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Let R be a complete discrete valuation ring with finite residue
field, and let rn be the probability that a random monic polyno-
mial over R of degree n factors over R into linear factors. We
study rn in detail. Among other things, we show that rn satisfies
an interesting recursion, make a conjecture on the asymptotic
behavior of rn as n goes to infinity, and prove the conjecture in
the case that the residue field has two elements.

1. INTRODUCTION

Let R be a complete discrete valuation ring with finite
residue field k of cardinality q. Since R is a compact topo-
logical group, it has a natural probability measure, and
by identifying monic polynomials of degree n over R with
n-tuples of elements of R, this gives a natural probability
measure on the set of monic polynomials of degree n with
coefficients in R. The subset consisting of those monic
polynomials of degree n that factor completely into linear
factors is closed and therefore measurable.

Define rn to be the probability that a random monic
polynomial f over R of degree n factors over R into linear
factors. The first four values of rn are

r1 = 1,

r2 = q/2(q + 1),

r3 = (q2 − q + 1)(q − 1)q3/6(q + 1)(q5 − 1),

r4 = h(q)(q − 1)4q6/24(q2 − 1)2(q5 − 1)(q9 − 1),

where h(q) = q8− 2q7 + q6 +2q5− q4 +2q3 + q2− 2q+1.
For convenience, we set r0 = 1.

As we will see, the values rn satisfy a remarkable re-
currence relation. To express this, it is convenient to
define

sn = q−(n2+n)/2rn.

For q = 2 the recurrence can be written

rn = s0sn + s1sn−1 + · · ·+ sn−1s1 + sns0 (1–1)
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(and it is easy to work out that this can be solved for rn
if n > 1). For general q the recursion can be expressed in
terms of the ordinary generating functions for rn and sn:

∑
n≥0

rnt
n =

( ∑
n≥0

snt
n
)q

. (1–2)

In particular, we note that rn depends only on the car-
dinality of the residue field.

Asher Auel [Auel 03], working independently, obtained
the same result.

Our further results are related to the asymptotic be-
havior of rn as n tends to infinity. Using a formula for
rn in terms of certain labeled trees, we are able to show
that rn decays exponentially in n2. More precisely, we
show that

logq rn = − n2

2(q − 1)
− 1

2
n logq n+O(n),

where the constant implicit in the O(n) depends on q.
The behavior of the O(n) term is interesting; we con-

jecture that it has the form Wq(logq n) · n+O(1), where
Wq is a continuous, periodic function of period 1 (and the
implied constant depends on q). In the special case q = 2
we are able to prove this conjecture by extending the ear-
lier analysis that used the labeled trees formulation of rn.
The graph of W2 appears as Figure 1.
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FIGURE 1. Graph of W2 over its period.

2. PROOF OF THE RECURSION

In this section we prove the recursion (1–2), which we
reformulate as the following theorem. For a sequence
d = (d0, d1, . . . , dq−1) of nonnegative integers, write |d| =
d0 + d1 + · · ·+ dq−1 for their sum.

Theorem 2.1. If n ≥ 0, then

rn =
∑
|d|=n

∏
0≤i≤q−1

q−(di+1
2 )rdi

. (2–1)

Write πR for the maximal ideal of R. For f ∈ R[x] a
monic polynomial of degree n, let f̄ denote its reduction
mod πR. Since the probability that f reduces to any
given monic degree-n polynomial ρ in k[x] is precisely
q−n, we have

rn =
∑

ρ

pr(f splits completely | f̄ = ρ) q−n.

A necessary condition for f to split completely in R[x] is
that its reduction split completely in k[x], so it is enough
to sum over those ρ that split completely in k[x].

Write ρ =
∏

α∈k(x−α)dα . Since the polynomials ρα =
(x − α)dα are pairwise relatively prime, Hensel’s lemma
yields the factorization f =

∏
α∈k fα, where fα in R[x]

reduces to ρα in k[x].
Theorem 2.1 now follows from the following lemma,

and the observation that
(
di+1

2

)
= di +

(
di

2

)
.

Lemma 2.2.

(i) pr(f splits completely | f̄ = ρ)
=

∏
α∈k pr(fα splits completely | fα = ρα).

(ii) pr(fα splits completely | fα = ρα) = q−(dα
2 )rdα

.

Proof: The first statement follows from Hensel’s lemma.
Since we could not find the particular version of Hensel’s
lemma that we need, we state and prove it below as
Lemma 2.3.

We prove the second statement for the case α = 0. Set
f = f0. We have f in R[x] monic with reduction xn in
k[x]. Assume for the moment that f = xn + c1x

n−1 +
· · ·+ cn does split completely, say as

f = (x− a1) · · · (x− an).

A root of f reduces to a root of f̄ , so that ai lies in
πR for each i, whence a necessary condition for f to
split completely is that ci lies in πiR for each i. The
probability that this condition holds is q−(n

2), the product
of q−i for 0 ≤ i ≤ n− 1. Set

f̃ = f(πx)/πn.

The necessary condition is met if and only if f̃ has
coefficients in R. Conditioned on its being met, f̃ is
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distributed like a random monic polynomial of degree n,
and the result follows because f splits completely if and
only if f̃ splits completely.

The proof of the second statement for general α follows
from the case α = 0 as follows. Let r in R be an element
whose image in k is equal to α.

Write Pn(R) for the set of monic polynomials f in R[x]
of degree n. Consider the map ψr from Pn(R) to itself
taking the polynomial f(x) to the polynomial f(x− r).

Set f1 = f − xn, so that deg(f1) < n. We calculate
that f(x− r) = f1(x− r)+ (x− r)n = (f1(x− r)+xn)+
(−xn + (x− r)n). Therefore, the map ψr can be written
as a composition of the map f �→ f1(x− r) + xn and the
map that adds −xn +(x−r)n. (The point here is to stay
within the space of monic degree-n polynomials.) The
former is seen to be upper-triangular by considering the
basis of monomials xi for 0 ≤ i ≤ n − 1, and the latter
is a translation, so each preserves measure and therefore
so does ψr.

