p > 1, q = p/(p − 1), f ∈ Lp[0,∞],
g ∈ Lq[0,∞], then

∫ ∞

0

∫ ∞

0

f(u)g(v)
u + v

du dv < B

(
1
p
,
1
q

)
‖f‖p‖g‖q (1–1)

unless f or g is null.

Here the beta function B(1/p, 1/q) is known to be the
best possible “constant” in the sense that for any smaller
constant, f and g can be found that will violate the in-
equality. A full discussion of this theorem is found in
[Hardy et al. 52, Chapter 7]. In the same work, Theo-
rem 340 generalized the inequality to the case in which p

and q are not necessarily conjugate.

Theorem 1.2. Suppose p > 1, q > 1, p′ = p/(p − 1),
q′ = q/(q − 1), 0 < λ = 1/p′ + 1/q′ ≤ 1, f ∈ Lp[0,∞],
and g ∈ Lq[0,∞]. Then unless f or g is null,

∫ ∞

0

∫ ∞

0

f(u)g(v)
(u + v)λ

du dv < C‖f‖p‖g‖q, (1–2)

where C depends on p and q only.
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The authors noted that “the best value [of the con-
stant] has not been found in the general case, and the
problem of determining it appears to be difficult.”

The bound C ≤ K(p, q), where

K(p, q) = Bλ

(
1

λp′
,

1
λq′

)
=

[
π cosec

(
π

λp′

)]λ

, (1–3)

was first proved by Levin [Levin 36], and later more di-
rectly by Bonsall [Bonsall 51]. When p and q are conju-
gate, λ = 1 and Theorem 1.2 reduces to Theorem 1.1. So
Levin’s bound (1–3) is known to give the best possible
constant in this case. To this day, no smaller constant
has been found, but no proof has been published show-
ing that a smaller constant is not possible. (There has
been some confusion on this matter. Finch [Finch 03]
gives a thorough account.) See also [Peachey 03] for an
alternative bound.

Henceforth we write M(p, q) for the least possible
value of C. In 1973 Walker [Walker 73] showed that as
p → 1 for fixed q, M(p, q)/K(p, q) → 1. Symmetrically
the same conclusion holds if q → 1 for fixed p.

In terms of parameters 1/p′ and 1/q′ the allowed pa-
rameters are given by the triangular region

0 <
1
p′

, 0 <
1
q′

,
1
p′

+
1
q′

≤ 1. (1–4)

The boundaries 1/p′ = 0 and 1/q′ = 0 correspond to p →
1 and q → 1, the cases considered by Walker. The other
boundary corresponds to the case λ = 1, which is the
original Hilbert inequality. So we know that M(p, q) →
K(p, q) near all three boundaries of this region. Hence it
is a reasonable hypothesis that Levin’s constant K(p, q)
is the best possible throughout.

The left side of (1–2) may be rewritten as∫ ∞

0

g(v) dv

∫ ∞

0

f(u)
(u + v)λ

du =
∫ ∞

0

g(v)F (v) dv, (1–5)

say, where g ∈ Lq and F ∈ Lq′ . So (1–2) is∫ ∞
0

g(v)F (v) dv < C‖f‖p‖g‖q for all g ∈ Lq. Using the
converse of Hölder’s inequality, [Hardy et al. 52, Propo-
sition 191], shows that ‖F‖q′ < C‖f‖p. Conversely, the
direct Hölder inequality shows that ‖F‖q′ < C‖f‖p im-
plies (1–2). Hence (replacing q′ by r) Theorem 1.2 is
equivalent to the following.

Theorem 1.3. Suppose p > 1, p′ = p/(p − 1), 1/p′ < λ ≤
1, 1/r = λ − 1/p′, and f ∈ Lp. Then for

F (w) =
∫ ∞

0

f(u)
(u + w)λ

du, (1–6)

one has
‖F‖r < C‖f‖p (1–7)

unless f is null. Here C depends on p and λ only and its
least value will be the same as that for C in (1–2).

