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In this paper, we find bounds on the smallest or base eigenvalue
for the Laplacian on the noncompact surfaces within a certain
parameterized class. We attempt to fit a curve to the resulting
data. These eigenvalues are related to the Hausdorff dimension
of certain fractals and to some problems in number theory.

1. BACKGROUND AND ANALYSIS OF
THE MAIN RESULT

In the Poincaré disk model of hyperbolic geometry, let
us consider the domain F bounded by the lines AB,
AC, and BC ′, where A = i, B = −i, C = eiθ, and
C ′ = e−iθ, as shown in Figure 1. Let R1 be reflection
through the line AB, let R2 be reflection through the
line AC, and let R3 be reflection through the line BC ′.
Let Γ = 〈R1, R2, R3〉 be the group of isometries gener-
ated by these three maps. Then the image of the domain
F under the action of Γ gives a tiling of the hyperbolic
plane H

2, as depicted in Figure 1.

FIGURE 1. A tiling of the plane using reflections and a tile
with infinite area (with cosh(γ/2) = 1.2).
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The hyperbolic plane modulo the action of Γ forms a
noncompact surface Γ\H2 with infinite area. The Lapla-
cian on Γ\H2 has a spectrum of eigenvalues. Of these
eigenvalues, the smallest real eigenvalue λ0 is particu-
larly important, but is a rather mysterious quantity. Sev-
eral people have devised ways of estimating λ0, includ-
ing [Jenkinson and Pollicott 02], [Pignataro and Sullivan
1986], and [McMullen 98].

Two of the angles of the fundamental domain F are
zero. It is possible to define the “intersection” of the two
lines AC and BC ′. This intersection occurs off the plane
and defines an imaginary angle iγ, which is preserved
under isometries. Our main result is the following:

Theorem 1.1. Let Γ = 〈R1, R2, R3〉 be a group of isome-
tries of H

2 generated by the reflections R1, R2, and R3,
which are reflections through the lines AB, AC, and BC ′,
respectively. Let the angles at A and B be zero, and let
the angle between the lines AC and BC ′ be iγ, where γ

is real. Then the smallest eigenvalue λ0 for the Lapla-
cian acting on the surface Γ\H2 has the bounds shown in
Table 1.

The hope is that by looking at a parameterized set of
values, it might be possible to find a function that fits
the data and that knowing this function might give us
some insight as to the actual value of λ0.

The hyperbolic plane has a natural compactification
with the unit circle. For a point P in H

2, define the limit
set Λ(Γ) for Γ to be the closure of Γ(P ) in the compactifi-
cation of H

2. This set is in the unit circle S
1, is indepen-

dent of the choice for P , and is often a Cantor-like fractal.
Let α be the Hausdorff dimension for Λ(G). Then, by a
result due to Lax and Phillips [Lax and Phillips 82], α

and λ0 are related by

λ0 = α(1 − α).

We will find bounds on λ0 by finding bounds on α.
There is another way of visualizing the Cantor-like

character of the limit set Λ(Γ). Let DD′ be a mutual
orthogonal of the lines AC and BC ′, and let P be a
point on DD′. It is clear that repeated applications of
combinations of R2 and R3 will keep the image of P

on DD′, while all other elements of Γ will move P to
a point to the “left” of DD′ in Figure 2. The limit set
Λ(Γ) therefore includes the points D and D′, but does
not include any points on the arc “cut out” by DD′.
The image of DD′ under the action of an element of Γ
generates another arc with the same property. The limit
set Λ(Γ) is the portion of S

1 that is left after all these

FIGURE 2. A visualization of the Cantor-like nature of the
limit set Λ(Γ). The limit set is the set of points on the
unit disk S

1 that are “outside” all images of DD′ under the
action of Γ.

arcs are removed. It is clear that this set is uncountable
and has measure zero.

The idea of studying a parameterized set of eigenval-
ues is not new. Both Phillips and Sarnak [Phillips and
Sarnak 85a], and McMullen [McMullen 98] have studied
similar classes. Phillips and Sarnak look at the Hecke
group

Γµ =
〈

z + 2µ,
−1
z

〉

acting on the Poincaré upper-half-plane model of H
2.