Let g be a polynomial in Pn(k). Write Pg for the set
of polynomials f in Pn(R) whose reduction f̄ is g. As a
measurable subset of Pn(R), Pg inherits a topology and
a measure from Pn(R). We renormalize the measure so
that Pg has total measure 1. Part (1) of Lemma 2.2 now
follows from the following lemma:

Lemma 2.3. Let g and h in k[x] be relatively prime monic
polynomials of degree m and n, respectively. The multi-
plication map

Pg × Ph → Pgh

is a measure-preserving homeomorphism.

The usual version of Hensel’s lemma asserts only that
the multiplication map is a homeomorphism. The lemma
is an immediate consequence of the following, somewhat
more general result.

Lemma 2.4. Let A =
∏

1≤i ai and B =
∏

1≤i bi be count-
able products of finite sets. Normalize counting measure
so that each of ai and bi has total mass 1, for all i,
and give A and B the product measure. Suppose there
is a compatible system of bijections φn between the par-
tial products An =

∏
1≤i≤n ai and Bn =

∏
1≤i≤n bi; that

is, for each n ≥ 1, the map φn from An to Bn is bijec-
tive, and for m ≤ n, if y in An has x in Am as initial
string, then φn(y) has φm(x) as initial string. Then the
map φ = lim←−φn from A to B is a measure-preserving
bijection.

Proof: Certainly φ is bijective. Since φ takes basic open
sets to basic open sets of the same volume, it follows that
φ preserves measure.

Here is yet another equivalent formulation of the re-
cursion.

Corollary 2.5. For n ≥ 0, we have

(i)
∑

0≤j≤n

(n− (q + 1)j)rn−j
rj

q(j2+j)/2
= 0.

(ii) If n ≥ 2, we can solve for rn:

rn =
1

n(−1 + q1−n(n+1)/2)

×
∑

1≤j≤n−1

(n− (q + 1)j)rn−jrjq
−(j2+j)/2.

In particular, rn is a rational function of q.

The corollary is proved by logarithmic differentiation.
The basic method is due to Euler [Euler 48].

Proof: Let F =
∑

n≥0 rnt
n and G =

∑
n≥0 snt

n. Then
from the functional equation (1–2), we have F = Gq.

Take logarithmic derivatives to get

F ′

F
= q

G′

G
.

Cross-multiply to get

F ′Gt = qFG′t,

and equate coefficients of tn to get∑
0≤j≤n−1

(n− j) rn−jsj =
∑

1≤j≤n

q rn−jjsj .

There is no harm in including the term j = n in the
sum on the left and the term j = 0 in the sum on the
right, since these terms are zero. Now subtract. This
proves the first statement of Corollary 2.5. The second
statement follows immediately from the first.

3. VARIANTS

We consider a version of our question over finite fields and
a version for p-adic polynomials that are not necessarily
monic.

The first variant we consider is the probability r̄n that
a random monic, degree-n polynomial over a finite field
k splits completely. We state some properties that relate
rn and r̄n. Note that r̄n and rn depend only on q and n.
In fact, we will use the third property in Section 4. Our
convention is that r0 = r̄0 = 1.



24 Experimental Mathematics, Vol. 15 (2006), No. 1

1. We have rn ≤ r̄n. Indeed, if a monic polynomial f
in R[x] splits completely, then f̄ splits completely in
k[x].

2. We have
∑

n≥0 r̄nt
n = (1 − t/q)−q. Indeed, by the

result sometimes called the stars and bars theorem,
the number of monic degree-n polynomials that split
completely is qnr̄n =

(
n+q−1

q−1

)
. Now use the binomial

expansion (1− t)−q =
∑

n≥0

(−q
n

)
(−t)n, and the fact

that
(−q

n

)
= (−1)n

(
q−1+n

n

)
.

3. We have limq→∞ rn = 1/n! = limq→∞ r̄n. The sec-
ond equality follows from Property 2. For f monic
in R[x], the probability that f̄ has a repeated root
is at most 1/q. (Proof: The set S of monic poly-
nomials f with constant and linear term in πR has
measure 1/q2. Hence, if we let ψr be as in the proof
of Lemma 2.2, the union of the sets ψr(S) over a set
of lifts r of the elements of k has measure at most
1/q.) But this tends to zero as q →∞. This proves
the first equality.

The second variant that we consider is for nonmonic
p-adic polynomials. The natural probability measure on
R gives a probability measure on Rn+1, and this set can
be identified with the set of all polynomials of degree n
with coefficients in R.

Define rnm
n to be the probability that a random poly-

nomial f over R of degree n factors over R into linear
factors.

(By definition, f factors over R into linear factors if it
can be written in the form f(x) = (b1x−a1) · · · (bnx−an),
with ai, bi ∈ R.)

The first four values of rnm
n are

rnm
1 = 1,

rnm
2 = 1/2,

rnm
3 = (q2 + 1)2(q − 1)/6(q5 − 1),

rnm
4 = hnm(q − 1)2/24(q5 − 1)(q9 − 1),

where hnm = q12 − q11 + 4q10 + 3q8 + 4q7 − q6 + 4q5 +
3q4 + 4q2 − q + 1. By convention, we set rnm

0 = 1.
The values rnm

n also satisfy a recurrence that can be
expressed in terms of the generating function for rnm

n and
the generating function for sn:

∑
n≥0

(1− q−n−1)rnm
n tn =

q − 1
q

( ∑
n≥0

snt
n
)q+1

. (3–1)

The proof is quite similar to the proof of the recurrence
for rn. We merely sketch the details and leave a complete
proof to the reader.