This is a more convenient formulation for our pur-
poses. It shows that the best constant will be the oper-
ator norm of the generalized Stieltjes transform, (1–6),
when it maps from Lp to Lr.

This paper reports lower bounds on the constant C for
a variety of values of p and λ computed using numerical
evaluation on a cluster of computers.

2. DETERMINING THE BEST CONSTANT IN AN
INEQUALITY

The task of proving that a given C in (1–2) is the least
possible constant requires an experimental approach;
given ε > 0, finding “test functions” fη and gη such that

∫ ∞

0

∫ ∞

0

fη(u)gη(v)
(u + v)λ

du dv > (C − ε)‖fη‖p‖gη‖q. (2–1)

Note that this cannot be achieved for all ε by single func-
tions fη and gη since then

∫ ∞

0

∫ ∞

0

fη(u)gη(v)
(u + v)λ

du dv ≥ C‖fη‖p‖gη‖q,

which violates the strictness of the inequality. Instead in-
finite families of functions are required, containing mem-
bers that satisfy (2–1) for each ε > 0.

The case λ = 1 was settled, [Hardy et al. 52, §9.5],
using the families

fη(u) =

{
u−(1+η)/p for u ≥ 1,
0 elsewhere,

gη(v) =

{
v−(1+η)/q for v ≥ 1,
0 elsewhere,

where η is positive. Walker’s proof of the case p → 1
used

fη(u) =

{
u−(1+η)/p for u ≥ 1,
0 elsewhere,

gη(v) =

{
v−(1+1/η)/q for v ≥ 1,
0 elsewhere,

again with η > 0. In both cases the argument required
η → 0 as ε → 0, so the integral defining ‖fη‖p approached
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a divergent integral. Generally one expects limiting ex-
tremes to settle a question of the best constant. See for
example [Peachey et al. 99].

Since we consider Theorem 1.3, only a single family of
test functions will be required. In this paper we report
results using the family

fµ,ν(x) = xµ−1(1 + x)ν−µ. (2–2)

As x → 0, fµ,ν = O(xµ−1) and as x → ∞, fµ,ν =
O(xν−1). So the family may independently explore ex-
treme behavior at both ends of the domain. Note that
the existence of ‖fµ,ν‖p requires p(µ − 1) > −1 and
p(ν − 1) < −1, equivalent to ν < 1/p′ < µ.

We write

Fµ,ν(w) =
∫ ∞

0

fµ,ν(x)
(u + w)λ

du (2–3)

for the transform of fµ,ν . However, the Lebesgue norm of
this transform is analytically intractable, so at this stage
we resort to numerical integration. A program has been
constructed that computes the ratio

R =
‖Fµ,ν‖r

‖fµ,ν‖p
. (2–4)

It is used to numerically optimize this ratio as f ranges
over the space of test functions, giving an estimate of

S = sup
ν<1/p′<µ

‖Fµ,ν‖r

‖fµ,ν‖p
. (2–5)

The optimization is repeated for a variety of values of
p and λ and the result compared with Levin’s constant
K(p, q), given in (1–3).

3. COMPUTATION OF THE FUNCTIONALS

For the test function (2–2) we have∫ ∞

0

fp
µ,ν(u) du =

∫ ∞

0

up(µ−1)(1 + x)p(ν−µ)du,

which is convergent at 0 and at ∞ if µ > 1/p′ and ν <

1/p′ respectively. The substitution u = (1/s)−1 converts
this to a beta integral, showing that

‖fµ,ν‖p = B1/p(p − pν − 1, pµ − p + 1). (3–1)

For the transform

Fµ,ν(w) =
∫ ∞

0

uµ−1(1 + u)ν−µ

(u + w)λ
du, (3–2)

convergence requires µ > 0 and ν < λ. These will be
satisfied if we again take µ > 1/p′ and ν < 1/p′, because

under the assumptions of Theorem 1.3, 0 < 1/p′ < λ.
This integral may be obtained by conversion to the Euler
integral∫ 1

