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Logarithmic signatures (LS) are a kind of factorization of finite
groups which are used as a main component of cryptographic
keys for secret key cryptosystems such as PGM and public key
cryptosystems like MST1. As such, logarithmic signatures of
short length are of special interest. In the present paper we
deal with the fundamental question of the existence of loga-
rithmic signatures of shortest length, called minimal logarith-
mic signatures (MLS), for finite groups. Studies of the problem
can be found in [Magliveras 02], [González Vasco and Stein-
wandt 02], and especially in [González Vasco et al. 03], where
González Vasco, Rötteler, and Steinwandt show that minimal
logarithmic signatures exist for all groups of order less than
175,560 by direct computation using the method of factoriza-
tion of a group into “disjoint” subgroups. We introduce new
approaches to deal with the question. The first method uses the
double coset decomposition to construct minimal logarithmic
signatures. This method allows one to prove, for instance, that
if gcd(n, q − 1) ∈ {1, 4, p | p prime}, then the projective spe-
cial linear groups Ln(q) have an MLS. Another main goal of this
paper is to construct MLS for all finite groups of order ≤ 1010.
Surprisingly, the method of double coset decomposition turns
out to be very effective, as we can construct MLS for all groups
in the range except eight groups. We are also able to prove that
if an MLS for any of these eight groups exists, then it cannot be
constructed by the method of double coset decomposition. We
further discuss a method of construction of MLS for groups of the
form G = A.B with subgroups A, B and A∩B �= 1, by building
suitable MLS for A and B and “gluing” them together.

1. INTRODUCTION

Most of the well-known public-key cryptosystems which
are still unbroken are based on certain intractable prob-
lems in large finite abelian groups, such as the multiplica-
tive group of units in the ring Zpq with p, q primes, the
multiplicative group of a finite field, or a cyclic subgroup
of the group of rational points of an elliptic curve over
a finite field. However, from the group-theoretic point
of view, abelian groups have simple and well understood
structures, and thus the intractability of the problems
seems to be closer to number theory than group theory.
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One of the first symmetric-key cryptosytems exploit-
ing the structure of nonabelian groups was proposed by
Magliveras [Magliveras 86]. This cryptosystem, named
PGM, makes use of a special type of factorization of
nonabelian permutation groups which are called logarith-
mic signatures (LS). Recently, two possible approaches
to constructing new public-key cryptosystems MST1 and
MST2 using group factorization of finite groups were
described by Magliveras, Stinson, and Tran van Trung
[Magliveras et al. 02]. In particular, logarithmic sig-
natures are used as the main component of the keys
in MST1. As such, the question of finding logarith-
mic signatures with short length emerges naturally and
becomes more relevant regarding properties of crypto-
graphic schemes involving logarithmic signatures. More-
over, logarithmic signatures of certain types are group-
theoretically interesting structures of their own. The
question of the existence of logarithmic signatures of min-
imum length, was first posed by González Vasco and
Steinwandt in [González Vasco and Steinwandt 02], in
which the authors derive a lower bound for the length
of a logarithmic signature of a group G and show that
finite solvable groups and symmetric groups Sn have log-
arithmic signatures achieving the bound. For short, we
call a logarithmic signature achieving this bound a min-
imal logarithmic signature (MLS). It is also shown in
[Magliveras 02] that the alternating groups An have min-
imal logarithmic signatures. In a recent paper [González
Vasco et al. 03], González Vasco, Rötteler, and Stein-
wandt prove that minimal logarithmic signatures for all
groups of order less than 175,560 exist. Essentially, the
authors attempt to factorize each group G in the range
into a product of “disjoint” subgroups with the property
that each subgroup has a minimal logarithmic signature
and thus obtain a desired MLS for G by joining the MLS
of the subgroups together. In general, in order to obtain
such a factorization, this method usually requires direct
computations which rapidly become infeasible when the
order of G gets large.

The purpose of the present paper is to introduce new
approaches to deal with the above question. More pre-
cisely, we study the method of double coset decomposi-
tion (MDCD) and the method of subgroup product in its
general setting. It turns out that the MDCD is a very
effective tool for constructing minimal logarithmic signa-
tures. For example, by applying the MDCD to special lin-
ear groups SLn(q) and to projective special linear groups
Ln(q) we show that if gcd(n, q − 1) ∈ {1, 4, p | p prime},
then SLn(q) and Ln(q) have an MLS. Our second main
application of the MDCD is constructing minimal loga-

rithmic signatures for all groups of order of at most 1010.
As a result, we prove that such an MLS exists for all
groups in the range except a list of eight groups. For
these eight groups we are able to prove that there are no
MLS which can be obtained by the MDCD.

The second approach discusses the question of whether
or not one can construct an MLS for a group G = A.B

from appropriate MLS of A and B, where A and B are
subgroups of G and A∩B �= 1. Interestingly, in combin-
ing with the MDCD we succeed in analyzing several non-
trivial examples showing that the question has a positive
answer even for large groups with a complex structure
such as U3(5) or J2.

The paper is organized as follows. In Section 2, we
give definitions, notation, and some basic results about
logarithmic signatures. Section 3 shows that the general
linear groups GLn(q) and the projective general linear
groups PGLn(q) possess MLS. Section 4 presents the
method of double coset decomposition and its applica-
tion to SLn(q) and Ln(q). In Section 5, we show, for the
sake of completeness, that an MLS can be constructed for
all groups G with |G| < 175, 560 by the MDCD. This re-
sult is the content of the paper [González Vasco et al. 03]
achieved by means of the group factorization into dis-
joint subgroups. In Section 6, we construct MLS for all
groups G with 175, 560 ≤ |G| ≤ 1010 except a list of
eight groups. In Section 7, we prove that there are no
MLS which can be constructed by the MDCD for these
eight groups. Section 8 discusses the second approach
of constructing MLS for groups which are the product
of two nondisjoint subgroups. The paper closes with a
conclusion in Section 9.

2. PRELIMINARIES

Logarithmic signatures (LS) are introduced as basic key
components for some symmetric and asymmetric cryp-
tosystems based on nonabelian finite groups. A logarith-
mic signature can be viewed as a certain type of “basis”
for finite groups, in the sense that group elements are
uniquely represented with respect to the basis. To be
precise, we have the following definition.

Definition 2.1. Let G be a finite group. Let α =
[α1, . . . , αs] be a sequence of ordered subsets αi of G such
that αi = [αi0 , . . . , αiri−1] with αij ∈ G, (0 ≤ j < ri).
Then α is called a logarithmic signature for G if each
g ∈ G is uniquely represented as a product

g = α1j1 · · ·αsjs

with αiji
∈ αi (1 ≤ i ≤ s).
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The sequences αi are called the blocks of α and the
integer �(α) :=

∑s
i=1 ri the length of α.

In view of Definition 2.1 a logarithmic signature thus
gives rise to a special type of factorization of a finite
group. A simple method of constructing logarithmic sig-
natures for a group G is the following: let

G = G0 > G1 > · · · > Gs = 1

be a chain of subgroups. Take α = [α1, . . . , αs], where
αi = [αi0 , . . . , αiri−1] is the complete system of left (re-
spectively right) coset representatives of Gi in Gi−1. It
is easily checked that α is a logarithmic signature for G.
Such logarithmic signatures are called exact left (respec-
tively right) transversal. In particular, if s = 1 we have
a trivial logarithmic signature α consisting of a single
block, and therefore �(α) = |G|.