By conditioning on the reduction mod πR of f , we see
that

pr(f splits completely)

=
∑

ρ

pr(f splits completely | f̄ = ρ)pr(f̄ = ρ),

where the sum is over polynomials ρ ∈ k[x] of degree ≤ n.
First we consider the term with ρ = 0. It is straight-

forward that the probability that f̄ = 0 (or any given
polynomial of degree ≤ n) is q−n−1. If f̄ = 0, then f/π

is distributed randomly and splits if and only if f does.
Hence, the contribution from the ρ = 0 term is q−n−1rnm

n .
Otherwise, the degree of ρ is n − j for some 0 ≤ j ≤

n. The probability that deg f̄ = n − j is equal to (q −
1)/qj+1. By Hensel’s lemma, f has a factor f inf which
has the same degree as ρ, has reduction ρ modulo πR,
and yields a quotient finf := f/f inf which has constant
term 1. Then finf has degree n− j and the quotient finf

has degree no more than j and reduction finf = 1.
By an analogue of Lemma 2.3, we have

pr(f splits completely)

= pr(f inf splits completely)pr(finf splits completely).

The first term on the right is equal to rn−j . By replacing
finf with xjfinf(1/x), it can be shown that the second
term on the right is equal to the probability that f splits
completely given that f is monic of degree j and f̄ = xj ,
which equals qjsj by Lemma 2.2 (ii).

Thus, we have

rnm
n =

∑
0≤j≤n

q − 1
q

rn−jsj +
rnm
n

qn+1
. (3–2)

This identity, for all n, is tantamount to the single
power series identity

∑
n≥0

(1− q−n−1)rnm
n tn =

q − 1
q

( ∑
n≥0

rnt
n
)( ∑

n≥0

snt
n
)
.

From this and the functional equation (1–2), we get the
desired recursion (3–1). We see, in particular, that rnm

n

is a rational function of q for each n.

4. GENERATING FUNCTIONS

In this section we regard q as a variable, and let (rn) =
(rn(q)) be the sequence of rational functions defined by
r0 = r1 = 1, and∑

n≥0

rnt
n =

( ∑
n≥0

rn

q(
n+1

2 )
tn

)q

(4–1)
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if n ≥ 2. Thus, if we plug in a prime power for q we
recover the rn’s with their previous meaning.

We note some properties of these rational functions.

Lemma 4.1.

(i) The degree of the numerator of rn is the degree of
the denominator, and limq→∞ rn(q) = 1/n! .

(ii) rn vanishes at 0 to order
(
n
2

)
.

(iii) The only poles of rn are at roots of unity.

(iv) rn(q) = rn(1/q)q(
n
2).

Proof of Properties (i)–(iv): Property (i) follows from
Property 3 in Section 3.

To prove (iv), let Rn = Rn(q) = q(
n
2)rn(1/q). Replace

q by 1/q in the recursion (4–1) and raise to the qth power
to get ( ∑

n≥0

Rnq
−(n

2)tn
)q

=
∑
n≥0

Rnq
ntn.

Replacing t by t/q gives (4–1), with rn replaced by Rn.
Since rn and Rn satisfy the same recursion, and have the
same values for n = 0 and n = 1, it follows that rn = Rn

for all n, as desired.
To prove (iii), note that the formula in Corollary

2.5 (ii) can be written, after some juggling, as

n
(
1− q(n+1

2 )−1
)
rn

= q(
n+1

2 )−1
∑

0<j<n

(n− (q + 1)j)rn−jrjq
−(j+1

2 ).

An easy induction argument then shows that the only
poles of the rational functions rn are at roots of unity, as
desired.

Property (ii) is an immediate consequence of (i) and
(iv). This finishes the proof of Properties (i)–(iv).

5. ASYMPTOTICS

Let q ≥ 2 be an integer. In Theorem 5.1 of this section
we give the first two terms in the asymptotic expansion of
logq rn. (The first term is quadratic in n and the second
is of order n logq n.) In Section 6, we make a conjecture
for the third term. Theorem 6.2 proves this conjecture for
q = 2; in this case we have a remarkably precise result:

log2 rn = −n
2

2
− n

2
log2 n+W2(log2 n)n+O(1), (5–1)

where W2(x) is continuous and periodic of period 1, and
has only small-magnitude fluctuations.

After we discovered this, we found that this remark-
able sort of oscillatory behavior has been observed in
other contexts, for example by Li and Pomerance [Li
and Pomerance 01], who studied primitive roots; Gor-
don, Schilling, and Waterman, who studied long head
runs [Gordon et al. 86]; and Kirschenhofer and Prodinger
[Kirschenhofer and Prodinger 96], who studied the num-
ber of winners in a geometrically distributed sample. In
our case, we have no closed-form expression for W2, but
its graph is given in Figure 1.

The proofs of Theorems 5.1 and 6.2 rely on a formula
for rn in terms of certain labeled trees.

Theorem 5.1. If q ≥ 2 is an integer, then

logq rn = − n2

2(q − 1)
− 1

2
n logq n+O(n), (5–2)

for all n ≥ 1, where the implied constant depends on q.

Proof: The proof of Theorem 5.1 is as follows. In the
proof of the exact formula for rn, we looked at a certain
infinite tree whose branching was given by the factor-
ization of a polynomial mod the maximal ideal πR of
R, mod π2R, etc. In a modification of this method, we
use finite trees instead. Lemma 5.6 expresses rn/q(

n+1
2 )

as the sum of a certain function H over labeled q-trees
(defined below) with n leaves. By Lemma 5.3, we will
see that for any fixed q, the logarithm of the number of
labeled q-trees is O(n). We will therefore have

γn ≤ −
(
n+ 1

2

)
+ logq rn ≤ γn +O(n),

where γn is the maximum value of logq H.
In Lemmas 5.10 and 5.12 we will calculate γn, as fol-

lows. In Lemma 5.12 we calculate H evaluated at a par-
ticular q-tree that we call the well-balanced q-tree. In
Lemma 5.10 we show that the function H is maximized
at the well-balanced q-tree. This will complete the proof
of the theorem.

