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The main results of A. Zorich and I. Dynnikov regarding plane
sections of periodic surfaces are extended to the piecewise lin-
ear case. As an application, the stereographic map of a trun-
cated octahedron, extended to all of R

3 by periodicity, is ana-
lyzed numerically.

1. INTRODUCTION

The problem of the asymptotics of plane sections of
smooth periodic surfaces, extracted from the physics lit-
erature by S. P. Novikov in 1982 [Novikov 82], turned
out to be much richer then expected, leading ultimately
to the association of a fractal on R P2 to every element
of a large class of triply periodic functions in R

3 (see
Section 2).

In [De Leo 03] we developed a C++ library and used
it to investigate the stereographic maps associated with
triply periodic smooth functions in order to obtain infor-
mation about the Novikov conjecture claiming that the
Hausdorff dimension of the associated fractals is strictly
between 1 and 2. Unfortunately, the running time of
our numerical explorations grows unrealistically long as
soon as we sample with resolutions fine enough to pro-
vide a hint of the fractals, mainly because the number of
polygons of the meshes approximating a curved smooth
surface (e.g., so as to determine its intersection with a
plane) rapidly becomes very large.

This fact suggests that from the numerical point of
view, polyhedra are the best surfaces to study, at the very
least for the obvious reason that the number of polygons
needed to describe them at any resolution is constant.
Moreover, such constants can be rather small even in
such nontrivial cases presented in this paper, as in the
case of the extended truncated octahedron, which has just
eight hexagonal faces.
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Since the main results of the theory, due to A. V.
Zorich [Zorich 84] and I. A. Dynnikov [Dynnikov 97, Dyn-
nikov 99], refer to the case of smooth surfaces only, in
Section 2 we will provide independent proofs for those
theorems that make use of the smooth structure and will
mention the main properties of the system. Then, in
Section 3, we present the algorithm we implemented to
explore the problem numerically and our numerical re-
sults in the case of the polyhedron obtained by extending
the truncated octahedron by periodicity. Note that the
figures relative to highest-resolution numerical analysis
can be found in the online appendix [De Leo 06] to this
paper.

2. FUNDAMENTAL OBJECTS AND THEOREMS

2.1 Critical Points of Height Functions in Polyhedra

An analogue of the Morse theory for height functions on
polyhedra was introduced by T. Banchoff in [Banchoff
67, Banchoff 70]. Here we recall the concepts relevant for
the present paper, slightly modified to cover the case of
periodic polyhedra.

Definition 2.1. By embedded polyhedron M ⊂ R
3

we mean a countable collection of cells K = {Cr ⊂
R

3}r=0,1,2, where 0-cells are points (vertices), 1-cells are
closed connected segments, and 2-cells are convex closed
plane polygons such that the following hold:

P1. The boundary of any cell is the union of cells of lower
dimension.

P2. Every cell having points in common with a cell of
higher dimension is completely contained within it.

P3. K is locally finite, i.e., every vertex has a neighbor-
hood in R

3 that intersects only finitely many cells.

P4. For any point p ∈ M , the union Star(p) of all cells
containing that point is homeomorphic to an open
disk.

A triply periodic polyhedron is a polyhedron that is in-
variant with respect to a rank-3 discrete subgroup Γ � Z

3

of R
3. Finally, by the polyhedron M ⊂ T

3 we mean the
quotient M/Γ ⊂ R

3/Γ � T
3 of a triply periodic polyhe-

dron.

Every triply periodic polyhedron M embedded in R
3

is the lift of a compact polyhedron M embedded in T
3.

Since we are going to study plane foliations of polyhe-
dra, we are interested in the reciprocal relation between

polyhedra and height functions (or equivalently, constant
1-forms):

Definition 2.2. A height function h(p) = hαpα is called
generic for the polyhedron M if no edge of M is per-
pendicular to the direction H = (hα). Equivalently, a
constant 1-form ω = hαdpα in R

3 (respectively T
3) is

generic for M (respectively M) if no edge of M (respec-
tively M) is contained in a single leaf of ω.1

Since height functions are not single-valued on T
3 (un-

less H is an integer direction, i.e., parallel to a lattice
vector), while their differentials ω = dh are always well
defined in both R

3 and T
3, we will refer mostly to 1-forms

from now on. From the definition above it is clear that
as in the smooth case, the set of nongeneric 1-forms has
zero measure.

Note that the foliation induced on T
3 (and therefore

on M) by ω does not change by multiplying the 1-form by
a nonzero scalar, so from now on we will simultaneously
think of ω as a constant 1-form and as a point in R P2.

Definition 2.3. The index of a point p ∈ M (or equiva-
lently, [p] ∈ M) with respect to a generic constant 1-form
ω is the integer i(p, ω) = 1 − s/2, where s is the number
of segments having p as an endpoint in which the leaf of
ω passing through p cuts Star(p). If i(p, ω) = 0, i.e., if
the Star(p) is cut in exactly two components, the point
is said to be regular ; otherwise, it is called critical.

The set of critical points for any generic constant 1-
form is of course a subset of the set of vertices; exactly
as in the smooth case, minima and maxima have index
+1 and nondegenerate saddles have index −1. The main
difference between the smooth and the piecewise linear
(PL) case, for our purposes, is that saddles that are un-
stable in the former case, i.e., that disappear for small
perturbations of the 1-form direction, are stable in the
latter and therefore cannot be disregarded; the simplest
example is provided by the “monkey saddle,” which has
index −2 (see Figure 1).

Nevertheless, an analogue of the critical point theorem
for generic 1-forms holds:

1The Frobenius theorem shows that the distribution ω = 0 is
integrable iff the 1-form ω is closed. In this case, the leaves induced
by ω = hαdpα in T3 are the projections of the R3 planes perpen-
dicular to H = (hα); those induced on a polyhedron M are the
intersections of these leaves with the polyhedron.
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FIGURE 1. Piecewise linear monkey saddle: In the smooth
case, an arbitrarily small perturbation would suffice to re-
solve this critical point into a pair of elementary saddles; in
the piecewise linear case it is stable and therefore generic.