The map z �→ z + 2µ is a parabolic translation centered
at ∞, and the map z �→ −1/z is rotation by π about the
point i. Fundamental domains in the Poincaré upper-
half-plane and disk models are shown in Figure 3. A fun-
damental domain for the Hecke group can be made the
same as the fundamental domain CABC ′ for our group
if µ = cosh(γ/2). Though the groups are different, it is
clear that their limit sets are equal, so their base eigen-

-1 0 1 µ   -µ  

A

B

C

C ′

C ′′

FIGURE 3. Two fundamental domains for the Hecke group.
In the disk model, the map z �→ −1/z is rotation by π about
the origin, and the map z �→ z +2µ is the parabolic transla-
tion with fixed point A that translates C′′ to C. Using the
fundamental domain CABC′, the Hecke group generates the
same tiling as in Figure 1.
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a Lower bound Upper bound
1.1 .087 .110
1.11 .092 .114
1.2 .129 .142
1.25 .143 .153
1.3 .1552 .1624
1.4 .1723 .1770
1.5 .1846 .1879
1.6 .1940 .1964
1.7 .2012 .2030
1.8 .2071 .2085
1.9 .2118 .2129
2 .21588 .21659

2.1 .21919 .21975
2.2 .22201 .22246
2.3 .22443 .22480√
11/2 .22541 .22576

2.4 .22653 .22683
2.5 .22836 .22861
2.7 .23140 .23157
3 .23482 .23493

3.5 .238665 .238715
4 .241158 .241186

4.5 .242880 .242897
5 .244126 .244139
6 .2457802 .2457844
7 .2468052 .2468072
8 .2474884 .2474896
9 .24796870 .24796927
10 .24832018 .24832054
11 .24858577 .24858600
12 .24879171 .24879186
13 .24895484 .24895495
14 .249086407 .249086474
15 .249194152 .249194203
16 .249283570 .249283607

a Lower bound Upper bound
17 .249358639 .249358668
18 .249422309 .249422331
19 .249476800 .249476817
20 .249523813 .249523828
25 .2496844592 .2496844637
30 .2497750952 .2497750973
35 .2498313709 .2498313719
40 .24986876207 .24986876260
45 .24989489537 .24989489568
50 .24991389227 .24991389246
60 .249939110053 .249939110135
70 .249954640664 .249954640706
80 .249964888568 .249964888591
90 .249972008675 .249972008690
100 .2499771579283 .2499771579373
120 .2499839510069 .2499839510111
140 .2499881046330 .2499881046352
160 .2499908295937 .2499908295951
180 .24999271384298 .24999271384379
200 .24999407107076 .24999407107131
250 .24999617263584 .24999617263608
300 .24999732598070 .24999732598082
350 .249998026555899 .249998026556027
400 .249998483803527 .249998483803561
450 .249998798671908 .249998798671930
500 .249999024698102 .249999024698117
600 .2499993203118967 .2499993203119041
700 .2499994993332486 .2499994993332533
800 .2499996159053168 .2499996159053204
900 .2499996960313681 .2499996960313715
1000 .2499997534632639 .2499997534632677
1250 .2499998418339495 .2499998418339532
1667 .2499999108419694 .2499999108419730
2500 .2499999602524740 .2499999602524774
5000 .2499999900344118 .2499999900344140

TABLE 1. A table of lower and upper bounds on λ0 as a function of the parameter a = cos(iγ/2) = cosh(γ/2).

values are equal. They study λ0 as a function of µ, and
come up with a graph similar to the ones in Figures 4 and
5. Their study of λ0 is also via the Hausdorff dimension
α, using the result of Lax and Phillips [Lax and Phillips
82] that

N(P,O, T ) ∼ cTα,

where c depends on P and O, α is independent of the
choices for P and O, and

N(P,O, T ) = #{Q ∈ Γµ(P ) : cosh |OQ| < T}.