0

tb−1(1−t)c−b−1(1−tz)−adt = B(b, c−b)G
(

a, b
c

; z
)

,

where G is Gauss’s hypergeometric function. (We use
G rather than the conventional F or 2F1 to avoid con-
fusion with the left side of (1–6).) For 0 < w < 1 the
substitution required is u = (1/t) − 1, which gives

B(λ − ν, µ) G

(
λ − ν, λ

λ + µ + ν
; 1 − w

)
. (3–3)

For w > 1 the substitution u = w((1/t) − 1) yields

B(λ − ν, µ)wν−λG

(
λ − ν, µ − ν
λ + µ − ν

; 1 − 1
w

)
. (3–4)

These may be used to compute the norm of the trans-
form,

‖F‖r
r =

∫ ∞

0

F r(w) dw (3–5)

=
∫ 1

0

F r(w) dw +
∫ ∞

1

F r(w) dw = I1 + I2,

where

I1 = Br(λ − ν, µ)
∫ 1

0

Gr

(
λ − ν, λ

λ + µ − ν
; 1 − w

)
dw

(3–6)
and

I2 = Br(λ − ν, µ) (3–7)

×
∫ ∞

1

wr(ν−λ)Gr

(
λ − ν, µ − ν
λ + µ − ν

; 1 − 1
w

)
dw.

It is these two integrals that are analytically intractable.
We next discuss numerical approximations of them.

4. NUMERICAL EVALUATION

Consider first the improper integral I1 above. From a
programming perspective it is simpler to convert this to
an infinite integral by inverting the variable of integra-
tion,

I1 = Br(λ−ν, µ)
∫ ∞

1

w−2 Gr

(
λ − ν, λ

λ + µ − ν
; 1 − 1

w

)
dw.

(4–1)
This is estimated by applying Simpson’s rule to a fi-

nite approximation,
∫ X

1
for large X. The algorithm im-

plemented accumulates terms of the form

h

3
{F (x) + 4F (x + h) + F (x + 2h)}.
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We write H for the initial value of h. This is taken as
0.1, but since typically X ≈ 1050 is required to obtain
reasonable accuracy, we need to increase h as the sum-
mation proceeds. This is achieved by doubling h when
the sequence {F (x), F (x + h), F (x + 2h)} is close to lin-
ear, since then the intrinsic error in the Simpson method
is small. More precisely, if∣∣∣∣F (x) + F (x + 2h)

2
− F (x + h)

∣∣∣∣ < M,

then h is doubled at the next iteration. We found
M ≈ 10−9 to be suitable. This reduces the number of it-
erations required to the order of 106. (Selection of values
for X and M is discussed further in Section 5.)

Note that each evaluation of the integrand in (4–1)
requires a call to a function that evaluates the hyper-
geometric function G. This was coded by summing the
series definition

G

(
a, b
c

;x
)

=
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
. (4–2)

For w large in the integrand of (4–1), 1 − 1
w ≈ 1, so

the hypergeometric series (4–2) is very slowly convergent,
making the computation impractical. However, if we use
the analytic continuation of the hypergeometric function,
[Erdélyi et al. 53],

G

(
a, b
c

;x
)

(4–3)

=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

G

(
a, b

a + b − c + 1 ; 1 − x

)

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − x)c−a−b

× G

(
c − a, c − b

c − a − b + 1 ; 1 − x

)
,

the resulting hypergeometric functions have argument
close to 0 and so their computation is rapid. This was
used as an alternative to direct summation of the series
in computing the integrand of (4–1) when 1 − 1

w > 0.6.
Computation of I2 is similar. Again this is speeded

by applying the analytic continuation formula when 1 −
1/w > 0.6.

A program hlp ratio that computes these integrals
and evaluates R for given parameters p, λ, µ, and ν

was coded in C. The execution time of this program was
about 15 seconds on a high-end Linux box when the inte-
grals were rapidly convergent. But for the (often critical)
cases in which the integrals were almost divergent, exe-
cution could take several minutes.