For cryptographic purposes, we are interested in loga-
rithmic signatures having a short length. In general the
problem of constructing logarithmic signatures of a given
length is nontrivial. It is clear that for any logarithmic
signature α of a finite group G we have �(α) ≤ |G|. A
lower bound for �(α) is given by González Vasco and
Steinwandt [González Vasco and Steinwandt 02].

Theorem 2.2. [González Vasco and Steinwandt 02] Let G

be a finite group and |G| =
∏t

j=1 p
aj

j be the order of G,
where p1, . . . , pt are distinct primes. Then

�(α) ≥
t∑

j=1

ajpj

for any logarithmic signature α of G.

Proof: For any logarithmic signature α = [α1, . . . , αs]
with |αi| = ri we have |G| = r1 · · · rs. Write ri =∏t

j=1 p
aij

j . Then
∑s

i=1 aij = aj . The theorem now fol-
lows from ri ≥

∑t
j=1 aijpj , (1 ≤ i ≤ s).

Definition 2.3. A logarithmic signature α for a finite
group G with �(α) =

∑t
j=1 ajpj is called a minimal length

logarithmic signature or, for short, a minimal logarithmic
signature (MLS).

González Vasco and Steinwandt show that solvable
groups and symmetric groups have a minimal logarithmic
signature [González Vasco and Steinwandt 02]. Magliv-
eras proves the existence of an MLS for the alternat-
ing groups and also explores the problem for L2(q) =
PSL2(q) [Magliveras 02].

The following elementary results are useful and easy
to verify.

Lemma 2.4. Let G be a finite group with a normal sub-
group N . If N and G/N have an MLS, then G has an
MLS.

Lemma 2.5. Let G be a finite group. Suppose that G has
subgroups H and K with G = H.K and H ∩K = 1 such
that H and K both have an MLS. Then

1. G has an MLS;

2. if N is a normal subgroup of G such that N ≤ K

and K/N has an MLS, then G/N has an MLS;

3. the analogous statement is true if N ≤ H.

By using composition series it is easily seen that the
question of the existence of MLS for finite groups is re-
duced to the question of the existence of MLS for finite
simple groups. Accordingly, González Vasco, Rötteler
and Steinwandt prove the existence of an MLS for all
groups of order less than 175,560 (the order of J1, the
first Janko group) [González Vasco et al. 03]. The main
tool in [González Vasco et al. 03] is to factorize a (simple)
group in question as a product of a number of disjoint
proper subgroups having an MLS. For example, using a
result by Holt and Rowley [Holt and Rowley 93] that for
any prime power q the groups L2(q) and PGL3(q) can
be decomposed as a product of their Sylow pi-subgroups,
one concludes that L2(q) and PGL3(q) have an MLS.

In our paper, we intensively make use of the ATLAS,
in particular we adopt its notation and its abbreviations
for our discussion. For the reader’s convenience we recall
here some abbreviations frequently used in the ATLAS
[Conway et al. 85].

• [m] denoting an arbitrary group of order m;

• m denoting a cyclic group of order m;

• pn, p is prime, indicates the elementary abelian
group of that order;

• p1+2n indicates an extraspecial group of that order.

For the rest of the paper we implicitly use the fact that
solvable groups have an MLS.
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3. THE GROUPS GLn(q), PGLn(q),
Ln(q) := PSLn(q)

In this section we show that for any n ≥ 2 and any prime
power q the general linear groups GLn(q) and the projec-
tive general linear groups PGLn(q) possess a product fac-
torization of disjoint subgroups satisfying the condition
of Lemma 2.5, and therefore have a minimal logarithmic
signature.

Theorem 3.1. Let G := GLn(q) for some n ∈ N and
some prime power q. Then for any subgroup Z ≤ Z(G)
the group G/Z has a minimal logarithmic signature. So
in particular, GLn(q) and PGLn(q) have MLS.

Proof: Let V be an n-dimensional vector space over
GF (q) such that G acts as a group of linear tranforma-
tions on V . Let H := Gv be the stabilizer of a nonzero
vector v ∈ V . By a suitable choice of a basis for V , we
see that the elements of H are matrices of the form:

A =

⎛
⎜⎜⎜⎝

1 0 · · · 0
α2

... A1

αn

⎞
⎟⎟⎟⎠

where A1 is a nonsingular (n − 1) × (n − 1)-matrix over
GF (q). The mapping ϕ : A → A1 is an epimorphism
from H on GLn−1(q). The kernel of ϕ is an abelian group
Q of order qn−1. In particular, H = Q : L is a semidirect
product, where L ∼= GLn−1(q) consists of all matrices of
H with α2 = · · · = αn = 0. Further, it is well-known that
G contains a cyclic subgroup K of order qn −1 such that
CG(K) = K and K acts sharply transitive on V − {0}.
Thus H ∩ K = 1 and G = H.K.

Note that K has a minimal logarithmic signature.
Since GL1(q) is solvable, we use an easy induction ar-
gument together with Lemma 2.4 to see that H has an
MLS. Now G = H.K has an MLS by Lemma 2.5.

Finally, let Z ≤ Z(G). Then K = CG(K) ≥ Z(G) ≥
Z. As K/Z is solvable and thus has an MLS, Lemma 2.5
shows that G/Z has an MLS.

Corollary 3.2. For every n ≥ 2 and every prime power q

with gcd(n, q − 1) = 1 the group SLn(q) ∼= Ln(q) has a
minimal logarithmic signature.

Proof: The condition gcd(n, q − 1) = 1 is equivalent to
SLn(q) ∼= Ln(q) ∼= PGLn(q), hence the corollary follows.

In general, the problem of decomposing finite nonsolv-
able groups as a product of disjoint subgroups appears
to be difficult; it is not known whether such a decom-
position is possible at all for a given nonabelian simple
group, see for instance [Holt and Rowley 93], in which
Holt and Rowley show that the simple group U3(3) does
not have a factorization into Sylow subgroups. We also
show in Section 5 that the first Janko simple group J1

does not possess a factorization into a product of three
disjoint subgroups.

In the next section, we develop a new method enabling
further identification of Ln(q) having an MLS.

4. METHOD OF DOUBLE COSET DECOMPOSITION
(MDCD) FOR CONSTRUCTION OF MLS

In this section, we describe a new approach to construct
minimal logarithmic signatures for a finite group G by us-
ing a double coset decomposition with respect to appro-
priate proper subgroups of G. Surprisingly, this method
appears to be powerful in dealing with the problem. Es-
pecially, for groups of relatively “small” order, the dou-
ble coset method gives a simple and elegant construction
of minimal logarithmic signatures. Actually, the MDCD
provides an easy way to prove the results in [González
Vasco et al. 03], as we shall show.

Theorem 4.1. Let G be a finite group with subgroups H

and K such that H ∩ gKg−1 = 1 for all g ∈ G. Let

G =
n⋃

i=1

HgiK

be the double coset decomposition of G with respect to
H and K. Suppose that H and K each have a minimal
logarithmic signature. If n is a prime number or n ∈
{1, 4}, then G has a minimal logarithmic signature.

Proof: It is known that [G : K] =
∑n

i=1[H : H∩giKg−1
i ].