Theorem 2.4. If M is a triply periodic polyhedron, invari-
ant by the action of the rank-3 group Γ ⊂ Z

3, and ω is
generic for M , then

∑
[p]∈M i(p, ω) = χ(M), where [p] is

the set of vertices Γ-equivalent to p and the sum is hence
extended to any set of inequivalent vertices. Equivalently,
if we set the volume of a Dirichlet domain of Γ to 1, then
the average of the Euler characteristic of M converges to
the Euler characteristic of M:

χ(M) = lim
R→∞

∑
‖p‖<R

i(p, ω)/Vol(BR) = χ(M).

Proof: Since Banchoff’s proof [Banchoff 70] of the crit-
ical point theorem for polyhedra is based only on local
identities that are trivially true in T

3, that proof holds
with no change in the case at hand.

The second part can be proved by considering that
the genus g of the surface M contained inside a cube of
side R can be evaluated by reducing the surface homo-
topically to a graph and then evaluating the rank of the
graph’s first homology group. The result follows from
the consideration that every component contained in an
inner unitary cube contributes g to the total genus of the
component contained in the cube of radius R, and their
number grows with R3, while the cubes on the boundary
provide a smaller contribution that can be disregarded
in the limit for R → ∞, since their number grows only
as R2.

2.2 Structure of Foliations

In the most general case, a constant 1-form ω induces
on a triply periodic polyhedron M both open and closed
leaves.

Since being homotopic to zero is an open condition,
leaves close enough to closed ones are also closed; maxi-
mal components of closed leaves are always enclosed be-
tween a pair of critical points of ω on M and form ei-
ther cylinders (when both critical points are saddles) or
disks (when one is a saddle and the other is a center) or
spheres (when they are both centers). The last two cases
are topologically trivial: A disk covered by closed leaves
around a center is exactly a homotopy to a point of that
component of M , and if M is a sphere, then no open or-
bit can ever be induced on it by a closed 1-form. Hence,
once the topologically trivial components are removed,
what is left is a collection of cylinders Ci that separates
a collection of subpolyhedra with boundary Ni filled by
open leaves.

Definition 2.5. A genus-k component of M is a piecewise
linear submanifold with boundary N of M such that the
following conditions are satisfied:

1. ∂N is the finite disjoint union of parallel plane (topo-
logical) circles homotopic to zero.

2. The closed polyhedron N obtained by filling the
holes of N with plane disks has genus k.

Definition 2.6. A Dynnikov decomposition Z of a poly-
hedron M is a collection of subpolyhedra with boundary
{Ci,Nj} of M such that the following conditions are sat-
isfied:

1. Every Ci is homotopic either to a closed cylinder or
to a closed disk.

2. Every Nj is a genus-kj component of M.

3. i �= j =⇒ Ni ∩ Nj = ∅, while every other pair of
distinct subpolyhedra of Z that is not disjoint shares
a single boundary component.

4. M =
⋃

i Ci

⋃
j Nj .

The genus and rank of a Dynnikov decomposition Z are
the highest genus and rank of the N j ’s contained in Z. A
genus-1 rank-2 Dynnikov decomposition is called a Zorich
decomposition.

Remark 2.7. From the considerations above it is clear
that every constant 1-form ω in general position with
respect to M, i.e., such that there are no saddle connec-
tions, naturally induces a Dynnikov decomposition Z on
M in which all Ci are filled by the closed leaves and all
Nj by the open ones.
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Under the same assumptions, with every focus is as-
sociated a saddle that “cancels” it. Namely there is a
homotopy of the surface that gets rid of the saddle-focus
pair without modifying the topology of the open orbits
nearby; we call the saddle-type critical points that are
left topological saddles, since it is they that contribute to
the Euler characteristic of the surface.

In the smooth generic case, the number of Γ-
inequivalent topological saddles, i.e., the number of topo-
logical saddles in M, is of course exactly equal to 2g− 2;
in the PL case however, since we can have generic saddles
with higher multiplicity, the Euler characteristic is only
an upper bound for the number of topological saddles,
since χ(M) = 2 − 2g =

∑
k∈Z k · #{[p]|i(ω, p) = k}.

2.3 The Close-to-Rational Case

Definition 2.8. The irrationality degree of a closed 1-
form Ω on a piecewise smooth manifold M is the num-
ber of rationally independent integrals of Ω over any
base of the homology integer 1-cycles of M : irr(Ω) =
dimQ spanQ{

∫
γ

Ω}, γ ∈ H1(M, Z); 1-irrational forms are
also called rational.

The structure of foliations induced on a periodic poly-
hedron by rational 1-forms is much simpler than in the
generic case, since in this case all leaves are periodic;
moreover, the appearance of a topological invariant forces
all 1-forms close enough to rational to exhibit the same
behavior.

Rational 1-forms are rather special because foliations
induced on M by them are also induced by well-defined
circle-valued functions on the polyhedron. Indeed, if
{γi}i=1,2,3 is a base for H1(T3, R) and N an integer big
enough such that N

∫
γi

ω ∈ Z, i = 1, 2, 3, and p0 ∈ M,
then the function

f : M −→ S
1,

p 	→ exp

(
iN

∫ p

p0

ω

)
,

is well defined and differentiable, and its differential dfp =
iNωpf(p) is proportional to ω. Since f is never zero, the
set df = 0 on M coincides with the restriction to M of
ω = 0.

This shows that all leaves induced by rational 1-forms
on a polyhedron M ⊂ T

3 are compact, and therefore
corresponding leaves on M ⊂ R

3 will be open or closed
according to their homology class: Leaves homotopic to
zero in T

3 will remain so in any covering, while all others
will open up in the universal covering of T

3.

Definition 2.9. From now on we will refer to closed leaves
not homotopic to zero as periodic, or, more generically,
open, leaves, so that by closed leaf we will implicitly mean
a closed leaf homotopic to zero.

Lemma 2.10. Let ω be a rational 1-form in general posi-
tion with respect to a polyhedron M. Then no more than
two open leaves can collide at any saddle point.

Proof: The 1-form ω foliates T
3 in a one-parameter fam-

ily of embedded 2-tori, so that all open leaves at the same
level of ω are parallel (i.e., they represent the same 1-
cycle modulo sign); moreover, the number of open leaves
on every level is even, since they are all integral and their
sum must be zero.

It is easy to check, just by drawing pictures, that it is
possible to have saddles of any index with closed leaves,
and adding a single pair of open leaves does not change
this situation; their presence, however, does not allow
the presence of any other pair, since at any saddle point
the two extremes of the same (critical) leaf must appear
next to each other, and this is of course impossible for
all open leaves, apart for the two most external ones (see
Figure 2).