5.1 q-Trees

A rooted tree is a connected acyclic graph with a dis-
tinguished vertex (the root). We can direct the edges
of a rooted tree in a unique way, by directing them away
from the root. The root has in-degree 0; all other vertices
have in-degree 1. The edges emanating from a vertex go
to distinct vertices, called the children of v. A vertex
with no children is a leaf vertex.
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A q-tree is a rooted tree in which the number of out-
edges from each vertex is at most q, and is not 1 (i.e.,
there is branching at each vertex that is not a leaf).

For v a vertex of the q-tree T , we write Tv for the full
subtree whose vertices are v and all its descendants. This
is a q-tree.

A labeled q-tree is a q-tree together with a labeling of
its edges with elements of the set S = {0, 1, . . . , q − 1}
so that the out-edges emanating from each vertex have
distinct labels.

Example 5.2. We list the q-trees with at most three
leaves.

(i) The tree τ1 with one vertex and no edges is the
unique q-tree with one leaf. In all other q-trees, a
vertex is a leaf if and only if it has total degree 1.

(ii) The tree τ2 with three vertices, a root with two leaf
children, is the unique q-tree with two leaves. There
are

(
q
2

)
ways of labeling this q-tree.

(iii) There are two q-trees with three leaves (one if q = 2).
One, call it τ3a, has a root with three leaf children (if
q > 2). The other, τ3b, has a root with two children v
and w, with v a leaf and Tw = τ2. There are

(
q
3

)
ways

of labeling τ3a, and q(q − 1)
(
q
2

)
ways of labeling τ3b.

Lemma 5.3. The number of labeled q-trees with l leaves
is ≤ (2q + 1)5l−3.

Proof. Let Σ be the set of 2q+1 symbols: the parentheses
(i and )i for 0 ≤ i ≤ q − 1, plus a dot. We construct for
every labeled q-tree a distinct string of at most 5l − 4 of
these symbols, thus constructing an injective map from
the set of labeled q-trees with l leaves to ∪0≤i≤5l−4Σi.

We proceed by induction on l. For l = 1, the tree τ1
corresponds to the dot.

Assume l ≥ 2, and let T be a labeled q-tree with l

leaves. Let the root of T have j children. For each child
v of the root of T , bracket the sequence corresponding to
the subtree Tv with the symbols (i and )i, where i ∈ S is
the label of the edge from the root to the vertex v. By
the induction hypothesis, this uses at most 5l−4j+2j =
5l − 2j ≤ 5l − 4 symbols.

The number of labeled q-trees with l leaves is therefore
not more than∑
0≤i≤5l−4

(2q+1)i = (2q)−1((2q+1)5l−3−1) ≤ (2q+1)5l−3.

5.2 A q-Tree Recursion

Group the rn terms in (2–1) to get

rn =
q

q(
n+1

2 )
rn +

∑′
|b|=n

∏
0≤i≤q−1

rbi

q(
bi+1

2 )
,

where
∑′ is the sum over b such that bi > 0 for at

least two values of i. Rewriting this in terms of sn =
q−(n+1

2 )rn, we have

q(
n+1

2 )sn = qsn +
∑′

|b|=n

∏
0≤i≤q−1

sbi
.

For n ≥ 2, set

βn = 1/(q(
n+1

2 ) − q). (5–3)

Set β1 = 1/q. We have proved the following.

Lemma 5.4. Assume n ≥ 2. Then

sn = βn

∑′
|b|=n

∏
0≤i≤q−1

sbi
. (5–4)

Remark 5.5. We can decompose a q-tree into its root,
plus a subtree Tv for each child v of the root of T . This
decomposition underlies Lemma 5.3, and will allow us to
interpret Lemma 5.4 as a recursion on labeled q-trees.

Write 	(v) for the number of leaves of the tree Tv. As
an easy application of the decomposition in Remark 5.5,
we have the following. Let T be a q-tree with more than
one vertex. Then the root of T is not a leaf, and the
number of leaves of T equals

∑
	(v), where the sum is

over the set of children v of the root of the tree T .
We can now interpret the recursion for sn in terms of

labeled q-trees.

Lemma 5.6. We have

sn =
∑
T

∏
v∈T

β�(v),

where the sum is over labeled q-trees T with n leaves, and
the product is over all vertices v of the tree T .

Proof: For n = 1, this follows by our choice of β1. The
general case follows by Remark 5.5 and Lemma 5.4.

We shall write H(T ) for
∏

v∈T β�(v).
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5.3 The Well-Balanced q-Tree

Lemma 5.7. We have

(i) logq βn = −(
n+1

2

)
+ o(1) as n→∞.

(ii) The sequence (βn/βn−1)∞n=2 is monotone decreasing.

Proof: Part (i) is clear since βnq
(n+1

2 ) tends to 1 as n→
∞.

In order to prove (ii) it suffices to show that 1/β2
n ≤

1/(βn−1βn+1) for all n ≥ 2.
First consider the case n = 2. We have 1/β2

2 = (q3 −
q)2 ≤ (q3− q)(q3 + q) = q6− q2 ≤ q(q6− q), and this last
quantity is equal to 1/β1β3.

Next suppose n ≥ 3. Then 1/β2
n = (q(

n+1
2 ) − q)2, and

we have,

(q(
n+1

2 ) − q)2 ≤ (q(
n+1

2 ) − q)(q(n+1
2 ) + q)

= qn2+n − q2

≤ (q(
n
2)−1 + q)(q(

n+2
2 ) − q).

Call this product AB. The last inequality follows since(
n
2

)− 1 is less than
(
n+2

2

)
and their sum is n2 + n.

Since 2 ≤ q, we have 2 ≤ q(q − 1), which implies that
2q ≤ qj(q − 1) for any j ≥ 2. Rearranging terms gives
qj + q ≤ qj+1 − q, which implies (taking j =

(
n
2

) − 1 ≥(
3
2

) − 1 = 2) that A ≤ 1/βn−1. Since B = 1/βn+1, the
lemma is proved.