As H∩giKg−1
i = 1 by the assumption, we have [G : K] =

|G|/|K| = n|H|. Thus |G| = n|H||K|.
Let αH be an MLS for H and let αK be an MLS for

K. Since any element g ∈ G can be written in the form
g = hgik with h ∈ H, k ∈ K, and i ∈ {1, . . . , n}, it is
clear that α = [αH , {g1, . . . , gn}, αK ] is an MLS for G, if
n ∈ {1, 4} or n is a prime number, as stated.

Remark 4.2. If n = 1 in Theorem 4.1, then G = H.K

with H ∩ K = 1 and consequently G = H.Kg for any
g ∈ G. Moreover, the block with double coset repre-
sentatives of the logarithmic signature described in the
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theorem is reduced to a set with a single element, namely
the identity, and therefore can be omitted. So we actually
have a factorization of G into a product of two subgroups
with trivial intersection.

The following result is an application of Theorem 4.1
to the special linear groups SLn(q) and the projective
special linear groups Ln(q).

Theorem 4.3. Let 2 ≤ n ∈ N and q a prime power such
that gcd(n, q − 1) ∈ {1, 4} or gcd(n, q − 1) is a prime
number. Then the groups Ln(q) and SLn(q) have an
MLS.

Proof: Let V be an n-dimensional vector space over
GF (q) and G := GL(V ) ∼= GLn(q) as well as S :=
SL(V ) ∼= SLn(q). Moreover, let Z := Z(G) and G :=
G/Z. So, in particular, Z0 = Z ∩ S is cyclic of order
d := gcd(n, q − 1) and S = SZ/Z ∼= S/Z0

∼= Ln(q).
Clearly,

H =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a1 0 · · · 0
a2

... A1

an

⎞
⎟⎟⎟⎠

∣∣∣∣ ai ∈ GF (q),

a1 �= 0, A1 ∈ GLn−1(q)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is the stabilizer in G of a one-dimensional subspace of
V ; in particular, H = Z × Q : L, where Q ∼= qn−1 and
L ∼= GLn−1(q) are as in the proof of Theorem 3.1.

Now H0 := H∩S = Q : L0, where L0 := (Z×L)∩S ∼=
GLn−1(q) with L � Z0. Similar to the proof of Theorem
3.1, let K be a cyclic subgroup of order qn − 1 in G

acting sharply transitive on V \ {0} with CG(K) = K.
Then K0 := K ∩ S is cyclic of order qn−1

q−1 ; moreover,
K0 ∩ Z = Z0. Since K = KZ/Z acts sharply transitive
on the projective space PG(V ), the group K0 = K0/Z0

must act regularly on PG(V ). In particular, H0∩K
g

0 = 1
for all g ∈ S.

Next, we observe that H0
∼= H0/Z0 is isomorphic to a

semidirect product of Q and L0/Z0. Therefore, by The-
orem 3.1 and Lemma 2.4, H0 has an MLS. Clearly, K0

has an MLS. Since

|H0K0| = |H0||K0| =
qn−1|GLn−1(q)|

d
.

qn − 1
d(q − 1)

=
|GLn(q)|
(q − 1)d2

=
|S|
d

,

the claim now follows from Theorem 4.1 and Lemma 2.4.

Corollary 4.4. For n ∈ {4, p | p prime} the groups Ln(q)
and SLn(q) have an MLS.

5. MLS FOR SIMPLE GROUPS OF ORDER LESS THAN
175,560 CONSTRUCTED BY MDCD

As mentioned above, the MDCD works perfectly for finite
simple groups G of small order. Here, we want to show
this fact for |G| < 175, 560. These groups have been
treated in [González Vasco et al. 03] by the method of
factorization into a product of disjoint subgroups.

In the following list, we show a pair of sub-
groups H and K for G that satisfies the condition
of Theorem 4.1. However, we omit the alternating
groups An; the projective special linear groups L2(q)
for q ∈ {4, 5, 7, 9, 8, 11, 13, 17, 19, 16, 23, 25, 27, 31, 32, 37};
and L3(2), L3(3), and L4(2) since these groups are proved
to have an MLS by Corollary 4.4. It should be men-
tioned that different pairs of H and K may exist. For
instance, if G = L2(8), then the following pairs can be
chosen: (H = 23, K = 32), (H = 23 : 7, K = 3),
(H = D18, K = 7), (H = D14, K = 32). If the exis-
tence of H and K can essentially be read off from infor-
mation in the ATLAS [Conway et al. 85], then we just
present H and K without comments, otherwise we will
prove their existence, for instance, as in the case of the
group G = U3(5).

1. G = U3(3) ∼= G2(2)′, |G| = 6, 048 = 25 · 33 · 7,
H = 31+2 : 8, K = 7.

2. G = M11, |G| = 7, 920 = 24 · 32 · 5 · 11,
H = A6, K = 11.

3. G = U4(2) ∼= S4(3), |G| = 25, 920 = 26 · 34 · 5,
H = 24 : 22, K = 33 : 3.

4. G = Sz(8), |G| = 29, 120 = 26 · 5 · 7 · 13,
H = 23+3 : 7, K = 13.

5. G = U3(4), |G| = 62, 400 = 26 · 3 · 52 · 13,
H = 22+4 : 15, K = 13.

6. G = M12, |G| = 95, 040 = 26 · 33 · 5 · 11,
H = 32 : 2S4, K = 11.5.

7. G = U3(5), |G| = 126, 000 = 24 · 32 · 53 · 7,
H = A7, K = 52.
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There are four classes of elements of order 5 in G,
where four elements in the center of a Sylow 5-
subgroup 51+2 are of type 5A. There are three classes
of maximal subgroups A7 in G, the first class con-
tains only elements of type 5B, the second elements
of type 5C, and the third elements of type 5D. Now
take H = A7 containing elements of type 5B.

Further, G contains S := Q : 8 as a maximal sub-
group with Q = 51+2. Let L = A7 be the class of
A7-subgroups containing elements of type 5C. We
have X := S ∩ L = D20 = 5C : 4. Let Z(Q) = 〈5A〉
and let K = 〈5A, 5C〉 be an elementary abelian
group of order 52 with 5A ∈ Z(Q) and 5C ∈ D20.
As K � Q : 4 and CS(K) = K, it follows that K

contains 20 elements of type 5C and four elements
of type 5A. In other words, gKg−1 ∩ H = 1 for all
g ∈ G. Thus we have a pair of subgroups (H,K) in
G satisfying the condition of Theorem 4.1.

Here we want to make a remark about the first Janko
group J1 with order 175,560. By inspection of the list
of maximal subgroups of J1 we easily see that J1 cannot
be factored as a product of two proper subgroups A and
B. The following result has been obtained by a computer
search with the Magma algebra system [Bosma et al. 97].

Theorem 5.1. J1 has no proper subgroups A, B, and C

such that J1 = A.B.C and |J1| = |A| · |B| · |C|.

We do not know whether J1 can be described as a
product of more than three disjoint proper subgroups.
But, in view of Theorem 5.1, the question of the existence
of an MLS for J1 on the basis of product of subgroups
seems to be difficult. Below, we see however that the
existence of an MLS for J1 immediately follows by the
double coset method.