FIGURE 2. A (hypothetical) saddle point where four open
leaves meet simultaneously. The two branches of each of the
inner open leaves cannot be adjacent to each other, so this
picture cannot come from the section of a locally Euclidean
surface.

Theorem 2.11. The Dynnikov decomposition induced on
M by any constant rational 1-form in general position is
Zorich.
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Proof: Since all (noncritical) leaves induced by ω on M
are circles, the critical points of ω on M determine a
subdivision of the polyhedron in the connected sum of
a finite number of cobordisms. In the smooth case, the
only nontrivial cobordisms are elementary (i.e., pants-
like), and Zorich [Zorich 84] proved that on the bound-
ary of each pair of pants there is at least one of the three
boundary loops that is homotopic to zero (in T

3), from
which the theorem follows easily.

In the polyhedral case the cobordisms are not neces-
sarily elementary, i.e., more than two leaves may collide
at a saddle point, but lemma 2.10 grants us that even in
this case no more than two loops in the cobordism may
be open. This shows that the components of open leaves
have genus 1, and therefore the decomposition induced
on M by ω is Zorich.

The presence of a genus-1 rank-2 component of open
leaves is a very strong condition and leads to the ap-
pearance of a topological quantity associated with the
foliation [Dynnikov 97]:

Theorem 2.12. A Dynnikov decomposition Z of M of
rank 2 has genus 1 if and only if at least one of its Nj

embedded with rank 2 has genus 1. In this case, all Nj are
genus-1 components of M, and those embedded with rank
2 represent, modulo a sign, the same integral nonzero 2-
homology class in T

3.

Definition 2.13. The unsigned nontrivial indivisible ho-
mology class l ∈ PH2(T3, Z) common to all rank-2 com-
ponents of Z is called the soul of a Zorich decomposi-
tion Z.

Corollary 2.14. Let ω be a rational 1-form inducing on
M a rank-2 Zorich decomposition Z. Then any 1-form
ω′ close enough to ω induces on M a rank-2 Zorich de-
composition Z ′, and this decomposition is homotopic to
Z. In particular, all such decompositions share the same
soul; that is, the soul is a locally constant function of the
pair (M, ω).

Proof: The leaves at the boundary between the genus-1
components of periodic leaves Ni of M and the cylin-
ders of closed leaves are themselves closed and therefore
stable under small perturbations of ω’s direction; conse-
quently, no cylinder of closed orbits will disappear in a
whole neighborhood of ω ∈ R P2. Since no two leaves of
a foliation can intersect, this means that open leaves are

bound to genus-1 components of M, homotopic to the Z
ones, even for all 1-forms close enough to ω.

Finally, since the homology class l of these rank-2
genus-1 components is integral and they change continu-
ously, this l must be the same (modulo sign) for all them.

The soul l of a Zorich decomposition is a fundamental
invariant, since it predicts the asymptotic behavior of the
open leaves. Indeed, the fact that [Ni] = ±l means that
in R

3, the lift N̂i of Ni lies between a pair of parallel
planes perpendicular to l (seen as a direction in R

3), so
that the lift to R

3 of an open leaf, namely an open in-
tersection of N̂i with a plane perpendicular to ω (seen as
a vector in R

3), is a curve contained in a plane strip of
finite width. Dynnikov [Dynnikov 92] showed how these
conditions are enough for one to conclude that the leaf
is actually a finite deformation of a straight line whose
direction is the axis of the strip, namely ω × l.

Since the foliation induced by ω is determined just by
its direction H and the soul itself can be interpreted as
a direction in R

3, once we fix a surface M we can think
of the soul application as a locally constant application
soulM : R P2 → R P2. We will show in the next section
that for a generic polyhedron M, this map is well de-
fined on the whole projective plane except for a set of
measure zero (ergodic directions), and its image amounts
to a finite number of points.

Definition 2.15. The nonempty level sets Dl(M) =
soul−1

M (l) corresponding to nonzero values of l are called
islands or stability zones of M. The union of all stability
zones S(M) = ∪lDl(M) is called the stereographic map
(SM) of M.

Strange as it may seem, this whole construction is the
natural model for a very concrete physical phenomenon,
namely the magnetoresistance in normal metals, with the
periodic surface being the Fermi surface of a metal, the
1-form being a strong, constant, homogeneous external
magnetic field, and the Fermi surface’s leaves being the
orbits of the momenta of the metal’s quasielectrons. The
presence of open leaves is detectable experimentally, and
so is each stability zone (provided at least two points of it
are measured [Novikov and Maltsev 98]). Experimental
plots of the SM were produced in the 1960s and 1970s
for about thirty metals, but only recently have the first
two SM, relative to the Fermi surfaces of gold and silver,
been reproduced theoretically from first principles [De
Leo 04b, De Leo 05a].
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2.4 The Generic (3-Irrational) Case

In the previous section we showed that the structure of
the foliation in a neighborhood of rational directions is
rather simple: Either all leaves are closed or their lift is
strongly asymptotic to a straight line [Dynnikov 97], that
is, it is contained in a finite-width plane strip and crosses
it from one end to the other. Still, this is far from being
enough, since the soul density of an open set does not
preclude its measure from being small.

We will prove in this section that the situation above
is nevertheless the generic one:

Theorem 2.16. The set of directions in R P2 inducing
Dynnikov decompositions of genus greater than one on a
generic polyhedron M has measure zero.

To prove this theorem, Dynnikov studied the structure
of the foliation induced by a 3-irrational 1-form ω on a
1-parameter family of surfaces Me = f−1(e), where f is
a triply periodic Morse function such that for almost all
values of f no more than one critical point of ω lies on
the same leaf. Here, we will repeat Dynnikov’s steps, as-
suming f to be a generic triply periodic PL function, so
that almost all of its level surfaces are embedded polyhe-
dra satisfying the same genericity condition with respect
to ω.

The following two lemmas of Dynnikov extend with
no change to the polyhedral case:

Lemma 2.17. Given a triply periodic PL function, the
set of values for which a constant 1-form ω induces open
leaves filling rank-2 components is a closed connected in-
terval [e1(ω), e2(ω)]. The functions e and E are contin-
uous on all of R P2.