Let n ≥ 1 be an integer. We are interested in q-tuples
of nonnegative integers that sum to n, and such that any
two entries differ by at most one. We remark that such a
q-tuple i exists: write n = qx+y with 0 ≤ y ≤ q (we allow
either y = 0 or y = q); now take i1 = · · · = iy = x + 1
and iy+1 = · · · = iq = x. Moreover, if such a q-tuple
contained a value less than x (respectively larger than
x+1), all values would be at most x (respectively at least
x+1), and the sum would be too small (respectively too
large). Thus all values are x or x+ 1, and the number of
each must be q− y (respectively y). Hence the q-tuple is
unique up to order.

Lemma 5.8. Let n ≥ 1 be an integer. There is a unique
q-tree T = T (n) with n leaves such that for every vertex
v of T :

(i) If 	(v) < q then all children of v are leaves.

(ii) If 	(v) ≥ q then v has q children and, for any two
children w and w′ of v, 	(w) and 	(w′) differ by at
most 1.

Proof: If n = 1, then T is the unique q-tree with one
(leaf) vertex. If 1 < n < q, then T is the unique q-tree
with n+1 vertices that consists of a root with n children
all of which are leaves.

For n ≥ q, we define T = T (n) by induction on n.
Write n = qx + y with 0 ≤ y ≤ q − 1 as in the remarks
preceding this lemma. Applying property (ii) above at
the root of T , we see that if T exists, its root must have
children v1, . . . , vq such that 	(v1) = · · · = 	(vy) = x+ 1
and 	(vy+1) = · · · = 	(vq) = x. It now follows from the
induction hypothesis that each Tvi

must equal T (	(vi)).
This gives a unique candidate for T , namely the q-tree
whose root has precisely q children, and such that Tw =
T (x+ 1) for y of these children w and Tw = T (x) for the
remaining q − y children w. It is easy to see that this
does indeed satisfy Properties (i) and (ii).

We call a q-tree well-balanced if it satisfies the two
conditions of the lemma. For T the well-balanced q-tree
with n ≥ 1 leaves, write νn =

∏
v∈T β�(v). Set ν0 = 1.

Lemma 5.9.

(i) ν1 = 1/q.

(ii) If n ≥ 2 and we write n = qx+ y, 0 ≤ y ≤ q, then

νn = βnν
q−y
x νy

x+1.

(iii) The sequence (νi/νi−1)∞i=1 is monotone decreasing.

Proof: (i) is obvious, and (ii) follows immediately from
the defining properties of the well-balanced q-tree and the
remarks preceding Lemma 5.8. We now prove that for
all n, the sequence (νi/νi−1)n

i=1 is monotone decreasing;
this will prove (iii). We proceed by induction on n. If
n ≤ 3, the result follows from Example 5.2, so assume
that n ≥ 4. We need to show that νn−1/νn−2 ≥ νn/νn−1.

For any 2 ≤ m ≤ n − 1, write m = qx + y with
0 ≤ y ≤ q− 1 (note that we do not allow y = q). By (ii),
νm = βmν

q−y
x νy

x+1.
Next we calculate νm+1. We have m+1 = qx+(y+1),

with y + 1 ≤ q, so (ii) gives νm+1 = βm+1ν
q−y−1
x νy+1

x+1 ,

whence νm+1/νm = βm+1
βm

νx+1
νx

.

We apply this to m = n − 2 and m = n − 1. The
desired result now follows from Lemma 5.7(ii), after pos-
sibly using the induction hypothesis.

If n > 0, let γn be the largest tree contributionH(T ) =∏
v∈T β�(v) among q-trees T with n leaves. Set γ0 = 1.

Lemma 5.10. For all n ≥ 0, γn = νn.
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Proof: We proceed by induction on n. For n = 0 and
n = 1, the result is obvious.

Assume n > 1. The contribution from a tree with n

leaves is at most βnγi1 · · · γiq
, where i1, . . . , iq are non-

negative integers that sum to n, at least two of which
are positive. Since at least two iz’s are positive, we
have i1, . . . , iq ≤ n − 1, so by the induction hypothesis,
γiz

= νiz
for all z. It therefore follows that the contribu-

tion is no more than

βnνi1 · · · νiq
. (5–5)

Now by Lemma 5.9(iii),

νi−1νj ≤ νiνj−1 if 1 ≤ i ≤ j. (5–6)

Let n = qx + y with 0 ≤ y ≤ q. It follows from the
inequality (5–6) that the quantity (5–5) is maximized
when |iz − iz′ | ≤ 1 for all 1 ≤ z, z′ ≤ q, when, by the
remarks preceding Lemma 5.8, it equals βnν

q−y
x νy

x+1. By
Lemma 5.9(ii), this equals νn, so we are done.

Lemma 5.11. Let T be the well-balanced q-tree with n

leaves, let k ≥ 0, and let n = qkx+ y, 0 ≤ y < qk. Then:

(i) If n < qk−1, there are no vertices at distance k from
the root of T .

(ii) If qk−1 ≤ n < 2qk−1, there are 2(n − qk−1) vertices
at distance k from the root of T , each of which is a
leaf.

(iii) If 2qk−1 ≤ n < qk, there are n vertices at distance k
from the root of T , each of which is a leaf.

(iv) If n ≥ qk, there are qk vertices v′ at distance k from
the root of T , y with 	(v′) = x + 1 and qk − y with
	(v′) = x.

Proof: We prove the lemma by induction on k. If k = 0,
these results are clear. Otherwise, we proceed as follows:
To prove the first claim, suppose that n < qk−1. Then
by the induction hypothesis, all the vertices at distance
k − 1 from the root of T are leaves, and therefore there
are no vertices at distance k from the root, as desired.

If qk−1 ≤ n < 2qk−1, then by the induction hypothe-
sis, there are qk−1 vertices v′ at distance k − 1 from the
root, 2qk−1−n of which are leaves and n−qk−1 of which
satisfy 	(v′) = 2, i.e., have 2 children, both leaves; this
gives a total of 2(n − qk−1) vertices at distance k from
the root, all leaves, which is the second claim.