6. MLS FOR SIMPLE GROUPS G OF ORDER
175, 560 ≤ |G| ≤ 1010

The main aim of this section is to construct minimal
logarithmic signatures by the MDCD for simple groups
of order ≤ 1010. It turns out that, except for a few groups
where the existence or the nonexistence of an MLS cannot
be settled yet, the method works for almost all groups in
the range. As in the previous section we present a pair
of subgroups (H,K) of a simple group G satisfying the
condition of Theorem 4.1. For each group G we give
only one pair of (H,K), even though we know that other
possibilities for such a pair exist or G = A.B with A ∩

B = 1. An item with × × means that the double coset
method does not work for that group, and a proof is
presented in the next section. Since the groups Ln(q)
with |Ln(q)| ≤ 1010 will have n = 2, 3, 4, 5, and therefore
have an MLS by Corollary 4.4, these groups as well as
the alternating groups are not included in the list below.

1. G = J1, the first Janko group, |G| = 175, 560 =
23 · 3 · 5 · 7 · 11 · 19,
H = 23 : 7 : 3, K = 11 : 5.

2. G = M22, |G| = 443, 520 = 27 · 32 · 5 · 7 · 11,
H = L3(4), K = 11.

3. G = J2, the second Janko group, |G| = 604, 800 =
27 · 33 · 52 · 7,
H = U3(3), K = 52.

4. G = S4(4), |G| = 979, 200 = 28 · 32 · 52 · 17,
H = 26 : (3 × A5), K = 17.

5. G = S6(2), |G| = 1, 451, 520 = 29 · 34 · 5 · 7,
H = U4(2) : 2, K = 7.

6. G = U4(3), |G| = 3, 265, 920 = 27 · 36 · 5 · 7,
H = L3(4), K = [34].

Let H = L3(4) be a class of maximal subgroup of G.
Now G has four conjugate classes 3A, 3B, 3C, 3D of
elements of order 3. By inspection of the permuta-
tion character 1G

H = 1a + 21a + 140a, it follows that
H only contains elements of type 3D. Now consider
the first class of maximal subgroup L = U4(2) with
the permutation character 1G

L = 1a+35a+90a. This
shows that L does not contain elements of type 3D,
in fact L contains elements of types 3A, 3B, and 3C.
Now let K = [34] be a Sylow 3-subgroup of L. Then
gKg−1 ∩ H = 1 for all g ∈ G. Thus we have a pair
(H,K) in G satisfying the condition of Theorem 4.1,
as required.

7. G = G2(3), |G| = 4, 245, 696 = 26 · 36 · 7 · 13,
H = U3(3) : 2, K = 31+2.

G contains five classes of elements of order 3. Let
H = U3(3) : 2 be a maximal subgroup of G with
the permutation character 1G

H = 1a + 168a + 182b.
Then H contains no 3-elements of type 3A, 3C, and
3D. Let L = L3(3) : 2 be a maximal subgroup of
G with the permutation character 1G

L = 1a + 91c +
104a + 182a. This shows that L only contains 3A-
and 3D-elements. Let K = 31+2 ≤ L be a Sylow 3-
subgroup of L. Then gKg−1 ∩ H = 1 for all g ∈ G.
Thus an appropriate pair (H,K) in G satisfying the
condition of Theorem 4.1 is found.
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8. G = S4(5), |G| = 4, 680, 000 = 26 · 32 · 54 · 13,
H = 51+2 : 2A5, K = S4.

Let H0 = 51+2 : 4A5 be a maximal subgroup of
G and let H = (H0)′ = 51+2 : 2A5 be the com-
mutator group of H0. Now G has two classes of
involutions and two classes of elements of order
3. A consideration of the permutation character
1G

H0
= 1a+65b+90a (see [Conway et al. 85, page 62])

shows that H contains no 2B-elements and no 3A-
elements. Now consider a maximal subgroup L = A6

of G. By the information in [Conway et al. 85] L con-
tains 2B-elements and L contains two classes of S4;
one class contains 3A-elements and the other 3B el-
ements. Now take K = S4 ≤ L such that K only
contains 3A-elements. Then gKg−1 ∩ H = 1 for all
g ∈ G. We therefore have a pair (H,K) in G satis-
fying the condition of Theorem 4.1.

9. G = U3(8), |G| = 5, 515, 776 = 29 · 34 · 7 · 19,
H = 23+6 : 7, K = [34].

10. G = U3(7), |G| = 5, 663, 616 = 27 · 3 · 73 · 43,
H = 71+2 : 3, K = [27].

11. G = M23, |G| = 10, 200, 960 = 27 · 32 · 5 · 7 · 11 · 23,
H = 24 : A7, K = 11.

12. G = U5(2), |G| = 13, 685, 760 = 210 · 35 · 5 · 11,
H = 21+6 : 31+2 : 2A4, K = 11 : 5.

13. G = 2F4(2)′, the Tits group, |G| = 17, 971, 200 =
211 · 33 · 52 · 13,
× × .

14. G = Sz(32), the Suzuki group, |G| = 32, 537, 600 =
210 · 52 · 31 · 41,
H = 25+5 : 31, K = 25 .

15. G = U3(9), |G| = 42, 573, 600 = 25 · 36 · 52 · 73,
× × .

16. G = HS, the Higman-Sims group, |G| =
44, 352, 000 = 29 · 32 · 53 · 7 · 11,
H = M22, K = 52.

G has three classes 5A, 5B, and 5C of 5-elements.
Let H = M22 be a maximal subgroup of G. Then
the permutation character 1G

H = 1a+22a+77a shows
that 5-elements in H are of type 5C. Consider L =
5 : 4×A5, a maximal subgroup of G. The 5-elements
in L are of type 5A and 5B only, for it can be seen in
O5(CG(5A)) = 51+2 that the product of commuting
5A and 5B is of type 5B. Let K = 52 ≤ L be a Sylow

5-subgroup of L. Then gKg−1∩H = 1 for all g ∈ G.
Hence the pair (H,K) can be used to construct an
MLS for G.

17. G = J3, the third Janko group, |G| = 50, 232, 960 =
27 · 35 · 5 · 17 · 19,
× × .

18. G = U3(11), |G| = 70, 915, 680 = 25 · 32 · 5 · 113 · 37,
H = 111+2 : 5, K = (42 × 3) : S3.

19. G = S4(7), |G| = 138, 297, 600 = 28 · 32 · 52 · 74,
H = 71+2(3 × SL2(7)), K = 52 : 4.

Using Magma, we can verify that H := NG(〈7A〉) =
71+2(3×SL2(7)) of order 24 · 32 · 74 contains involu-
tions of type 2A only, whereas K := NG(52) = 52 : 4
only has involutions of type 2B. Thus H and K are
a pair of subgroups of G satisfying the condition of
Theorem 4.1.

20. G = O+
8 (2), |G| = 174, 182, 400 = 212 · 35 · 52 · 7,

H = S6(2), K = A5.

First note that G has five classes of involutions, five
classes of 3-elements and three classes of 5-elements.
Let H = S6(2) be a maximal subgroup of G with
the permutation character 1G

H = 1a + 35a + 84a.
Then H contains no elements of type 2C, 2D, 3B,
3C, 5B, 5C. Further, there is a subgroup K = A5

in G containing 2B-elements, 3B-elements and 5B-
elements only. Thus gKg−1 ∩ H = 1 for all g ∈ G.
Thus H and K are the desired pair.