Definition 2.18. The Dynnikov index w of a critical point
c of ω = hαdpα with respect to an oriented polyhedron M
is the product of the “Hamiltonian” index of the critical
point (+1 for centers and −1 for saddles) times the sign
of the scalar product between H = (hα) and any of the
normals to the faces adjacent to the critical vertex.

Lemma 2.19. The curve γω,f (e) =
∑

i wici(e) is a well-
defined loop in T

3, and the quantity

χω,f (e) =
∫ e

−∞
i∗γω,f

ω

is equal to the density of closed leaves on any leaf induced
by ω on T

3.

Moreover, if {h+
j } (respectively {h−

k }) are the heights
of the “positive” (respectively “negative”) cylinders of
closed leaves on M, namely those that contain points with
smaller (respectively larger) values of f , it turns out that
it is possible to choose R

3 representatives ĉi of the critical
points such that

χω,f (e) =
∑

i

〈H, wiĉi(e)〉 =
∑

h+
j −

∑
h−

k .

The weighted sum of all critical points also contains
the center-saddle pairs, which can be removed by homo-
topy and have nothing to do with the topology of the
foliation. If we do not include them in the summation,
we are left with a new quantity that tells us the density
of nontrivial (in M) closed leaves, and therefore we are
able to determine whether there are cylinders of nonzero
height. In particular, to have a full ergodic situation,
i.e., a leaf dense on the whole of M, this function must
necessarily be zero.

Lemma 2.20. Let {ctop
i } be the subset of the topologi-

cal saddles of the pair (ω, f). Then the reduced curve
γtop

ω,f (e) =
∑

i wic
top
i (e) is also well defined in T

3, and
the reduced Euler density

χtop
ω,f (e) =

∫ e

−∞
i∗
γtop

ω,f

ω

is equal to the density of closed leaves that are not homo-
topic to zero in M.

The function χtop
ω,f is a strictly increasing noncontinu-

ous PL function with respect to e; its points of disconti-
nuity are exactly the nonproper values of f .

Proof: The original curve γω,f (e) is well defined because∑
wi = 0 [Dynnikov 97]; since the Dynnikov indices

of a saddle-center pair are opposite, the restricted sum∑
top wi is still zero, and therefore γtop

ω,f (e) is well defined.
Considering only the sum of the topological saddles is

equivalent to canceling from a leaf all closed leaves that
are homotopic to zero in M, so that the averaged Euler
characteristic is now relative to only the nontrivial closed
leaves.

Now consider a positive cylinder. Since the values in-
side are smaller with respect to the values on the cylinder,
the height of the cylinder increases with e; for the same
reason, negative cylinders decrease their height. Since
χtop

ω,f (e) =
∑

top h+
j −∑top h−

k , the function χtop
ω,f (e) is

strictly increasing at its points of continuity. The func-
tion fails to be continuous when new pairs of topologi-
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cal saddles are created or destroyed, namely, in the non-
proper values of f , and it jumps exactly by the height of
the cylinder(s) created or destroyed.

Corollary 2.21. If ω induces on Me a Dynnikov decompo-
sition of genus greater than 1, then e1(ω) = e2(ω) = e0,
i.e., ω induces only closed leaves at any other level.

Corollary 2.22. At almost all levels of f the measure of
the “ergodic” directions is zero.

We have now all the ingredients to prove Theo-
rem 2.16:

Proof: We will discuss only the case of “full ergodicity,”
namely the case of directions giving rise to leaves dense on
the whole polyhedron; the same line of argument extends
to the lesser ergodic cases.

If ω induces on M fully ergodic leaves, then of course
no cylinder can appear, and therefore for any Morse PL
function f such that M = f−1(0), it must happen that
χtop

ω,f (0) = 0. Let us consider now χtop as a function of
ω and e. Then the surface X = (χtop

f )−1(0) ⊂ R P2 ×R,
for a generic function f , is transversal to the sections
R P2 ×{e}. Indeed, in a projective chart, say hz = 1, we
have that ∂hxχtop

ω,f =
∑

i wi(c
top
i )x and similarly for hy,

so that the points on X where the gradient is zero are
exactly the points where γtop

ω,f (e) =
∑

i wic
top
i = 0. This

condition is nongeneric, and that finally proves the claim
of the theorem.

2.5 Structure of the Stereographic Map of Surfaces and
Triply Periodic Functions

The results of the previous two sections show that the SM
S(M) of a generic surface is the disjoint union of a count-
able set of open sets Dl(M) (“islands”), each labeled by
an l ∈ PH2(T3, Z) immersed in a sea of directions that
give rise only to closed leaves. According to our intu-
ition of the system and the numerical experiments made
to date, we conjecture that generically, the number of
islands is finite, but no rigorous proof of this fact ex-
ists. As a matter of fact, this structure is exactly the one
guessed, from symmetry considerations, by the physicist
I. M. Lifschitz and his Kharkov school about fifty years
ago [Lifschitz and Peschanskii 59, Lifschitz and Peschan-
skii 60].

The boundaries of the islands are reached when the
last pair of genus-1 components collide because of a cylin-
der collapse and therefore are characterized by the pres-
ence of (at least) a pair of inequivalent critical points on

the same leaf. The set of these directions is the count-
able union of the curves 〈H, ĉi − ĉj〉 = 0, i �= j; in the
polyhedral case all such curves are straight lines, so that
every island is actually a (not necessarily convex) poly-
gon. There are reasons to believe that these polygons are
convex for low genus, i.e., at least for genera 3 and 4, but
it is easy to build examples of high-genus polyhedra with
islands that are either not connected, or connected but
not convex, or even connected but not simply connected.

A crucial observation by Dynnikov [Dynnikov 97] al-
lows us also to associate an SM with triply periodic func-
tions:

Theorem 2.23. Let f be a Morse triply periodic func-
tion. Then if ω induces on Me0 a Zorich decomposi-
tion Ze0, it induces a Zorich decomposition Ze for all
e ∈ (e1(ω), e2(ω)), and all these decompositions share the
same soul.

Definition 2.24. The island Dl(f) corresponding to the
label l is the union of the corresponding islands of the
level sets of f : Dl(f) = ∪e∈RDl(Me). The SM of f is
the union of all its islands: S(f) = ∪lDl(f).