The quantity |OQ| is the hyperbolic distance between O

and Q, so N(P,O, T ) is the number of points in the or-
bit of P that lie in the disk centered at O with radius
arccosh T . The error terms stated in the paper [Phillips
and Sarnak 85a] are estimates, and strike this author
as being somewhat bold (based on the method used),
though they are correct. Phillips and Sarnak prove sev-
eral properties of the graph in Figures 4 and 5. They

prove that it is continuous and increasing [Phillips and
Sarnak 85b], and that it is concave down [Phillips and
Sarnak 85a].

An example studied by McMullen in [McMullen 98] is
also closely related to our class. He studied the group
in the Poincaré upper-half-plane model of H

2 generated
by reflections in the lines whose endpoints are {∞,−1},
{∞, 1}, and {−r, r}. He notes that the limit set for this
group is the same as the limit set for the Hecke group Γµ

for µ = 1/r. He proves that

α =
1 + r

2
+ O(r2),

from which we conclude that

λ0 =
1 − r2

4
+ O(r3). (1–1)

Since r = sech(γ/2), this implies that, asymptotically,

λ0 ∼ tanh2(γ/2)
4

. (1–2)
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FIGURE 4. A graph of λ0 as a function of a = cosh(γ/2)
over the domain a ∈ [1, 2], together with the graphs of
1
4

tanh2(γ/2), 1
4

tanh(γ/2), and the function 1
4

tanh(.4733γ+
.0264), which was found using a least squares fit of the curve
in Figure 8.

FIGURE 5. The same graph as in Figure 4, but with
a ∈ [700, 5000].

The graph of y = 1
4 tanh2(γ/2) is also included in Figures

4 and 5. Rearranging (1–1), we get

a =
1
r
∼ 1√

1 − 4λ0

,

which suggests that we look at the graph of 1/
√

1 − 4λ0

as a function of a; see Figure 6. The expansion (1–1)
can also be thought of as a Taylor expansion for λ0

expanded about r = 0. In an effort to estimate the
coefficient of the cubic term, we are led to investigate
(λ0− 1

4 tanh2(γ/2))−1/3 as a function of a, which is shown
in Figure 7. Though this graph is fairly linear, it is not
linear enough for one to confidently guess the appropriate
slope.

a 5000
0

5000

FIGURE 6. The graph of 1/
√

1 − 4λ0 (using both the upper
and lower bounds) together with y = x (yes, they are all
there).

5000
0

3000

(b)

(a)

FIGURE 7. The graph of (a) the curve (λ0 −
tanh2(γ/2)/4)−1/3 and (b) the line y = .615x. The upper
and lower bounds for λ0 are included in both graphs. They
are not sufficiently different to distinguish them.

McMullen also shows that as r approaches 1 (from
the left), λ0 is bounded above and below by constant
multiples of

√
1 − r. For small a, we find the intriguing

empirical approximation

λ0 ≈
√

a2 − 1
4a

=
1
4

tanh(γ/2). (1–3)

The graph of this function is also included in Figures 4
and 5. For a near 1, this gives the approximation

λ0 ≈
√

2
4

√
1 − r,

which is consistent with McMullen’s result.
The asymptotic formula in (1–2) and the approxi-

mation in (1–3) suggest that we look at arctanh(2
√

λ0)
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FIGURE 8. A plot of y = γ/2 together with (a)
arctanh(2

√
λ0) as a function of γ, and (b) arctanh(4λ0) as a

function of γ. Note that the line y = γ/2 is a good approxi-
mation to (a) for large γ, reflecting the asymptotic relation
λ0 ∼ tanh2(γ/2), while it is a good approximation to (b) for
small γ, suggesting the approximation λ0 ≈ tanh(γ/2) near
zero. The least squares fit to (b) is also shown.

and arctanh(4λ0) as functions of γ, graphs that can be
thought of as analogues of a log-log graph. These graphs,
shown in Figure 8, are also fairly linear. A least squares
fit to arctanh(4/λ0) is included to illustrate how linear
these graphs are. The least squares fit gives the approx-
imation g(cosh(γ/2)) ≈ 1

4 tanh(.4733γ + .0264), which is
also shown in Figures 4 and 5. Though it is, in places, a
better fit than either of the other two approximations, it

.004

-.002

0
82 a

(a)

(c)

(b)

FIGURE 9. A graph of the differences between the vari-
ous fits and the upper and lower bounds for λ0, for (a)
1
4

tanh2(γ/2); (b) 1
4

tanh(γ/2); and (c) the least squares fit.