21. G = O−
8 (2), |G| = 197, 406, 720 = 212 · 34 · 5 · 7 · 17,

H = 26 : U4(2), K = 17.

22. G = 3D4(2), |G| = 211, 341, 312 = 212 · 34 · 72 · 13,
× × .

23. G = M24, |G| = 244, 823, 040 = 210 ·33 ·5 ·7 ·11 ·23,
H = 24 : A8, K = 23 : 11.

24. G = G2(4), |G| = 251, 596, 800 = 212 · 33 · 52 · 7 · 13,
× × .

25. G = U3(13), |G| = 811, 273, 008 = 24 ·3·72 ·133 ·157,
× × .

26. G = M cL, the McLaughlin group, |G| =
898, 128, 000 = 27 · 36 · 53 · 7 · 11,
× × .

27. G = U4(4), |G| = 1, 018, 368, 000 = 212 ·32 ·53 ·13·17,
H = 28 : (3 × L2(16)), K = 52.
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Let S be a Sylow 2-subgroup of G. Consider H =
NG(CS(S′)) ∼= 28 : (3 × L2(16)) of order 212 · 32 ·
5 · 17. Let F be a Sylow 5-subgroup of G. Then
N = NG(F ) = 53 : S4. Let T ∈ Syl3(N). Define
K = [F, T ] ∼= 52. Using Magma one shows that the
5-elements in K are not conjugate to 5-elements in
H. Thus H and K are a desired pair.

28. G = S4(8), |G| = 1, 056, 706, 560 = 212 ·34 ·5 ·72 ·13,
H = L2(64) : 2, K = L2(8).

By using Magma we see that G contains a pair of
subgroups H ∼= L2(64) : 2 of order 27 ·32 ·5 ·7 ·13 and
H ∼= L2(8) of order 23 · 32 · 7 such that H ∩ Kg = 1
for all g ∈ G.

29. G = S4(9), |G| = 1, 721, 606, 400 = 28 · 38 · 52 · 41,
H = 32+4 : 2̂A6, K = 5 × D16.

Let S ∈ Syl3(G). Then Z(S) ∼= 32 and N :=
NG(Z(S)) ∼= 32+4(8 ∗ 2̂A6). Define H := N ′ =
32+4 : 2̂A6, which is of order 24 · 38 · 5. By us-
ing Magma we see that 5-elements of H are of
type 5AB and involutions of H are of type 2A.
Further G contains 5-elements of type 5CD such
that NG(〈5CD〉) ∼= (〈5CD〉 × PGL2(9)) : 2 and
CG(5CD) ≥ K ∼= 〈5CD〉 × D16 with involutions
in K all of type 2B. So H ∩ Kg = 1 for all g ∈ G.

30. G = U3(17), |G| = 2, 317, 678, 272 = 26·34·7·13·173,
× × .

31. G = He, the Held group, |G| = 4, 030, 387, 200 =
210 · 33 · 52 · 73 · 17,
H = S4(4) : 2, K = 72 : D21.

Note that G has two classes of involutions and two
classes of 3-elements. Let H = S4(4) : 2 be a max-
imal subgroup of G. An inspection of the permu-
tation character 1G

H shows that H contains no 3-
elements of type 3B. Let L = 72 : 2L2(7) be a max-
imal subgroup of G. We have H ∩ L ≤ 2.S4. Now
G contains only one class of elements of order 8,
with fourth power of type 2B. Hence the involutions
in H ∩ L are of type 2B. Any element in G of or-
der 3 which commutes with a 2B-element is of type
3B. Thus 3-elements in L are of type 3B. Now let
K = 72 : F21 ≤ L. Then the pair (H,K) satisfies
the condition of Theorem 4.1.

32. G = U3(16), |G| = 4, 279, 234, 560 = 212·3·5·172·241,
H = [212] : 255, K = 241.

Here H is the normalizer of a Sylow 2-subgroup in G.

33. G = O7(3), |G| = 4, 585, 351, 680 = 29 · 39 · 5 · 7 · 13,
H = G2(3), K = A6.

G contains three classes of involutions and seven
classes of 3-elements. Let H = G2(3) be a class
of maximal subgroup of G having the permutation
character 1G

H = 1a + 260a + 891a. Then H contains
no involutions of type 2A and 2B and no 3-elements
of type 3B, 3C, and 3E. Let L = (S4×S6) be a max-
imal subgroup of G and let K = (S4 ×S6)(∞) ∼= A6.
A computation with the Magma algebra system
[Bosma et al. 97] shows that the involutions in K

are of type 2B and the 3-elements are of type 3B or
3C. Thus gKg−1 ∩ H = 1 for all g ∈ G. Hence G

has an MLS.

34. G = S6(3), |G| = 4, 585, 351, 680 = 29 · 39 · 5 · 7 · 13,
H = 31+4 : 2U4(2), K = (7 × 2) : 2.

Let H = 31+4 : 2U4(2). A consideration of the per-
mutation character 1G

H shows that H contains no
involutions of type 2B. Let L = (7 × 2) : 6 be the
normalizer of a Sylow 7-subgroup in G. By the in-
formation in [Conway et al. 85] all involutions in L

are of type 2B. Now take K = (7 × 2) : 2 ≤ L, then
gKg−1 ∩H = 1 for all g ∈ G. The pair (H,K) gives
an MLS for G.

35. G = G2(5), |G| = 5, 859, 000, 000 = 26 ·33 ·56 ·7 ·31,
H = U3(3) : 2, K = [56].

36. G = U6(2), |G| = 9, 196, 830, 720 = 215 ·36 ·5 ·7 ·11,
H = 29 : L3(4) : 2, K = [34].

Let H = 29 : L3(4) : 2 be a maximal subgroup of
G. An inspection of the permutation character 1G

H

shows that the 3-elements of H are of type 3C. Let
C = CG(9A) = S3×〈9A〉 be the centralizer of a 9A-
element in G and let T = O3(C). Then L = NG(T )
has the order 2 · 35. The Sylow 3-subgroup of L

contains a subgroup K = [34] such that T < K and
K contains no 3C-elements. Thus gKg−1 ∩ H = 1
for all g ∈ G. Hence the pair (H,K) satisfies the
condition of Theorem 4.1.

7. SIMPLE GROUPS OF ORDER ≤ 1010 HAVING
NO MLS BY THE MDCD

In this section, we present a proof that the method of
double coset decomposition does not provide an MLS for
the eight groups marked by × × in the list of Section 6.
Thereby, we show that further methods need to be de-
veloped in order to prove or disprove the existence of an
MLS for finite simple groups in general.
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In each of the following eight cases we assume by way of
contradiction that G has a double coset decomposition
G = ∪r

i=1HgiK with subgroups H and K satisfying the
condition of Theorem 4.1; so, in particular, we assume
that r ∈ {1, 4} or r is a prime.

7.1 G = 2F4(2)′, The Tits Group,
|G| = 17, 971, 200 = 211 · 33 · 52 · 13

Since G has only one class of 3-elements, we may as-
sume that 32 | |H| and 3 � |K|. By inspection of possi-
ble maximal subgroups M containing H in G we have
M ∈ {L3(3) : 2, A6.22}.

If |H|3 = 32, then r = 3, |H| | 25 · 32 · 5, and 26 · 5 ·
13 | |K|. Since G has no subgroups of order divisible by
26 · 5 · 13, we derive a contradiction. Therefore |H|3 = 33

and M = L3(3) : 2; in particular, 33 | |H| | 25 · 33 · 13
and 24 · 5 | |K|.