The SMs corresponding to functions are generically
dramatically different from those corresponding to sur-
faces.

First of all, since rational directions necessarily induce
Zorich decompositions, the set of islands S(f) is now al-
ways dense in R P2, and of course Lemma 2.17 also tells
us that in this case the sea of directions giving rise to
closed leaves has dried up, since every direction either
belongs to an island (or its boundary) or is ergodic.

Moreover, the following property shows that the is-
lands can be sorted in a rather complex way:

Theorem 2.25. Generically, every two zones meet
transversally and in a countable number of points.

Proof: No point belonging at the same time to two dif-
ferent zones Dl1 and Dl2 can have irrationality degree
greater than 2, since it must contain the integer direction
l1 × l2. In the smooth case this would be enough, since
the boundaries are smooth curves and they generically
contain only a countable number of 2-irrational points
and no rational points. In the PL case, however, the
boundaries are actually segments of straight lines, and
therefore they are actually contained in the set of the
directions with irrationality degree less than one.
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Nevertheless, the theorem holds in this case as well for
the following reason: Since every direction at the bound-
ary between two zones is perpendicular to the direction
l1 × l2, their set is the straight line (in R P2) passing
through l1 and l2. Generically, none of the two labels
falls on the boundary, and therefore two zones can meet
in a number of points not greater than the number of
sides of the island with the smaller number of sides.

Corollary 2.26. Either there is a single zone, i.e., there
exists a label l such that Dl(f) = R P2, or there are count-
ably many zones and they are dense in the whole projec-
tive plane.

Since the islands meet transversally, the nontrivial
SMs will look like 2-dimensional Cantor sets. Analyzing
such fractals numerically is not trivial, since it involves,
in general, examining the system at several values of f ,
but there is a class of interesting (nongeneric) cases in
which it is actually enough to analyze a single level sur-
face of f to obtain the entire fractal picture:

Theorem 2.27. Let M be a polyhedron whose interior
is equal to its exterior modulo the group G � R

3 × Z2

of translations and inversion of the three axes. Then
S(M) = S(f) for any function having M as (connected
component of a) level set.

Proof: By symmetry, we can build a function f such that
M = f−1(0) and such that f−1(e) is equal to f−1(−e)
modulo G. Since the bundles of parallel planes are also
invariant by G, it turns out that for such an f the interval
I(ω) of existence of open orbits relative to any 1-form ω is
of the form I(ω) = [−a(ω), a(ω)], and therefore 0 ∈ I(ω),
∀ω ∈ R P2, i.e., at the zero level every ω induces open
leaves.

In particular, all triply periodic functions f such that
f(c−x, c−y, c−z) = −f(x, y, z) belong to this class, and
indeed the only fractals analyzed numerically to date are
relative to this kind of function.

Finally, we cite an important property that ties the set
of all labels relative to the islands of an SM of a function
with the set of ergodic directions [De Leo 04a, De Leo
05b]:

Theorem 2.28. The closure of the set of all labels is the
disjoint union of the set of all zone boundaries and the
set of ergodic directions.

3. A CONCRETE CASE STUDY

As pointed out in the previous section, to date, a picture
of the fractal has been numerically produced for only two
functions: an analytical one and a piecewise quadratic
one [De Leo 04a].

The analytical function is f(x, y, z) = cos(2πx) +
cos(2πy) + cos(2πz), invariant with respect to transla-
tions by integers Γ = Z

3 ⊂ R
3, which gives rise to genus-

3 level surfaces in the range (−1, 1) and spheres at every
other noncritical level. This function represents the sim-
plest nontrivial case possible from the topological point of
view, since any triply periodic connected surface of genus
less than 3 lies between two parallel planes, and therefore
the aymptotics of plane sections are easily found. Its zero
level is rather special: It is known as the Schwarz prim-
itive function (or plumber’s nightmare) and was studied
by Schwarz in 1890 as one of the first examples of a triply
periodic minimal surface.

From the computational point of view, SP = f−1(0)
has three important properties:

SP1. Its interior is a translate of its exterior, so that
S(SP) = S(f).

SP2. It is invariant with respect to the natural action of
the tetrahedral group Td on the unitary cube, so that
the whole SM can be obtained, for example, by ex-
tending by symmetry to all of R P2 the data obtained
for the triangle with vertices [(0, 0, 1)], [(1, 0, 1)], and
[(1, 1, 1)].

SP3. The two cylinders, one negative and one positive,
have the same height, so that it is enough to examine
just one of the four topological critical points at the
base of the two cylinders to retrieve all information
about the structure of the foliation.

The piecewise quadratic function is g(x, y, z) =∑
ḡ(xi), where ḡ is the simplest piecewise quadratic func-

tion having the same symmetries as those of the cosine
function. Its level sets have the same behavior as the
function above, but the expression of the critical points
as a function of the direction of the 1-form and the level
of the function is so simple that a comparison between
the analytical and numerical data is possible also at levels
different from zero.

Nevertheless, in both cases the number of triangles
needed to describe the surface in sufficient detail is so
large (between 105 and 106) that it is impossible to im-
prove the resolution of the results obtained in [De Leo
04a], at least until a new algorithm is found or some ad
hoc trick is discovered.
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3.1 The Polyhedron

FIGURE 3. The simplest PL approximation of the cosine
function.

A natural way to improve the resolution of the numer-
ical analysis of the problem is to consider PL functions,
since in this case the number of triangles needed to de-
scribe their level surfaces can be as low as order 101.
Moreover, the description of the surfaces is in this case
exact rather than an approximation.

The simplest case to study, in order to take advantage
of the extremely convenient properties evidenced in the
SP case, is the PL function h(x, y, z) =

∑
i h̄(xi), where

h̄ is the function shown in Figure 3. The polyhedron
P0 = h−1(0) is a PL embedding of a genus-3 surface in
T

3 having 8 hexagonal faces, 20 edges and 12 vertices; the
smallest triangulation for P0 takes 4 · 8 = 32 triangles,
32 · 3/2 = 48 edges, and 12 vertices, which gives the
expected Euler characteristic χ(P0) = F −E+V = −4 =
2−2·3. The basic cell of the lift P0 ⊂ R

3 in the unit cube
is a truncated octahedron (Figure 4); it is noteworthy to
notice that like its smooth analogue, this surface is, in
the discrete sense, also a minimal surface [Wayne 05].