5. TESTING AND ERROR HANDLING

The approach of the previous section is subject to various
sources of numerical error. These are considered in this
section.

5.1 Rounding Error

All-floating point numbers are stored as 64-bit (17-digit)
doubles. However, when one adds a large number of
terms to estimate both the infinite integrals and the hy-
pergeometric function, there is the potential for these
errors to grow and swamp the results. As is well known,
this is especially a problem if the terms are added in order
of size, from the biggest to the smallest. To reduce the
accumulated error we used a variant of Wolfe’s method
[Wolfe 64], with terms added in bins according to their
order of magnitude.

To monitor the rounding errors a probabilistic analysis
was performed, tracking the expected variance of the ac-
cumulated rounding error through the computation. It
was found that the use of Wolfe’s method reduced the
expected standard deviation σ in R by several orders of
magnitude. For a variety of cases investigated this stan-
dard deviation was less than R by a factor of 108. For
later experiments a check was inserted to abort the com-
putation if 3σ/R > 0.01.

5.2 Simpson’s Rule Error

This is the error caused by using Simpson’s rule to inte-
grate a function that is not a cubic. This will be sensitive
to the step size. Tests performed varying the initial step
size H and the value of M that controls the growth of
the step size showed that these affect only the eleventh
significant figure in the result.

5.3 Truncation Error and Optimization Error

When the hypergeometric series (4–2) is summed, x never
exceeds 0.6, so the series converges geometrically and
the truncation error is negligible. For the infinite inte-
grals, however, convergence may be very slow, especially
when µ and ν are near 1/p′, the limit of their ranges.
Then, even with the greatest practicable value for X,
10150, there is considerable error in the improper integrals
(3–7) and (4–1).

For example, consider the case p = 2, λ = 1, in which
the best constant is known to be π. With ν fixed and
µ → 1

2 , then R = ‖Fµ,ν‖r/‖fµ,ν‖p should approach π.
Below we show values of R against µ with ν = −0.5.

µ 0.525 0.520 0.515 0.510
R 3.0640 3.0703 3.0574 2.9756
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There is a trade-off here between optimal µ and the trun-
cation error. As µ → 1

2 , the convergence slows and the
truncation errors increase. The closest result has an error
exceeding 1%.

This problem is alleviated by using an estimate for the
truncation errors. The tail of the integral for I2 is

T2 = Br(λ − ν, µ) (5–1)

×
∫ ∞

X

wr(ν−λ) Gr

(
λ − ν, µ − ν
λ + µ − ν

; 1 − 1
w

)
dw.

Applying (4–3) converts the integral to

∫ ∞

X

wr(ν−λ)

[
Γ(λ + µ − ν)Γ(ν)

Γ(µ)Γ(λ)
G

(
λ − ν, µ − ν

ν + 1 ;
1
w

)

+
Γ(λ + µ − ν)Γ(−ν)
Γ(µ − ν)Γ(λ − ν)

w−νG

(
λ, µ
ν + 1 ;

1
w

)]r

dw.

(5–2)

Since the arguments 1/w are very small we may approx-
imate hypergeometric functions by 1; selecting and inte-
grating the larger of the two terms gives

T2 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Γ(µ)Γ(−ν)
Γ(µ − ν)

]r
X1−rλ

rλ − 1
if ν < 0,

[
Γ(ν)Γ(λ − ν)

Γ(λ)

]r
X1+rν−rλ

rλ − rν − 1
if ν > 0.

(5–3)

Similarly, the tail of I1 is

T1 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Γ(µ)Γ(λ − µ)

Γ(λ)

]r
Xrλ−rµ−1

1 − rλ + rµ
if λ > µ,

[
Γ(λ − ν)Γ(µ − λ)

Γ(µ − ν)

]r 1
X

if λ < µ.