If 2qk−1 ≤ n < qk, then write n = qk−1x′ + y′, 2 ≤
x′ ≤ q − 1, 0 ≤ y′ < qk−1. By the induction hypothesis,

there are qk−1 vertices v′ at distance k−1 from the root,
y′ of which satisfy 	(v′) = x′ + 1, and qk−1 − y′ of which
satisfy 	(v′) = x′. By the properties of the well-balanced
q-tree, the vertices v′ for which 	(v′) = x′ must have x′

children, all leaves. Similarly, the vertices v′ for which
	(v′) = x′ + 1 must have x′ + 1 children, all leaves. This
gives n vertices at distance k from the root, all leaves.
This proves the third claim.

Finally, if n ≥ qk, write y = y0q
k−1 + y1, 0 ≤ y0 < q,

0 ≤ y1 < qk−1. We then have n = qk−1(qx + y0) + y1.
By the induction hypothesis, therefore, there are qk−1

vertices v′ at distance k − 1 from the root, qk−1 − y1 of
which satisfy 	(v′) = qx+ y0. Since x ≥ 1, we have qx+
y0 ≥ q, so each of these vertices will, by the properties
of the well-balanced q-tree, have y0 children v′′ satisfying
	(v′′) = x + 1 and q − y0 children v′′ satisfying 	(v′′) =
x. Similarly, y1 of the vertices at distance k − 1 from
the root will satisfy 	(v′) = qx + y0 + 1 and will have
y0 + 1 children v′′ satisfying 	(v′′) = x+ 1 and q− y0− 1
children v′′ satisfying 	(v′′) = x. This gives a total of
y0(qk−1 − y1) + (y0 + 1)y1 = qk−1y0 + y1 = y vertices v′′

at distance k from the root with 	(v′′) = x+ 1 and (q −
y0)(qk−1−y1)+(q−y0−1)y1 = (q−y0)qk−1−y1 = qk−y
vertices v′′ at distance k from the root with 	(v′′) = x,
as desired. This proves the final claim.

5.4 The Largest Tree Contribution

We wish to estimate the contribution from the well-
balanced q-tree. By the previous subsection, the well-
balanced q-tree gives the largest contribution to the sum
sn =

∑ ∏
v∈T β�(v).

The proof of Theorem 5.1 will follow from the following
lemma.

Lemma 5.12. Let T be the well-balanced q-tree. Set νn =∏
v∈T β�(v). Then

logq νn = − n2

2(1− q−1)
− n logq n

2
+O(n). (5–7)

Proof: We first treat the contribution η to νn from ver-
tices at distance more than logq n from the root. By
Lemma 5.11 (i)–(iii), there are O(n) such vertices, and
each contributes a factor of β1 = 1/q to νn =

∏
v β�(v).

Thus logq η = O(n).
Let k be an integer such that 1 ≤ qk ≤ n. Write ωk

for the contribution to νn from the vertices at distance k
from the root.
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Write n = qkx + y, with 0 ≤ y ≤ qk − 1. By
Lemma 5.11 (iv), we have ωk = βqk−y

x βy
x+1, so that,

logq ωk = (qk − y) logq βx + y logq βx+1

= −(qk − y)
(
x+ 1

2

)
− y

(
x+ 2

2

)
+O(qk)

= A+O(qk), say,

by Lemma 5.7 (i). Next we calculate

A = −x+ 1
2

((qk − y)x+ y(x+ 2))

= −x+ 1
2

(n+ y)

= −1
2

(
n+ y +

n− y
qk

(n+ y)
)

= −1
2

(
n2

qk
+ n

)
+O(qk),

since y = O(qk). Now sum over k such that 1 ≤ qk ≤ n.
Note that

∑
k q

k is O(n). Finally, we complete the proof
of the lemma by noting that

logq νn =
∑

1≤qk≤n

logq ωk + logq η (5–8)

= − n2

2(1− q−1)
− n logq n

2
+O(n).

Theorem 5.1 is now proved.

6. THE THIRD TERM

Let q ≥ 2 be an integer. It seems natural to us to make
the following conjecture concerning the third term in the
asymptotic expansion of logq rn.

Conjecture 6.1. There is a continuous function Wq with
period 1 such that

logq rn = − n2

2(q − 1)
− 1

2
n logq n+Wq(logq n)n+O(1)

for all n ≥ 1, where the implied constant depends on q.

If q = 2 then we are able to prove this.

Theorem 6.2. Conjecture 6.1 is true for q = 2.

We can rewrite Lemma 5.9 (ii) as

logq νn = logq βn + (q − y) logq νx + y logq νx+1, (6–1)

where n ≥ 2, n = qx+ y, 0 ≤ y ≤ q.

Empirically, we have observed that a similar recursion
appears to hold for logq sn. This is because the main
contribution in (5–4) comes when all the bi’s differ by at
most 1. For q = 2, we can prove this.

Lemma 6.3. If q = 2 and n ≥ 2, then sn+1sn−1 ≤ 1
2s

2
n.

Proof: Set

Rn =
sn+1sn−1

s2n
for n ≥ 2. (6–2)

We have s1 = 1
2 , and taking q = 2 in (5–4), we get,

for n ≥ 2,

sn = βn(s1sn−1 + s2sn−2 + · · ·+ sn−1s1). (6–3)

Here, since q = 2, we have βn = 1/
(
2(n+1

2 ) − 2
)
.

We see from this by direct calculation that to three
decimal places, R2 = 0.194, R3 = 0.217, R4 = 0.216, and
R5 = 0.230. We see that Rn ≤ 1

2 for 2 ≤ n ≤ 5. We will
prove by induction on n that Rn ≤ 1

2 for all n ≥ 6. It
will be convenient to treat the cases of even and odd n

separately.
Let n = 2m, so that m ≥ 3. We see that

Am :=
s1s2m−1 + · · ·+ s2m−1s1

s2m
≥ 1 + 2Rm (6–4)

by taking only the middle three terms.
On the other hand, if 2 ≤ k ≤ m,

Bk : =
s1s2k + · · ·+ s2ks1

sksk+1
(6–5)

= 2 + 2RkRk+1 + 2Rk−1R
2
kR

2
k+1Rk+2 + · · ·

+ 2R2R
2
3 · · ·Rk−1

k Rk−1
k+1 · · ·R2

2k−2R2k−1

≤ 2 + 2 ·
(

1
2

)2

+ 2 ·
(

1
2

)6

+ · · · ≤ 2.6,

where the first inequality is by the induction hypothesis,
and the second inequality is a calculation.