Since exactly four edges meet at every vertex, given
any 1-form ω in general position with respect to P0, only
saddles with index −1 can arise, and therefore there are
always four vertices that are critical for such ω. If the
point p1 is such a vertex, then the remaining three criti-
cal points are p2,3 =

(
1
2 , 1

2 , 1
2

)±p1 and p4 = (1, 1, 1)−p1.
In particular, in our numerical study we sample the set
of 1-forms ω = (hx, hy, hz) such that hx/hz ∈ [0, 1]

FIGURE 4. Plot of the truncated octahedron inside T
3 (left)

and of part of its image in the universal covering.

and hy/hz ∈ [0, 1], for which the four critical points are
(0, .5, .75), (.5, 1, 1.25), (.5, 0, .25), and (1, .5, .25).

3.2 The Algorithm

In order to generate an approximate picture of a fractal,
it is enough to produce an algorithm able to evaluate
the label, if any, associated with a given 1-form. Since
obviously no calculator can deal with irrational numbers,
the numerical study will be limited to rational 1-forms;
fortunately, this is not a big restriction, since in any case,
rational directions are dense in every stability zone.

Note that the algorithm used for the numerical study
of the PL case is a simplified version of the more gen-
eral algorithm we developed to study smooth surfaces of
genus three [De Leo 04a], since in this case we know a
priori the position of all critical points and moreover, we
know their position exactly, so that we do not have to
correct “by hand” the topology of the critical section.

The basic idea to retrieve the label, as suggested to me
by I. Dynnikov, is that the soul l ∈ PH2(T3, Z) associ-
ated with the Zorich decomposition Z induced by ω ∈ Dl

is in one-to-one correspondence with the rank-2 sublat-
tice of H1(T3, Z) obtained as the image, through the map
i∗ : H1(M, Z) → H1(T3, Z), of the open leaves in M that
have zero intersection number with the closed leaves pop-
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FIGURE 5. A close-up of the island D(2,4,5)(P0) =
D(2,4,5)(h). Inside the island the pairs of critical points at
the base of each cylinder are locally constant. In correspon-
dence to each side, there are three different pairings sorted
in open subsets, labeled in the picture by roman numerals,
separated by straight line segments corresponding to direc-
tions ω for which the bases of the positive and negative
cylinders collide, resulting in a saddle connection between
two critical points. These three segments meet in the single
point (.4, .8), which in this case happens to be exactly the
direction of the label (this property, though, is not generic).
In Figure 6 we show in detail the transition between two
different pairs within this island.
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FIGURE 6. Significant examples of critical sections of P0 for ω ∈ D(2,4,5)(P0). At the “center” of the island (e) there
is a saddle connection between the four critical points (starting from the highest and turning clockwise) N = p1, E =
p2 +(3,−3, 1), S = p1 +(1,−3, 2), and W = p2 +(1,−2, 1). In the subzones I, II, and III (Figure 5) the pairs of critical
points at the base of the positive cylinder are, respectively, N and p4 + (2,−4, 1) (i), S and p3 + (2,−2, 0) (b,c), and E
and p3 + (−1,−1, 0), (d, g). The separating segments correspond respectively to saddle connections between the pairs of
critical points S and W (a), N and S (f), and N and E (h).

ulating the cylinders of Z. Indeed, every cycle lying on
the interior of an Nj component of Z has no intersection
with the closed leaves that form the cylinders Ci, and
since all Nj are homologous to each other (modulo sign),
the image of all these cycles in T

3 must have rank 2; on
the other hand, there is an obvious one-to-one correspon-
dence between rank-2 sublattices of H1(T3, Z) = Γ � Z

3

and the 2-tori embedded in T
3 = R

3/Γ, since every such
2-torus can be spanned by a pair of independent rational
directions and vice versa.

The following algorithm works for genus-3 polyhedra
satisfying properties SP1–SP3, in particular for P0:

Algorithm 3.1.
Input: M, the polyhedron; ω = (l,m, n) ∈ Z

3, the 1-
form; x, a critical point of ω with respect to M; πω,x, the
plane perpendicular to (l,m, n) and passing through x.

Output: c1,2, the two critical loops;2 h1,2, the homology
classes of c1,2 in M; H1,2, the homology classes of c1,2 in
T

3.

2Since numerically we can study only the 1-rational case, in T3

the saddles are always wedges of circles, i.e., all critical branches
close back to the critical point; according to whether these loops
are or are not homotopic to zero in T3, their R3 lift will be open
or closed.
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N1. Retrieve the intersection between M and πω,x.

N2. Check that there are exactly four critical branches
and follow them by periodicity; otherwise exit.

N3. If no other critical point is met along the path, so
that the four branches are arranged in a pair of crit-
ical loops, store the two loops in the variables c1,2;
otherwise exit.

N4. Evaluate the homology class of c1,2 in T
3 and in

M (this is actually done while executing step N2 to
speed up the computation time).

N5. If the saddle is half-open, i.e., if exactly one among
H1,2 is zero, then associate with ω the complemen-
tary h triple; otherwise exit.

The main outcome of the algorithm is of course the la-
bel associated with ω. The fact that this label is a triple
of integers is very important, since an integer evaluated
numerically with an error smaller than 0.5 becomes ac-
tually an exact measure.

We implemented this algorithm in a C++ library
named NTC.3 built over an Open Source C++ library
named VTK.4 The choice of the language comes from the
fact that VTK provides the basic geometric environment
and algorithms needed by the problem, mainly the capa-
bility of generating meshes for isosurfaces and evaluating
intersections between geometric objects. The inheritance
mechanism of the C++ language allows one to use trans-
parently all functions of a library; hence we used VTK as
a starting point and implemented in NTC the routines to
deal with periodicity and evaluate the homology classes.

No serious attempt to evaluate the error on such cal-
culations has been made to date, since no need for it has
arisen. Indirect evidence was used to check the reliability
of the results:

• the agreement of the largest zones with their an-
alytical boundary (Figure 9) obtained through the
independent Algorithm 3.2;

• the symmetry of the final picture with respect to the
diagonal (Figure 11), symmetry that was in no way
used in the numerical calculations;

• the agreement of the fractal picture with the plot of
the labels (Figure 15).

3Available at http://ntc.sf.net/
4Available at http://www.vtk.org/.