10-7

-10-7

1000 5000
0

(a)

(c)

(b)

a

FIGURE 10. The same graph as in Figure 9, but with
a ∈ [0, 5000].

fails to go through 0 when γ = 0, and probably will not
do much for our objective of evoking insight.

Finally, in Figures 9 and 10, we show the difference be-
tween the bounds and the various fits we have discussed
so far. Though the graphs seem rather simple, nothing
nice dreamt up by the author fit them very well.

2. THE LORENTZ MODEL

Our algorithm and understanding of the angle γ depend
on the Lorentz model of H

2. Lorentz space, denoted by
R

2,1, is three dimensions equipped with the Lorentz prod-
uct x 
 y = xtJy, where

J =

⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ .

The equation x
 x = −1 describes a hyperboloid of two
sheets, and the sheet with x3 > 0 is a model of H

2 (where
x = (x1, x2, x3)). The distance between two points P and
Q in H

2 is given by P 
 Q = − cosh |PQ|. A line on H
2

is the set of points x ∈ H
2 that satisfies n
x = 0, where

n
 n = 1. The angle θ between two lines n
 x = 0 and
m
x = 0 is given by n
m = cos θ. This angle is real if
the lines intersect in H

2, and imaginary otherwise. The
group

O = {T ∈ M3×3(R) : T tJT = J}
preserves the Lorentz product. That is, (Tx) 
 (Ty) =
x
 y for all T ∈ O. The subgroup O+ that sends H

2 to
itself is the group of isometries on H

2. It is clear that an
element of O+ preserves both angles and distance, since
it preserves the Lorentz product. The projection of H

2

through the point (0, 0,−1) and onto the plane x3 = 0 is a
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projection of H
2 onto the Poincaré disk model. The point

A in Figure 1 therefore has coordinates (0, 1, 1) in Lorentz
space. Since this point is at infinity, its representation is
not unique. The point B has coordinates (0,−1, 1); the
point C = (cos θ, sin θ, 1); and C ′ = (cos θ,− sin θ, 1). It
is clear that the line AB has the equation n1 
 x = 0,
where n1 = (1, 0, 0). To find the equations of AC and
BC ′, we use the Lorentz cross product, which is given by
x⊗y = J−1(x×y). This vector is perpendicular to both
x and y (with respect to the Lorentz product). Thus
the normal to AC is n2 = (1, a, a), where a = cos θ

1−sin θ ,
and the normal to BC ′ is n3 = (1,−a, a). Note that
the projection of x onto n is given by (n 
 x)n (since
n 
 n = 1), so the reflection of x through the line with
normal n is x− 2(n
x)n. Thus, the reflections Ri have
the matrix representations

R1 =

⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ , R2 =

⎡
⎣ −1 −2a 2a
−2a 1 − 2a2 2a2

−2a −2a2 1 + 2a2

⎤
⎦ ,

and

R3 =

⎡
⎣ −1 2a 2a

2a 1 − 2a2 −2a2

−2a 2a2 1 + 2a2

⎤
⎦ .

The imaginary angle iγ between the lines AC and BC ′

is given by cos(iγ) = cosh(γ) = −n2 
 n3 = 2a2 − 1.
Since a > 1, we have cosh(γ) > 1 and hence γ is real.
By the double angle formula, we have a = cos(iγ/2) =
cosh(γ/2).