By definition, Rn = R2m = s2m+1s2m−1/s
2
2m. By the

recursion for s, we have

R2m = ξ2mRm
BmBm−1

A2
m

, (6–6)

where it is convenient to define ξk = βk+1βk−1/βk
2.

Lemma 6.4. If k ≥ 6, then ξk ≤ 0.5001.

Proof: By definition,

ξk =
βk+1βk−1

β2
k

=
(2(k2+k)/2 − 2)2

(2(k2+3k+2)/2 − 2)(2(k2−k)/2 − 2)
.
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Divide numerator and denominator by 2k2+k+1. The new
numerator is less than 1

2 . The new denominator is at
least 1− 2 · 2−(k(k−1)−2)/2 ≥ 1− 2 · 2−14. Therefore, ξk ≤
1
2 (1− 2−13)−1 ≤ 0.5001.

Using the inequalities from Lemma 6.4, (6–4), and
(6–5) in (6–6), we get

R2m ≤ 0.5001 · (2.6)2 · Rm

(1 + 2Rm)2
.

However, by the induction hypothesis, 0 ≤ Rm ≤ 1
2 ,

and since the function x/(1+2x)2 is increasing on [0, 1
2 ],

Rm/(1+2Rm)2 ≤ 1
8 . Since 0.5001 ·(2.6)2 · 18 ≤ 0.423 ≤ 1

2 ,
R2m ≤ 1

2 , as desired.
The case of n odd is slightly more difficult. Let n =

2m+ 1, where again m ≥ 3. We have

Bm =
s1s2m + · · ·+ s2ms1

smsm+1
≥ 2 + 2RmRm+1 (6–7)

by taking only the middle four terms.
On the other hand, if 2 ≤ k ≤ m+ 1,

Ak =
s1s2k−1 + · · ·+ s2k−1s1

s2k
(6–8)

= 1 + 2Rk + 2Rk−1R
2
kRk+1 + · · ·

+ 2R2 · · ·Rk−1
k · · ·R2k−2

≤ b+ 2Rk,

where b = 1 + 2
∑

i≥2 2−i2 , and we have used the induc-
tion hypothesis again. By a calculation, b ≤ 1.13.

Combining the recursion for s with the inequalities
(6–7) and (6–8) yields

R2m+1 (6–9)

= ξ2m+1
AmAm+1

B2
m

≤ 1
4
ξ2m+1

(2Rm + b)(2Rm+1 + b)
1 + 2RmRm+1

=
1
4
ξ2m+1

×
(
b2 +

2b(Rm +Rm+1) + (4− 2b2)RmRm+1

1 + 2RmRm+1

)
.

Clearly, Rm+Rm+1
1+2RmRm+1

≤ Rm +Rm+1 ≤ 1, by the induction

hypothesis. Also, RmRm+1
1+2RmRm+1

≤ 1
6 . (Indeed, the function

g(x) = x
1+2x is increasing on the interval [0, 1

4 ], so its
maximum value is g( 1

4 ) = 1
6 .) These remarks, together

with Lemma 6.4, (6–9), and the upper bound on b, imply

R2m+1 ≤ 0.25 · 0.5001 ·
(
b2 + 2b+

4− 2b2

6

)

≤ 0.473 ≤ 1
2
.

This concludes the proof of the lemma.

Theorem 6.5. Suppose that q = 2. Then if n ≥ 2, n =
qx+ y, and 0 ≤ y ≤ q, we have

1
sq−y

x sy
x+1

∑
|b|=n

′ ∏
0≤i≤q−1

sbi
≤ 3. (6–10)

Proof: This is obvious if n is 2 or 3. Otherwise, if n = 2m
is even, then by (6–8) and Lemma 6.3,∑

j+k=n, j, k>0

sjsk = Ams
2
m ≤ (1.13 + 2Rm)s2m ≤ 3s2m.

If n = 2m+ 1 is odd, then by (6–5),∑
j+k=n, j, k>0

sjsk = Bmsmsm+1 ≤ 2.6smsm+1.

This completes the proof.

We have proved the case q = 2 of the following con-
jecture.

Conjecture 6.6. If q ≥ 2 is an integer, then

logq sn = logq βn + (q − y) logq sx + y logq sx+1 +O(1)

where n ≥ 2, n = qx+ y, 0 ≤ y ≤ q.

The next section is devoted to the proof of the follow-
ing lemma:

Lemma 6.7. For each integer q ≥ 2, Conjecture 6.6 im-
plies Conjecture 6.1.

Since we have just seen that Conjecture 6.6 is true for
q = 2, it will follow that Conjecture 6.1 is also true for
q = 2, completing the proof of Theorem 6.2.

7. A RECURSION

Lemma 7.1. Fix q and some constant C̄, and for nonneg-
ative integers n, set

wn =

{
− n2

2(1−q−1) − 1
2n logq n, if n > 0,

0, if n = 0.
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Then there is some constant C ′ such that if a1, . . . , aq

satisfy a1 + · · · + aq = n ≥ 1, and for i = 1, . . . , q, we
have |ai − n/q| < C̄, then

|wn − logq βn − (wa1 + · · ·+ waq
)| < C ′. (7–1)

Proof: Write ai = n/q + εi. It will suffice to prove (7–1)
for large n. Take n large enough so that |εi| < C̄ < n/2q.
Now

wai
= − (n/q + εi)

2

2 (1− q−1)
− 1

2

(
n

q
+ εi

)
logq

(
n

q
+ εi

)

= − n2

2 (q2 − q) − εi
n/q

1− q−1
− ε2i

2 (1− q−1)

− 1
2

(
n

q
+ εi

)
logq

n

q

− 1
2

(
n

q
+ εi

)
logq

(
1 +

εi
n/q

)
.