FIGURE 7. Numerical plot of the square [0, 1]2 of the SM
S(P0) = S(h) in the projective chart hz = 1 at a resolution
r = 102. The color of the islands goes from blue to red as
the norm of the label grows. In the picture are displayed the
106 islands with at least four points out of the total of 1741
islands found. The missing points that are possible to see
in the interior of some of the islands are due to a failure of
the numerical Algorithm 3.1, e.g., because of the presence of
saddle connections. The running time for the 104-step cycle
needed to retrieve these data takes about 1 h on a Pentium
≈ 1-GHz CPU.

The exploration of the SM was performed in the square
[0, 1]2 of the projective chart (ωx/ωz, ωy/ωz) by evaluat-
ing the label associated with every direction at the vertex
of a uniform grid of step size r, and this was repeated for
the values r = 102, 103, 104. Samplings with r = 102, 103

have been successfully performed as well for the previous
two functions [De Leo 04a], but the CPU time needed
to reach r = 104 in that case was way too long. It is
because of the rather small number of triangles needed
to describe P0 that the computation became feasible.

3.3 Numerical Results for r = 102

This resolution is the lowest that allows us to obtain a
hint of the structure of the fractal. About r sections
are needed to follow the critical branches for a generic
direction (m,n, r), m,n ∈ {1, . . . , r}, which takes a time
of 0.5 s on an ≈ 1-GHz CPU for the evaluation of a
single label and 104 × 0.5 s ≈ 1 h for sampling the 104

directions of the grid (Figure 7).
Even from this rough picture a further symmetry of

the picture is rather evident, namely that with respect
to the antidiagonal of the square. This symmetry does
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not come, like the others, from the tetrahedral group
Td; it is rather of a topological nature. The numerical
evidence is that if a 1-form (m,n, r) is labeled by L, then
its symmetric form (1 − n, 1 − m, r) is labeled by L +
(1, 1, 0), but no proof of this fact is known.

In order to verify the correctness of the algorithm,
we found “by hand” the analytical boundaries for the
largest zones and compared them with the numerical re-
sults (Figure 9). The following algorithm, aimed at the
cases similar to the cosine one, is a slight modification of
the original algorithm introduced and used by Dynnikov
in [Dynnikov 96]:

Algorithm 3.2.

A1. Fix a 1-form ω = (m,n, r) ∈ Z
3 inside some zone

(e.g., extracting it from the experiment, guessing it
from symmetry arguments, or simply by trial and
error).

A2. Retrieve the critical section of ω passing through one
of its critical points c and make sure that it is half
open; otherwise exit.

A3. Evaluate the homology class l of the closed critical
leaf C.

A4. Rotate ω around some direction until the cylinder of
which C is a base collapses and identify the critical
point c′ that is now connected to c through a saddle
connection.

A5. The equation 〈H, c − c′〉 = 0 contains one of the
sides of the island; follow it in one direction until
four critical points fall over the critical closed leaf.
This is the point at which a side and a new one meet;
repeat this step until the island boundaries close up
on themselves.

Since the genus is three, only two cylinders may ap-
pear, and they will be of opposite sign. The pairs of
critical points at the base of cylinders are locally con-
stant; in the square under investigation the pairings are
p1, p4 for the positive cylinder and p2, p3 for the negative
one, so that boundaries are always given by an equation
like 〈H, p1 − p4 + L〉 = 0. See Figures 5 and 6 for a
concrete example worked out in detail.

Finally, a picture of the whole fractal can be obtained
through the natural free action on R P2 of the tetrahedral
group Td, whose order is 24 (Figure 6(d)).

FIGURE 8. Analytical boundaries of the largest islands
found in Figure 7 obtained using Algorithm 3.2. All of their
boundaries are straight line segments, and the correspond-
ing label has been reported, when possible, inside the zone
itself.

FIGURE 9. Comparison between analytical (Figure 8) and
numerical (Figure 7) boundaries.

3.4 Numerical Results for r = 103

This is the highest resolution reached in [De Leo 04a]. In
this case, for each generic direction are needed about 103

sections to follow the critical branches, which takes a time
of about 2.5 s on an ≈ 1-GHz CPU for the evaluation of
a single label and therefore about 5×102×1 h ≈ 1 month
for sampling the 106 directions of the grid (Figure 11).

A time on the order of a month is of course rather
long, but thanks to the diffusion of the Linux OS, and
therefore of the possibility to build big Unix clusters in-
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FIGURE 10. Fractal image obtained by letting the tetra-
hedral group Td act on the square in Figure 7 and then
projecting on the disk through the stereographic map.

expensively using PCs rather than workstations, this is
still not too bad, since it is easy to lower by a factor of
10 the computation time just by dividing the cycle over
many PCs. In this way, the running time goes down to
just three days, which is a rather acceptable time.

We point out that the situation is radically different
in the smooth case. Indeed, in that case there is another
variable to consider, namely, the resolution of the mesh
of the surface, which must be increased together with
the grid resolution to avoid errors in the topology of the
curve. The plane sections giving the complete intersec-
tion between the surface and a 2-torus with homology
class (l,m, r), l,m ∈ [0, r], can be as close as 1/r, and
therefore, if the mesh is too rough, there is the risk that
the program will jump onto the wrong slice.

Concrete tests show that a mesh resolution of 30,
meaning that the mesh is produced by dividing the unit
cube with a 303 uniform grid, is enough for the r = 102

case, but it must be raised to at least 60 for the r = 103

case, increasing the time for a single label evaluation to
about 15 s, an order of magnitude greater than in the PL
case. This brings the time back to about 3 months for
the execution, which is indeed the order of the time spent
for the r = 103 calculations made for S[De Leo 04a].

From Figure 11 the symmetry with respect to the an-
tidiagonal is rather evident. Apart from this, the picture
looks qualitatively very similar to the pictures found in
the previous two cases at the same resolution.

FIGURE 11. Numerical plot of the square [0, 1]2 of the SM
S(P0) = S(h) in the projective chart hz = 1 at a resolution
r = 103. The color of the islands goes from green to red as
the norm of the label grows. In the picture are displayed
the 1625 islands with at least four points out of the total of
10 725 islands found. The missing points that are possible
to see in the interior of some of the islands are due to a
failure of the numerical Algorithm 3.1, e.g., because of the
presence of saddle connections. The running time for the
106-step cycle needed to retrieve these data takes about one
week on a Pentium 1-GHz CPU.