The author’s interest in these sorts of problems arose
out of the study of K3 surfaces. Let V be an algebraic
K3 surface defined over a number field K. The Picard
group Pic(V ) is a lattice in R

n, where n is the Picard
number and 1 ≤ n ≤ 20. The intersection pairing on
Pic(V ) is a Lorentz inner product. The group Aut(V )
of automorphisms on V maps naturally into a discrete
subgroup of isometries Γ of Pic(V ). If there are any −2
curves on V , then the fundamental domain for Γ is infi-
nite, and we have an analogous situation. The dimension
α is a measure of the asymptotic growth of the number
of curves in the orbit of a base curve under the action
of Aut(V ). In [Baragar 03], this problem was studied
for a particular class of K3 surfaces with Picard number
three. The fundamental domain for that example is the
same as that shown in Figure 1, with an imaginary angle
iγ that satisfies a = cosh(γ/2) =

√
11/2. The group Γ

includes the reflections R2 and R3, but instead of a reflec-
tion across AB, Γ includes a rotation by π about a point
P = (3 − 2

√
2)i on the line AB. Figure 11 shows how

this change affects the tiling. The eigenvalue λ0 for this

FIGURE 11. The tiling induced by Γ = 〈R1, R2, R3〉
with a =

√
11/2 (left), and the tiling induced by Γ =

〈SP , R2, R3〉 with a =
√

11/2 and the rotation SP by π

about P = i(3 − 2
√

2) (right).

group is not expected to be the same as the one using a
reflection, though by a result due to Phillips and Sarnak
[Phillips and Sarnak 85b], we know that it is no smaller.
Indeed, in [Baragar 03], we find λ0 = .22670 ± .00035,
while using a reflection, we obtain λ0 = .22558 ± .00018.

The mutual orthogonal DD′ to AC and AC ′ and its
image under the action of Γ have special meanings within
the Picard group. The line DD′ represents a −2 curve.
The interior of its image under the action of Γ, shown
in Figure 12, also tiles the plane under the action of
the group generated by reflection through σ(DD′) for all
σ ∈ Γ. One of these tiles contains an ample divisor. That
tile is a hyperbolic cross section of the Kähler or ample
cone. That is, if P represents an ample divisor, and we
intersect the ample cone with the surface x
x = 1, then

FIGURE 12. The same tiling as in Figure 11, but with the
center of the rotation at the origin (light lines), together
with the image of the mutual orthogonal DD′ under the
action of Γ (dark lines). The open region that includes the
origin and is bounded by the dark lines is a hyperbolic cross
section for the ample cone for a class of K3 surfaces.
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the resulting region is the one shown in Figure 12. An
alternative cross section to take is a Euclidean cross sec-
tion. If we intersect the ample cone with a plane away
from the origin and orthogonal to the center of the rota-
tion SP , we get the Beltrami–Klein model for the same
region. That is the region derived from Figure 12, where
the endpoints of the arcs of the circles are joined with
Euclidean line segments.

3. THE ALGORITHM

Let us define the height

h(P ) = P3

for P = (P1, P2, P3). Since −O
P = P3 for O = (0, 0, 1),
the height is related to the hyperbolic distance by h(P ) =
cosh |OP |, and hence

N(P,O, T ) = #{Q ∈ Γ(P ) : h(Q) ≤ T}.

Let

α = lim
T→∞

log(N(P,O, T ))
log T

.

Then α exists, and is related to λ0 by the result in [Lax
and Phillips 82] cited earlier: λ0 = α(1 − α). Our study
of λ0 is through the study of α. Let

f(s, P ) =
∑
σ∈Γ

(h(σP ))−s.

It is known that f(s, P ) converges for s > α and diverges
for s < α. The boundary of convergence is independent
of P ∈ H

2.
Because the group Γ = 〈R1, R2, R3〉 is isomorphic to

Z/2Z ∗ Z/2Z ∗ Z/2Z, there exists a unique minimal rep-
resentation for σ ∈ Γ such that σ = Rkm

· · ·Rk1 with
ki �= ki+1 for i = 1, . . . ,m − 1. Let us call m the length
of σ and write l(σ) = m.