Summing over i, we get

∑
1≤i≤q

wai
= − n2

2(q − 1)
− 1

2
n(−1 + logq n) (7–2)

−
∑

1≤i≤q

ε2i
2(1− q−1)

+
1
2

(
n

q
+ εi

)
logq

(
1 +

εi
n/q

)
.

By looking at the power series for log(1+x), we find that
| logq(1+χ)| ≤ 4|χ|, if |χ| < 1

2 . By our assumption on n,
|εi|/(n/q) < 1

2 , so | logq(1 + εi/(n/q))| ≤ 4|εi|/(n/q). It
follows that the absolute value of the sum on the right-
hand side of (7–2) is bounded, say by C ′′, so∣∣∣∣− n2

2(q − 1)
+

1
2
n− 1

2
n logq n− (wa1 + · · ·+ waq

)
∣∣∣∣ ≤ C ′′.

The result now follows from the definition of wn and
Lemma 5.7 (i).

If we assume that Conjecture 6.6 is true and set Ωn =
−wn + logq sn, we can rewrite

logq sn = logq βn + (q − y) logq sx + y logq sx+1 +O(1)

as the recursion

Ωn = (q − y)Ωx + yΩx+1 + εn (7–3)

for n ≥ 2, where n = qx+ y and 0 ≤ y ≤ q. Since s0 = 1
and w0 = 0, we also have

Ω0 = 0. (7–4)

In the following theorem, we show how to solve this
recursion if εn does not grow too rapidly with n. In our
case, Lemma 7.1 implies that εn = O(1), so it will suffice
to take κ = 0.

Theorem 7.2. If (Ωn)n≥0 satisfies (7–3) and (7–4), and
εn = O(nκ) for 0 ≤ κ < 1, then there exists a continuous
function W̄ with period 1 such that

Ωn = W̄ (logq n)n+O(nκ).

Proof: Let n ≥ 1. It is clear from (7–3) and (7–4) that
if we set ε1 = Ω1, and let T be the well-balanced q-tree
with n leaves, then Ωn is the sum of ε�(v) over all vertices
v of T . Write 	z
 for the largest integer that is no more
than z and {z} for z − 	z
. Now define X(m) by

X(m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, m < q−1;
2ε1

(
m− q−1

)
, q−1 ≤ m < 2q−1;

ε1m, 2q−1 ≤ m < 1;
ε1+�m	{m}+ ε�m	(1− {m}), 1 ≤ m.

Observe that X is continuous and that X(m) =
O(mκ). Now Lemma 5.11 implies that the contribution
to Ωn from vertices at distance k from the root of T is
qkX(n/qk), so

Ωn =
∑
k≥0

qkX

(
n

qk

)
.

Note that the summand is zero for k > Z := 	logq n
+1.
Now

Ωn

n
=

∑
0≤k≤Z

X(n/qk)
n/qk

(7–5)

=
∑

−Z≤k≤0

X(nqk)
nqk

=
∑

k≥−Z

X(nqk)
nqk

+O(nκ−1),

since X(m)/m = O
(
mκ−1

)
.

Set

W̄ (m) =
∑

k≥−1−�m	

X(qm+k)
qm+k

, (7–6)

or equivalently,

W̄ (m) = ζ({m}), ζ(x) =
∑

k≥−1

X(qx+k)
qx+k

. (7–7)
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It is now clear from (7–5) and (7–6) that Ωn =
W̄ (logq n)n + O(nκ). However, from (7–7), X(m)/m =
O(mκ−1), and the continuity of X, we see that on [0, 1],
ζ is a sum of continuous functions that are uniformly
bounded by a convergent series. Therefore ζ is contin-
uous on [0, 1]. The continuity of W̄ now follows from
the continuity of ζ on [0, 1] and the fact that since
X(q−1) = 0, ζ(0) = ζ(1). This concludes the proof.

Lemma 6.7 is now proved.

8. FURTHER THOUGHTS

The recursion (2–1) for rn as a function of q is well-
defined for any complex number q that isn’t a root of
unity. Curiously, the asymptotic behavior of rn(q) for
nonintegers q is radically different from its behavior for
integers q. It can be shown (we omit the proof) by singu-
larity analysis, using the functional equation (1–2), that
for |q| ≥ 3 a noninteger there are nonzero constants A
and B such that

rn(q) ∼ ABn/nq+1,

so that rn(q) decreases much more slowly with n for non-
integers q than for integers q.

It seems natural to wonder whether for real noninte-
ger q, the combinatorially defined rn(q) have a proba-
bilistic interpretation. This appears not to be the case:
experimentally we have observed that if q > 2 is a real
noninteger then the quantity B is real and negative, so
that rn(q) oscillates in sign (for n large). Of course, even
a single negative value means that it is not possible to
interpret rn(q) as a probability.

We mention some open questions for further research.

1. Zeros of the numerator. Let Nn be the numerator of
rn. Is it true that Nn has no zeros on the negative
real axis?

2. Zeros of G. Let q ≥ 2 be an integer. Is it true that
the zeros of the function G =

∑
n≥0 snt

n are all real
and negative?

We remark that the zeros |z0| ≤ |z1| ≤ · · · of G com-
pletely determine G as follows. Because G(t) is an entire
function of order zero, i.e., for all α > 0, |G(z)| = o

(
e|z|

α)
as |z| → ∞, it is equal up to a constant factor to
the Weierstrass product

∏
i≥0

(
1− t

zi

)
. But then G(t)

equals this product since G(0) = 1.

3. Asymptotics. Prove Conjectures 6.1 and 6.6 con-
cerning the asymptotics of the third term for q > 2
an integer.
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