(5–4)

Including these estimates in the computation of the
integrals (4–1) and (3–7) dramatically reduced trunca-
tion error in cases where it is known. For the case p = 2,
λ = 1, ν = −0.5 discussed above, optimal R now occurs
at µ = 0.5000002, and the optimum is 3.1415920, within
0.00002% of the exact optimum π. These results and
others described in Section 8 give us confidence that our
methodology yields meaningful results.

Occasionally, however, there was a problem with the
tail estimate T2. When ν is small Γ(ν) is large and the
two terms in (5–2) represent the difference of large and
approximately equal numbers. The resulting numerical
instability may give meaningless results. Consequently,
to estimate the errors in (5–3) the alternative case is used.
That is, for ν < 0 we use the second case and for ν > 0 the
first. When the result indicates a possible error of more

than 1%, the computation is aborted. A similar check is
applied to the use of (5–4) to catch problems when λ ≈ µ,
although this did not occur with our experiments.

6. THE OPTIMIZATIONS

For a given p > 1, λ ∈ (1/p′, 1] we estimate (2–5)
by performing a numerical optimization over µ > 1/p′,
ν < 1/p′. We expect the optimum to occur near the
boundaries of this region. So in practice we optimized
over

1/p′ + ε ≤ µ ≤ 1/p′ + ε+2, 1/p′ + ε− 2 ≤ ν ≤ 1/p′ + ε,

where ε is a small positive number. We found ε = 0.001
to be appropriate. The simplex algorithm [Nelder and
Mead 65] was used with a starting point at the center of
the search space.

Figure 1 shows the path of the optimal vertex for the
case p = 2, λ = 1. The algorithm achieved a maximum
at µ = 0.501, ν = 0.499, a corner of the space. The max-
imum attained, 3.14158, is close to the best constant π.

In order to find the dependence of the best constant
on p and λ, optimizations like this must be performed
for a range of values of p and λ. We used

√
log2 p =

{0.1, 0.2, . . . , 2.0} and λ = {0.05, 0.10, . . . , 1.0}∩(1/p′, 1].
This yields 209 optimizations, each of which requires typ-
ically about 50 evaluations, a considerable computational
task. The following section addresses the method used
to expedite this process.

7. THE NIMROD TOOLS

Nimrod/G [Abramson et al. 00] is a tool that expedites
parametric computing. Given a computational model
that requires input parameters, Nimrod/G allows the
user to specify allowed values for each parameter, gen-
erates a job for each combination of these values, and
executes these jobs on a cluster, or via the “computa-
tional grid,” on clusters and supercomputers around the
world. The jobs will run in parallel with concurrency
limited by the number of processors available. Normally
a computational model needs no modification to run un-
der Nimrod/G. The user prepares a text “plan” file that
specifies the parameters and parameter values, and lists
the tasks required for each combination.

To perform optimization on some aspect of the out-
put of a computational model, Nimrod/O [Abramson et
al. 01] is an appropriate tool. It offers a range of opti-
mization algorithms. The implementation of these op-
timization procedures uses concurrent evaluations where



48 Experimental Mathematics, Vol. 15 (2006), No. 1

−1.5

−1

−0.5

0

0.5

0.5 1 1.5 2 2.5

ν

µ

��

�

�

�

FIGURE 1. Track of (µ, ν) for optimization.

possible. In addition, it allows separate optimizations to
be run concurrently.

A Nimrod/O optimization uses a “schedule” file. This
is similar to a plan file with parameter specification and
execution instructions. It also includes a section spec-
ifying the optimization method to use, the number of
optimizations to run, and other settings relevant to the
optimization algorithm.

We used Nimrod/O, with its built-in simplex algo-
rithm, to perform each of the optimizations. Further,
Nimrod/G was used to generate these optimizations, or-
ganizing the values of p and λ. This is a novel use of the
tools, using one tool to launch multiple instances of the
other, so we show below how this is done.