The group Γ also has a natural tree structure whose
nodes are elements σ ∈ Γ and whose edges are pairs
{σ,Riσ}. A subset U of Γ is a subtree if it is connected.
We will be particularly interested in the subtrees

Ui = {σ ∈ Γ : l(σRi) ≥ l(σ)}.

These are the elements of Γ whose minimal representa-
tions do not end with Ri. Let

fi(s, P ) =
∑
σ∈Ui

(h(σP ))−s.

The tree structure on Γ induces a natural tree structure
on orbits. We will say that a point X ∈ Γ(P ) descends

to σX if h(σX) < h(X) and σ ∈ {R2, R3, R2R1, R3R1}.
We will say that σ gives descent from X.

Lemma 3.1. Suppose X = (x, y, z) satisfies X 
 X = 0
and that h(X) > 0. Suppose that σ and τ are distinct ele-
ments in {R2, R3, R2R1, R3R1}, and that σ gives descent
from X. Then h(τX) > h(X).

Proof: The quantity h(ρX) − h(X) for each of ρ ∈
{R2, R3, R2R1, R3R1} is one of

(1 + a2)z ± 2ax ± 2a2y,

for one of the four combinations of signs. Let us first sup-
pose that x, y ≥ 0. Since σ gives descent, we may assume
that it is the ρ that makes both signs negative. Suppose
then that there exists a τ �= σ such that h(τX) ≤ h(X).
Then either

(1 + a2)z ≤ 2ax − 2a2y (3–1)

or
(1 + a2)z ≤ −2ax + 2a2y. (3–2)

If we have (3–1), then

2a2z < (1 + 2a2)z ≤ 2ax,

z < x/a < x.

But x2 +y2−z2 = 0 so z ≥ x, a contradiction. Similarly,
from (3–2), we get z < y. Thus, h(τX) > h(x) for all
τ �= σ.

By symmetry, the same argument works for the other
three combinations of ±x,±y ≥ 0.

Corollary 3.2. For any σ ∈ Γ, we have h(σA) > 0,
h(σB) > 0, h(σC) > 0, and h(σC ′) > 0.

Proof: We first observe that A 
 A = B 
 B = C 
 C =
C ′ 
 C ′ = 0, so Lemma 3.1 applies.

We note that h(A) = 1 and that R1A = R2A = A. We
note that R3A = (4a, 1−4a2, 1+4a2), so R3 gives descent
from R3A. Using induction on the length of σ ∈ U3 and
the above lemma, we conclude that h(σR3A) > 0 for all
σ ∈ U3. Thus h(σA) > 0 for all σ ∈ Γ. By symmetry,
h(σB) > 0 for all σ ∈ Γ.

Similarly, we note that h(C) = 1; that R2C = C; that
h(R3C) = 1+4a2 sin θ > 1, h(R2R1C) = 1+4a cos θ > 1;
and that h(R3R1C) = 1 + 4a2 > 1. We use induction on
the length of σ ∈ U3 to show that h(σR3C) > 0 and
h(σR3R1C) > 0, and induction on the length of σ ∈ U2

to show that h(σR2R1C) > 0. Thus, h(σC) > 0 for all
σ ∈ Γ. By symmetry, h(σC ′) > 0 for all σ ∈ Γ.
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Lemma 3.3. Suppose X = (x, y, z) satisfies X 
 X = 1
and that h(X) ≥ a. Suppose that σ and τ are distinct ele-
ments in {R2, R3, R2R1, R3R1}, and that σ gives descent
from X. Then h(τX) > h(X).

Proof: As in the proof of Lemma 3.1, let us first suppose
that x, y ≥ 0. If there exists a τ �= σ such that h(τX) ≤
h(X), then we have either (3–1) or (3–2) from the proof
of Lemma 3.1. If we have (3–1), then

(1 + 2a2)z ≤ 2ax,

(1 + 2a2)2z2 ≤ 4a2x2 ≤ 4a2(z2 + 1),

(1 + 4a4)z2 ≤ 4a2,

z2 ≤ 4a2

1 + 4a4
<

1
a2

< a2,

z < a.