Note that G has no subgroups of order divisible by
24 · 5 · 13 or 26 · 52. Therefore r �= 13 and M ′ ≤ H ≤ M

with |H| ∈ {24 · 33 · 13, 25 · 33 · 13}.
If r ∈ {2, 4}, we get K = 52 : [24], r = 4, and H = M ;

this is a contradiction, because then K contains represen-
tatives of each class of involutions in G. Thus we have
r = 5 and (|H|, |K|) ∈ {(24·33·13, 27·5), (25·33·13, 26·5)}.
In any case, H contains only involutions of type 2B in
G, and so K contains only involutions of type 2A. Let
X ∈ Syl5(K) and observe that NG(X) = P : X2 with
P ∈ Syl5(G) and X2 ≡ Z4×Z2; moreover, any subgroup
of order 4 in X2 contains involutions of type 2B. This in
turn implies that |NK(X)| ∈ {5, 5·2}. As this contradicts
Sylow’s theorem, the claim follows.

7.2 G = U3(9),
|G| = 42, 573, 600 = 25 · 36 · 52 · 73

Since G has only one class of involutions, we may assume
that 23 | |H| and that |K| is odd.

If r ∈ {2, 4}, then an inspection of the subgroup
structure of G reveals that 73 | |K| | 73 · 3 and hence
25·35·52 | |H|. Since G has no subgroups of order divisible
by 25 ·35 ·52, we have reached a contradiction. Therefore
r is an odd prime and 25 | |H|; furthermore, if L is a max-
imal subgroup of G containing H, then L ≡ 5 × 2.A6.2
and 25 | |H| | 25 · 32 · 52. Now we get 33 | |K| and thus
73 � |K|; hence r = 73 and 34 | |K| | 36 · 52. An in-
spection of the maximal subgroups of G now shows that
K ≤ M ≡ 32+4 : 5. This in turn implies 5 | |H|.

Assume now that 5 | |K|. Since elements of order 5
in M act irreducibly on O3(M)/Z(O3(M)) ≡ 34, we get
K = M and H = O5(L)×L2 with L2 ∈ Syl2(L). We have

derived a contradiction, because the Sylow 5-subgroups
of M are conjugate to O5(L) in G.

We have shown that 52 | |H| and consequently H = L.
This in turn implies |K| = 34. Since elements of order 3
in H commute with an involution, they are all of type
3A in G. On the other hand, K∩Z(O3(M)) �= 1 and the
nontrivial elements of Z(O3(M)) are of type 3A in G as
well. This gives the desired final contradiction.

7.3 G = J3, The Third Janko Group,
|G| = 50, 232, 960 = 27 · 35 · 5 · 17 · 19

Since G has one class of involutions we may assume that
25 | |H| and that |K| is odd. If |H|2 = 25 or 26, then
35 ·5·17·19 | |K|, which is a contradiction to the orders of
maximal subgroups in G. Thus we have |H|2 = 27 and H

is contained in either 21+4 : A5 or 22+4 : (3 × S3), which
are maximal subgroups of G. It follows that |H|3 | 32.
Therefore 32 | |K|3. If r = 3, then 17 · 19 | |K|, a
contradiction to the orders of maximal subgroups in G.
So we have r �= 3 and |K|3 ≥ 33. Since the number of
double coset representatives with respect to H and K

is 1, 4, or prime, we get 17 | |K| or 19 | |K|, again a
contradiction to the orders of maximal subgroups in G.

7.4 G = 3D4(2),
|G| = 211, 341, 312 = 212 · 34 · 72 · 13

First note that G has nine classes of maximal subgroups,
namely (1) 21+8 : L2(8), (2) 22.[29] : (7×S3), (3) U3(3) :
2, (4) S3 × L2(8), (5) (7 × L2(7)) : 2, (6) 31+2 :
2S4, (7) 72 : 2A4, (8) 32 : 2A4, (9) 13 : 4.

Assume H ≤ 21+8 : L2(8), or H ≤ 22.[29] : (7 × S3).
Assume |H| is even. As G has no subgroup of order
divisible by 3 · 7 · 13, we see that 32 | |H|. If |K|3 = 32,
then |H|3 = 32; this implies H ≤ 21+8 : L2(8) and then
H must be a proper subgroup of 21+8 : L2(8), because
G has no subgroup of odd order divisible by 32 · 7 or
32 · 13. Since |H|3 = 32, we have H ≤ 21+8 : D18, and
thus 2 | |K|; it follows that either 2 · 32 · 7 · 13 | |K| or
2 · 32 · 72 | |K| and we obtain a contradiction because
G has no such proper subgroups K. This proves that
2 � |H|. As the role of H and K may be interchanged,
we conclude that K is neither a subgroup of even order
of 21+8 : L2(8) nor of 22.[29] : (7 × S3).

Assume H ≤ 72 : 2A4, 32 : 2A4, or 13 : 4. Then
|H|2 ≤ 23 and 27 | |K|. Hence K is contained in either
21+8 : L2(8) or 22.[29] : (7 × S3), a contradiction.

Assume H ≤ S3×L2(8), (7×L2(7)) : 2, or 31+2 : 2S4.
Then |H|2 ≤ 24 and 26 | |K|. If |K|2 = 26, then 13 | |K|,
a contradiction to the order of subgroups in G. Therefore
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27 | |K|. This in turn implies that K is a subgroup of
21+8 : L2(8) or of 22.[29] : (7 × S3), a contradiction.

Finally, assume H ≤ U3(3) : 2. Then 24 | |K|. As K

cannot be a subgroup of 21+8 : L2(8) or of 22.[29] : (7 ×
S3), it follows that |K|2 ≤ 26. The cases |K|2 = 24 or 25

are easily ruled out. Thus |K|2 = 26. This implies that
3 ·7 | |K| and K ≤ U3(3) : 2 and therefore K = U3(3) : 2.
Thus gKg−1 ∩ H �= 1 for some g ∈ G, a contradiction.

7.5 G = G2(4),
|G| = 251, 596, 800 = 212 · 33 · 52 · 7 · 13

Suppose first that r �= 13 | |K|. Then K is isomorphic to
one of the following groups: 13, 13:2, 13:3, 13:6, L2(13)
(22 ·3 ·7 ·13), U3(4) (26 ·3 ·52 ·13), U3(4).2 (27 ·3 ·52 ·13).
This implies that |K|3 = 3 and 3-elements in K are of
type 3B (by inspection of permutation characters). Since
any subgroup of order 32 in G contains elements of type
3A and type 3B, we get r = |H|3 = |K|3 = 3; and
the 3-elements in H are of type 3A and |H| = |G|

3·|K| ∈
{212 · 3 · 52 · 7, 211 · 3 · 52 · 7, 210 · 3 · 52, 26 · 3 · 7, 25 · 3 · 7}.
The first three possibilities are excluded by inspection
of the orders of maximal subgroups of G. This leaves
|H| ∈ {26 · 3 · 7, 25 · 3 · 7} and so H must be conjugate
to a subgroup of U3(3).2, 3̂L3(4).23, or J2; since none of
these three maximal subgroups of G contains a subgroup
of order |H|, we have reached a contradiction. We have
shown that 13 � |K|. Clearly, by symmetry, 13 � |H| and
so r = 13.