Figure 2 shows the plan file used to explore (2–5) for
values of

√
log2 p and λ. For each combination the Perl

script subst.pl is executed. This computes the values of

parameter root log p float range from 0.1 to 2 step 0.1;

parameter lambda float range from 0.025 to 1 step 0.025;

task nodestart

copy subst.pl node:.

copy skeleton.shd node:.

copy hlp ratio node:.

copy enfuzion.nodes node:.

endtask

task main

node:execute ./subst.pl $root log p $lambda

node:execute nimrodo -f hlp.shd -d s

copy node:nimrodo-results.log

results $root log p $lambda

endtask

FIGURE 2. Plan file for parameter sweep of values of p, λ.

p and p′, aborts if λ ≤ 1/p′, and otherwise takes the file
skeleton.shd and converts it to hlp.shd, a Nimrod/O
schedule file tailored for this combination of p and λ.
Nimrod/O is then executed and the results copied back to
the root node. Figure 3 shows the file hlp.shd generated
for the case p = 2, λ = 1.

parameter mu float range from 0.501 to 2.501

parameter nu float range from -1.501 to 0.499

task main

copy hlp ratio node:.

node:execute ./hlp ratio 2.0 1.0 $mu $nu

copy node:output output.$jobname

endtask

method simplex

starts 1

tolerance 0.0001

starting points specified

(1.5 -0.5)

endstarts

endmethod

FIGURE 3. Example schedule file for optimization over µ, ν.

8. RESULTS AND DISCUSSION

The optimizations were performed on a cluster of fifty
3.0-GHz processors running Linux. This required 10,602
runs of the program hlp ratio with mean wall-clock ex-
ecution time of 51 seconds. The mean time for an op-
timization was 24 minutes. The entire experiment com-
pleted in 9 hours and 12 minutes. This implies an average
concurrency of 16.3.
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FIGURE 4. Surface showing S/K against
√

log2 p and λ.

During some optimizations the execution of hlp ratio

failed due to the error estimate of T2 as described above.
In such cases Nimrod/O assigns the value −10100 and
proceeds with the simplex optimization. In all cases a
local maximum was found as indicated by a variation of
< 0.01% over the vertices of the simplex.

Figure 4 shows a rubber-sheet diagram for S/K, the
computed maximum transformation norm as a propor-
tion of Levin’s constant, against

√
log2 p and λ.1 This

was prepared using the graphics package OpenDX, which
requires all values in the rectangular grid to be included.
So for the forbidden region λ ≤ 1/p′ we have assigned a
value 0 to S/K.

The diagram shows that the results agree with known
theory. For the (conjugate) case λ = 1 (the front right
edge of the sheet) the ratio S/K is close to 1. Figures 5
and 6 show µ − 1/p′ and 1/p′ − ν respectively versus√

log2 p and λ. With a few exceptions the optima for
λ = 1 were obtained for µ and ν at the extremes of their
allowed domains, namely 1

p′ + 0.001 and 1
p′ − 0.001.

Further, for
√

log2 p = 0.1, (p = 20.01 ≈ 1 at the
back of the figure), S/K is again close to 1, agreeing
with Walker’s result for p → 1. Here there seems no
obvious pattern in the µ and ν that attained the optima.
Significantly, the optima did not occur at extreme values.

Elsewhere S/K is less than 1. Either the family of
test functions (2–2) does not encompass the supremum
(2–5) or the hypothesis that Levin’s constant is the best
possible is wrong. Note that this family supplies only
extreme behavior at 0 and ∞. The only other family
that we suggest may provide suitably extreme behavior

1Thanks are due to Mr. Donny Kurniawan, who prepared the
rubber-sheet diagrams.

FIGURE 5. Surface showing optimal µ − 1/p′ against√
log2 p and λ.

FIGURE 6. Surface showing optimal 1/p′ − ν against√
log2 p and λ.

is

fa,b(x) =

{
b−1/p for a − b/2 ≤ x ≤ a + b/2,

0 otherwise.

This has ‖fa,b‖ = 1 and “approaches” a Dirac delta at
x = a as b → 0.
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