In the above, we used that x2+y2−z2 = 1, so x2 ≤ z2+1.
If we have (3–2), then

(1 + 2a2)z ≤ 2a2y,

(1 + 2a2)2z2 ≤ 4a4(z2 + 1),

(1 + 4a2)z2 ≤ 4a4,

z2 ≤ 4a4

1 + 4a2
< a2,

z < a.

Now argue as in the proof of Lemma 3.1.

Corollary 3.4. For any σ ∈ U3, we have

h(σn3) = h(σ(1,−a, a)) > 0.

Proof: Note that R3(1,−a, a) = (−1, a,−a), so R3 gives
descent.

These corollaries give us a type of self-similarity state-
ment:

Lemma 3.5. Let X = (x, y, z). If x, y, z > 0 and ax+ y−
z > 0, then

(
y + z

2

)−s

f3(s, T3A)

< f3(s, T3X)

<

(
y + z

2
− 2ax + y − z

2a2

)−s

f3(s, T3A).

If x < 0, y, z > 0, and ax + y − z < 0, then(
y + z

2
− 2ax + y − z

2a2

)−s

f3(s, T3A)

< f3(s, T3X)

<

(
y + z

2

)−s

f3(s, T3A).

The series f3(s, T3A) will play a central role in our
argument, so let us define f(s) = f3(s, T3A).

Proof: Writing X as a linear combination of A, B, and
−n3, we get

X =
y + z

2
(0, 1, 1)− ax + y − z

2
(0,−1, 1)− x(−1, a,−a),

so if x > 0 and ax + y − z > 0, then for all σ ∈ U3,

h(σR3X) <
y + z

2
h(σR3A),

h(σR3X)−s >

(
y + z

2

)−s

h(σR3A)−s,

f3(s,R3X) >

(
y + z

2

)−s

f3(s,R3A) =
(

y + z

2

)−s

f(s).

Similarly, if ax + y − z < 0 and x < 0, then

f3(s,R3X) <

(
y + z

2

)−s

f(s).

Writing X as a linear combination of A, C ′, and −n3, we
get

X =
(

y + z

2
− 2ax + y − z

2a2

)
A +

2ax + y − z

a cos θ
C ′

+
ax + y − z

a
(−n3).

Thus, if x > 0 and ax + y − z > 0, then 2ax + y − z > 0
and

f3(s,R3X) <

(
y + z

2
− 2ax + y − z

2a2

)−s

f(s).

And if x < 0 and ax + y − z < 0, then 2ax + y − z < 0
and

f3(s,R3X) >

(
y + z

2
− 2ax + y − z

2a2

)−s

f(s).

Note that if R2 gives descent from X with h(X) > 0,
then x, y, z > 0 and x/a + y − z > 0, so ax + y − z > 0.
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Also, if R2R1 gives descent from X with h(X) > 0, then
x < 0, y, z > 0, and x/a + y − z < 0, so ax + y − z < 0.

Corollary 3.6. The series f(s) = f3(s,R3A) converges
for all s > α and diverges for all s < α.

Proof: Let us compare f(s) with f(s,O), where O =
(0, 0, 1). Note that R1O = O, R2O = (−2a,−2a2, 1 +
2a2), and R3O = (−2a, 2a2, 1 + 2a2). By symmetry,
f2(s,R2O) = f3(s,R3O) = f(s), so

f(s,O) = 1 + 4f(s).

For X = R3O, we have ax + y − z = −(1 + 2a2) < 0, so
by the previous lemma,

1 + 4
((

1 +
1

2a2

)
1 + 4a2

2

)−s

f(s)

< f(s,O) < 1 + 4
(

1 + 4a2

2

)−s

f(s),

so f(s,O) converges at s if and only if f(s) converges at
s.

Thus, it is sufficient to find the boundary of convergence
for f(s).

For a subtree U of Γ, let the boundary of U be the set

∂U = {σ ∈ Γ : σ /∈ U,Riσ ∈ U, i ∈ {1, 2, 3}}.