3.5 Numerical Results for r = 104

Increasing the resolution by another order of magnitude,
we increase by an order of magnitude the number of sec-
tions needed to follow a generic leaf, resulting in an-
other factor of 5 in the running time for a single eval-
uation of a 1-form label, which is now about 10 s, so
that the total running time on a 1-GHz CPU reaches
5 · 102 · 20 d = 104 d ≈ 30 years.

Such a long running time is rather intimidating and
suggests that there is no hope to go up by an order of
magnitude in resolution without changing some signifi-
cant algorithmic step. Nevertheless, this long time can be
once again brought down to something reasonable by run-
ning the code on 20 PCs and by restricting the numerical
analysis to the upper triangle of the square [0, .5]× [.5, 1]
(which reduces computational time by a further factor of
8). Thanks to all these measures, the running time goes
down by two orders of magnitude, reaching about three
months, which is indeed about the time that took us to
collect the r = 104 data.
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FIGURE 12. Box-counting evaluation of the Hausdorff di-
mension of S(P0) with the r = 104 data. Here Nn is the
number of squares of side 2n needed to cover the comple-
ment of S(P0); the angular coefficient of the linear fit pro-
vides the dimension estimate. The same evaluation made
with the r = 103 data gives a very accurate result, and also
restricting the fit by canceling a few points at the extremes
does not change the estimate by much.

Note that for the smooth cases this would not be
enough, since we must raise the mesh resolution to 102,
and the time for the single evaluation then goes up to
50 s; this, together with the fact that there is a further
factor of 2 due to the lack of symmetry with respect to
the antidiagonal, brings the total running time to about
3 years, definitely not realistically affordable.

In Figures 16–30, contained in the online appendix [De
Leo 06] and in the arXiv version of this paper [De Leo
05c], are shown the numerical results, from which it is
clear beyond any doubt that the SM has a fractal-like self-
repeating structure, even though no explicit construction
is known for it.

Numerical evaluations of the Hausdorff dimension dP0

of the fractal set, namely the complement of S(P0) in
R P2, have been performed using the box-counting tech-
nique (Figure 12) and a sort of “area distribution” tech-
nique (Figure 13).

The first, and most reliable, technique involves par-
titioning the square [0, 1]2 into 2n identical squares and
evaluating the number of squares needed to cover the
fractal. With the r = 103 data, n can get as large as
log2(103) � 10, and a linear fit gives an evaluation of
dP0 ≈ 1.93. The r = 104 data allow n to go up to 13,
representing deeper results on the Hausdorff dimension
of such fractals to date. Figure 12 shows that the scaling
law is linear to a high degree of accuracy, and a linear fit
gives again an estimate of dP0 ≈ 1.93, making us rather
confident in the accuracy of this numerical result.

The second technique involves counting the number of
zones whose size is between bn and bn+1, where b > 1.
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FIGURE 13. “Area distribution” evaluation of the Hausdorff
dimension of S(P0) with the r = 104 data. Here Nn is the
number of islands whose area is between 2−n and 2−n−1.
The estimate of the Hausdorff dimension is given by the
double of the angular coefficient of the linear fit and varies
by ±0.2 by restricting even by a little the number of points
on which the fit is made.

Computations with several small values, between 2 and
1, were performed, and all of them give a rough estimate
of dP0 ≈ 1.76, further than expected from the evaluation
given by box counting. The reason for this disagreement
is not clear to us. It did not manifest itself in the smooth
cases [De Leo 03], but it is not impossible that it may be
due simply to the fact that this evaluation stabilizes at
higher resolutions and therefore is at the current state of
things more or less unreliable (as simple numerical tests
testify).

Finally, the r = 104 data provide enough detail to test
numerically a conjecture by Dynnikov [Dynnikov 99] and
give graphical evidence of Theorem 2.28. The Dynnikov
conjecture claims that the areas of the islands satisfy a

ln(A (Dl))

ln( l )

y = 1 9.5 - 3x

||||

FIGURE 14. Logarithmic plot of the islands’ areas versus
the norm of the corresponding label. There is a very good
agreement between the numerical data and the Dynnikov
conjecture claiming that A(Dl) ≤ C/‖l‖3.
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relation A(Dl(M)) ≤ C/‖l‖3 for some positive real num-
ber C depending only on the polyhedron M; the numeri-
cal data suggest that the exponent 3 cannot be improved
any further (see Figure 14).

According to Theorem 2.28, the closure of the set of
labels of S(P0), seen as points of R P2, is equal to the
complement of the interior of the islands. At this resolu-
tion about 5 ·105 different labels are found, and their im-
age in R P2 (Figure 15) is one of the best indirect checks
of the correctness of the library NTC.

FIGURE 15. Plot of the labels of the 494 041 islands found
in the numerical analysis, at the resolution r = 104, of the
portion of the SM S(P0) contained in the triangle of vertices
(0, 1), (.5, 1), and (.5, .5) in the projective chart hz = 1.
According to Theorem 2.28, the closure of the set of labels
is equal to the complement of the interiors of the islands;
the striking closeness of the two pictures is one of the best
indirect tests of the correctness of the implementation of
Algorithm 3.1 in our C++ library NTC.

4. CONCLUSIONS

We have proved in this paper that the structure of folia-
tions induced on triply periodic embedded polyhedra by
constant 1-forms is identical to that induced on smooth
surfaces, and we believe that the same line of argument
can also be used to further generalize the theorems to
embedded piecewise smooth surfaces. This fact extends
to “Morse PL functions” the association of an SM; in
the most interesting cases, such SM have a fractal nature
(this condition is true for an open subset of all triply pe-
riodic PL functions, e.g., for all triply periodic functions
close enough to h).

Surfaces satisfying property SP1 (see Section 3) are
particularly rich, their SM being equal to the SM of any

function having them as a level set. We exploited this
fact by studying the case of the triply periodic surface
P0 obtained by extending a truncated octahedron in the
three coordinate directions. The simplicity of the trian-
gulation of the surface allowed us to improve by an order
of magnitude with respect to the results obtained in [De
Leo 04a] the resolution of the numerical analysis of the
fractal and, as a consequence, to perform several numer-
ical tests on conjectures and theorems.
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