Since any subgroup of order 32 in G contains elements
of type 3A and type 3B, we may assume without loss of
generality that 33 | |H|. In particular, H is conjugate to
a subgroup of J2 (27 · 33 · 52 · 7), L := 3̂L3(4).23 (27 · 33 ·
5 · 7), or U := U3(3).2 (26 · 33 · 7) and 25 | |K|. Observe
that each of J2, L, and U contains involutions of type 2A
and type 2B. Therefore H must be conjugate to a proper
subgroup of J2, L, or U .

Assume next that 33 · 7 | |H|. An inspection of the
subgroup structure of J2, L, and U then shows that H is
isomorphic to 3̂L3(4) or U3(3); in particular, (|H|, |K|) ∈
{(26 · 33 · 5 · 7 , 26 · 5), (25 · 33 · 7 , 27 · 52)} and the
involutions of H are of type 2A. Since neither J2 nor
U3(3).2 contains subgroups of order 27 ·52, G contains no
subgroup of order 27·52. So we conclude that H ∼= 3̂L3(4)
and |K| = 26 · 5 and all involutions in K are of type 2B.
Since the 5-elements in H are of type 5AB, the 5-elements
in K are of type 5CD. By Sylow’s theorem we find that
2 | |CK(K5)| for K5 ∈ Syl5(K); this in turn implies that
K contains elements of type 2A, a contradiction. We
have shown that 7 � |H| and hence 7 | |K|.

Now 25 · 7 | |K| and so K is conjugate to a proper
subgroup of J2, L, or U . In particular, 25 | |K|2 | 27 and
thus 25 | |H|2 | 27. Now we easily see that in any case
H and K contain involutions of the same type, thereby
obtaining a final contradiction.

7.6 G = U3(13),
|G| = 811, 273, 008 = 24 · 3 · 72 · 133 · 157

To deal with the group G = U3(13) we need various facts
about conjugacy classes and subgroups of G which are
not recorded in the literature, so we collect these facts in
the following lemma.

Lemma 7.1. Let G = U3(13).

(i) Let Xp denote a representative of a G-conjugacy
class of a prime order subgroup in G. We have

Xp |Xp| CG(Xp) NG(Xp)

X2 2 7 × (SL2(13) : 2) 7 × (SL2(13) : 2)
X3 3 8 × 3 × 7 (8 × 3 × 7) : 2
X7A 7 7 × (SL2(13) : 2) 7 × (SL2(13) : 2)
X7B 7 7 × 7 × 22 (7 × 7 × 22) : 3
X7C 7 7 × 7 × 22 (7 × 7 × 22) : 3
X13A 13 131+2 : (2 × 7) 131+2 : (8 × 3 × 7)
X13B 13 132 132 : (4 × 3)
X157 157 157 157 : 3

(ii) G has a Sylow 7-normalizer isomorphic to (7 × 7 ×
22) : S3.

(iii) G has a Sylow 13-normalizer isomorphic to 131+2 :
(8 × 3 × 7).

(iv) If X � G with 157 | |X|, then X ≤ 157 : 3.

(v) If X � G with 132 | |X|, then X is contained in a
Sylow 13-normalizer of G.

Proof: The claims can be verified by means of Magma.

In order to prove that G = U3(13) has no MLS by
a double coset decomposition, we show first that r =
157 and without loss of generality 24 | |H|. This in turn
implies 131+2 ≤ K ≤ 131+2 : (3×7) and 24 ·7 | |H| | 24 ·3·
72. Using Lemma 7.1 we then derive O2(H) = O3(H) =
O7(H) = 1 and show that H is nonsolvable. Since the
only nonabelian simple {2, 3, 7}-groups are L2(7) (23 · 3 ·
7), L2(8) (23 · 32 · 7), and U3(3) (25 · 33 · 7), we finally
conclude that H ∼= Aut(L2(7)) ∼= L2(7) : 2. But then
the Sylow 2-subgroups of H are dihedral of order 16,
contrary to the fact that the Sylow 2-subgroups of G are
semidihedral of order 16.
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7.7 G = McL, the McLaughlin Group,
|G| = 898, 128, 000 = 27 · 36 · 53 · 7 · 11

As G has only one class of involutions, we may assume
that 25 | |H| and that |K| is odd.

Assume |H|2 = 25 or 26. By an inspection of possi-
ble maximal subgroups M containing H in G we have
M ∈ {U4(3), M22, 2.A8, 24 : A7}. If M = U4(3),
then 52 · 11 | |K|; if M = M22, then 34 · 52 | |K|; if
M = 2.A8 or 24 : A7, then 34 ·52 ·11 | |K|; all these cases
give a contradiction. Thus we have |H|2 = 27. We have
the following possibilities: (1) 52 | |K|, (2) 5 · 11 | |K|,
(3) 34 · 5 | |K|, (4) 33 · 52 · 11 | |K|, (5) 34 · 52 | |K|,
and (6) 34 · 5 · 11 | |K|. Cases (3), (4), (5), and (6) im-
mediately lead to a contradiction. Case (2) is ruled out,
since the 5-elements in K and H are of the same type,
namely 5B. Case (1) is also not possible, since any group
of order 52 contains 5-elements of both types 5A and 5B,
we cannot have gKg−1 ∩ H = 1 for all g ∈ G. Thus, we
have reached the desired contradiction.

7.8 G = U3(17),
|G| = 2, 317, 678, 272 = 26 · 34 · 7 · 13 · 173

The following lemma collects information about the
group G = U3(17) that is needed for our discussion and
that cannot be found in the literature.

Lemma 7.2. Let G = U3(17).

(i) Let Xp denote a representative of a G-conjugacy
class of a prime order subgroup in G. We have

Xp |Xp| CG(Xp) NG(Xp)

X2 2 3 × (SL2(17) : 2) 3 × (SL2(17) : 2)
X3A 3 3 × (SL2(17) : 2) 3 × (SL2(17) : 2)
X3B 3 (3 × 9 × 22) : 3 (3 × 9 × 22) : S3

X7 7 7 × 13 (7 × 13) : 3
X13 13 7 × 13 (7 × 13) : 3
X17A 17 171+2 : (2 × 3) 171+2 : (25 × 3)
X17B 17 172 172 : 16
X17C 17 172 172 : 16
X17D 17 172 172 : 16

(ii) The Sylow 2-subgroups of G are semidihedral of or-
der 64.

(iii) If X ≤ G with |X| = 172, then NG(X) ∼= 171+2 : 16.
Moreover, apart from one subgroup of type X17A, the
group X contains 17 further subgroups of order 17,
all of which have the same type.

(iv) If X ≤ G with |X| = 173, then NG(X) ∼= 171+2 :
(25 × 3).

(v) If X is a proper subgroup of G with 172 | |X|, then
X is contained in a Sylow 17-normalizer of G.

Proof: The claims can easily be verified by means of
Magma.

We now prove that G = U3(17) has no MLS by a
double coset decomposition. Since G has only one class
of involutions we may assume without loss of generality
that 24 | |H| and that |K| is odd.