Then, for any U ⊂ U3 that contains the identity,

f(s) =
∑
σ∈U

h(σA)−s +
∑

σ∈∂U

fi(s, σA),

where the i are chosen so that Riσ ∈ U – that is, if Ri

gives descent from σA. We use the self similarity result,
Lemma 3.5, to bound each fi(s, σA), though a little more
work is still required:

Lemma 3.7. Let X = (x, y, z) and let

l2(s,X) =
∞∑

k=0

((
2a2(z − y)k2 + 2axk +

y + z

2

)−s

+
(

2a2(z − y)k2 + 2(ax + z − y)k +
y + z

2

+
2ax − y + z

2a2

)−s
)

,

l3(s,X) = l2(s, (x,−y, z)),

l1(s,X) = l2(s,R2X) + l3(s,R3X),

m2(s, P ) =
∞∑

k=0

((
2a2(z − y)k2 + 2(ax + y − z)k +

y + z

2

−2ax + y − z

2a2

)−s

+
(

2a2(z − y)k2 + 2axk +
y + z

2

)−s
)

,

m3(s,X) = m2(s, (x,−y, z)),

m1(s,X) = m2(s,R2X) + m3(s,R3X).

If Ri gives descent from X and s > 1
2 , then

li(s,X)f(s) < fi(s,X) < mi(s,X)f(s) + O(1).

Proof: Note that

f2(s,X) =
∞∑

k=0

(
h((R2R1)kX)−s + f3(s,R3(R2R1)kX)

+ h(R1(R2R1)kX) + f3(s,R3R1(R2R1)kX)
)
,

and that

(R2R1)kX =
(
x + 2ka(z − y), y + 2kax + 2k2a2(z − y),

z + 2kax + 2k2a2(z − y)
)
.

Applying Lemma 3.5 and noting that s > 1
2 we get

l2(s,X)f(s) < f2(s,X) < O(1) + m2(s,X)f(s).

By symmetry, f3(s,X) = f2(s, (x,−y, z)). Finally,

f1(s,X) = h(X)−s + f2(s,R2X) + f3(s,R3X),

which gives us the stated bounds for f1(s,X).

Finally, let U(H) = {σ ∈ U3 : h(σA) < H}, and let

L(s,H) =
∑

σ∈∂U(H)

li(s, σA),

M(s,H) =
∑

σ∈∂U(H)

mi(s, σA),
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where the i are chosen so that Ri gives descent from σA.
Then

L(s,H)f(s) < f(s).

Thus, if L(s,H) > 1, then f(s) cannot converge, so
s < α. Note that L(s,H) is a decreasing function in
s for s ∈ ( 1

2 ,∞), so there exists a unique sL,H such that
L(sL,H ,H) = 1. This gives us a lower bound on α.

The function M(s,H) also decreases for s ∈ ( 1
2 ,∞),

and so has a unique solution sM,H to M(s,H) = 1. This
gives us an upper bound on α. The details are similar to
those found in [Baragar 03] and [Baragar 98]. Roughly,
one can show that if f(s) converges at s, then

f(s) < M(s,H)f(s) + O(H2),

1 < M(s,H) + O(H2/f(s)). (3–3)

The problem is that f(s) diverges at sM,H , so the in-
equality does not make sense there. The solution is to
derive an inequality similar to (3–3) that involves partial
sums for f(s).

By taking a large enough partial sum and s < α, we
can make the error term as small as we like, which gives
us a contradiction if sM,H < s < α. Thus, sM,H is an
upper bound for α.

To find the bounds in Table 1, we write a program
that approximates L(s,H) and M(s,H). For the infinite
sums in these functions, we use Euler–Maclaurin sum-
mation, as described in [Baragar 03, Section 4]. For the
calculations shown in Table 1, we use H = 105 for a < 2;
we use H = 5 · 105 for 2 ≤ a < 4; we use H = 106 for
4 ≤ a ≤ 8; and we use H = 107 for a ≥ 9.
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