Using the information in Lemma 7.2 we then deduce
that 17 | |K| and consequently 24 ·172 | |H|. This in turn
leads to r ∈ {2, 4}, 71+2 : 24 ≤ H ≤ 71+2 : (25 × 3), and
33 ·7 ·13 | |K| | 34 ·7 ·13. Obviously, O7(K) = O13(K) =
1. As K is solvable, we get Q := O3(K) �= 1. Since
7 � |GL3(3)|, we easily verify now that Q is centralized by
an element of order 7. As this contradicts the information
in Lemma 7.2, the desired result follows.

8. GROUPS HAVING A FACTORIZATION AS
PRODUCT OF TWO NONDISJOINT SUBGROUPS

Let G be a finite group such that G = H.K for some
proper subgroups H and K. As a special case of the
double coset method, we know by Theorem 4.1 that if
H ∩ K = 1 and if both H and K have an MLS, then
G evidently has an MLS. In other words, we can “glue”
MLS of H and K together to form an MLS for G. In
this section, we attempt to explore the case H ∩ K �= 1.
Here, the general question whether or not G has an MLS,
when H and K do, seems to be difficult. A solution of the
problem obviously depends on the subgroup structure of
H and K and also on the structure of their MLS. It turns
out that with an appropriate factorization of G = H.K

the “gluing method” actually works. We will illustrate
the method by several nontrivial examples. Interestingly,
in our examples the method of double coset decomposi-
tion still appears to be crucial.

8.1 G = A6

In G = A6 there are two classes of maximal subgroups
isomorphic to A5 having non-conjugate 3-elements. Let
H ∼= A5 be in the first class and K ∼= A5 be in the second
class. Obviously, G = H.K and W := H ∩K ∼= D10. Let
X = 3 be a subgroup of H and Y = 3 be a subgroup of
K. Let αW be an MLS for W , αX an MLS for X, and
αY an MLS for Y . By using the double coset method for
H with the pair (W,X) we obtain an MLS αH for H of
the form

αH = αX ∪ {1, h} ∪ αW .
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Similarly, using the pair (W,Y ) for the double coset
method we also obtain an MLS αK for K with

αK = αW ∪ {1, k} ∪ αY .

This shows that

αG := αX ∪ {1, h} ∪ αW ∪ {1, k} ∪ αY

is an MLS for G obtained by gluing αH and αK together.

8.2 G = U3(5)

It is easy to see that G = H.K, where H = Q : L,
Q = 51+2, L = 8, and K = A7. Thus X := H∩K = D20.

Let Z = Z(Q) = 5. The elements of Z are of type
5A, whereas the elements in Q \ Z are of type 5B, 5C,
or 5D. As the 5-elements of X are not of type 5A we
may assume without loss of generality that the elements
of X are of type 5B. Now take P a subgroup of order 5
of Q consisting of 5C-elements only. Then A = Z.P = 52

contains only elements of type 5A and 5C. Thus A∩Xh =
1 for all h ∈ H. So we can construct an MLS αH for H by
using an MLS αA for A and an MLS αX for X, namely

αH = αA ∪ {1, g} ∪ αX .

By inspection of the maximal subgroups of K = A7

we see that X ≤ M with M = S5 a maximal subgroup
of K. Let C ≤ M be any subgroup of order 3. Then the
pair (X,C) provides an MLS αM for M by the MDCD:
precisely αM = αX ∪{1, h}∪αC , in which αC is an MLS
for C. Now let N ≤ K be a subgroup of order 7. Using
the MDCD with the pair (M,N) we obtain an MLS αK

of the form: αK = αM ∪{1, k1, k2}∪αN , where αN is an
MLS for N . Thus

αK = αX ∪ {1, h} ∪ αC ∪ {1, k1, k2} ∪ αN .

By gluing αH and αK together we obtain the following
MLS for G:

αG = αA ∪ {1, g} ∪ αX ∪ {1, h} ∪ αC ∪ {1, k1, k2} ∪ αN .

8.3 G = J2

It is shown in [Liebeck et al. 90] that G = A.B with
A = U3(3) and B = A5 × D10 both maximal subgroups
of G, where |A∩B| = 6. Let C := A∩B. We state that C

is a cyclic group of order 6. This can be seen as follows. G

contains two classes of 6A and 6B elements, for which the
square of an 6A element is of type 3A and the square of
an 6B element is of type 3B. Now as any 3-element in the
factor A5 of B is of type 3A (see [Conway et al. 85, page

42]), we see that a 6-element of B is of type 6A. Further,
an inspection of the permutation characters of A = U3(3)
shows that A contains only 6A-elements. By conjugation,
we conclude that C = A∩B contains a 6A-element, and
therefore is cyclic. As a consequence, an involution in the
factor D10 of B is of type 2A, whereas the involutions in
the factor A5 of B are of type 2B [Conway et al. 85].

Next we construct two appropriate MLS for B and A,
so that they can be glued to form an MLS for G.

We take a pair of subgroup (H,K) for B satisfying the
condition of Theorem 4.1 as follows: H = 52, a Sylow
5-subgroup and K = C. Then, with the double coset
method, we obtain an MLS

αB = αH ∪ {1, x1, x2, x3} ∪ αC ,

where αH , respectively αC , are MLS for H, respectively
C.

By conjugation we can assume that C = A ∩ B is
contained in a maximal subgroup M = 31+2.8 of A. Let
L := 31+2.2 � M . We first construct an MLS for M

having αC as a block. Note that if αL is any MLS for
L, then it is easy to see that αL can be extended to an
MLS αM for M as M/L ∼= 4, (or see Lemma 2.4). Thus
we have

αM = αL ∪ {1, y1, y2, y3}.
Further, C ≤ L and an 3-element of C is of type 3A. Let
D = 3B be a subgroup of order 3 in L. Then using the
pair (C,D) for the double coset method, we obtain an
MLS αL for L of the form

αL = αC ∪ {1, u1, u2} ∪ αD.

Thus

αM = αC ∪ {1, u1, u2} ∪ αD ∪ {1, y1, y2, y3}.
Further, using the double coset method with a pair

(M,N), where N = 7 is any Sylow 7-subgroup of H, we
obtain an MLS αA for A:

αA = αM ∪ {1, g1, g2, g3} ∪ αN .

Hence

αA = αC ∪ {1, u1, u2} ∪ αD ∪ {1, y1, y2, y3}
∪ {1, g1, g2, g3} ∪ αN .

Now gluing αA and αB together gives an MLS αG for
G with

αG = αH ∪ {1, x1, x2, x3} ∪ αC ∪ {1, u1, u2} ∪ αD

∪ {1, y1, y2, y3} ∪ {1, g1, g2, g3} ∪ αN .
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9. CONCLUSIONS

We have introduced a simple, however, very effective
method of double coset decomposition to deal with the
question of the existence of minimal logarithmic signa-
tures for finite groups, and have shown that this method
allows construction of minimal logarithmic signatures for
almost all groups of order ≤ 1010 as well as for certain
infinite families of projective special linear groups. Fur-
ther, we have discussed a method of constructing minimal
logarithmic signatures for groups of the form G = A.B

with subgroups A and B and A ∩ B �= 1, by means of
constructing appropriate minimal logarithmic signatures
for A and B and then “gluing” them together. It turns
out that even here the method of double coset decom-
position plays a crucial role. The fundamental question
whether any finite group has a minimal logarithmic signa-
ture is, to our knowledge, still far from being answered.
This question is, of course, not only significant regard-
ing cryptographic purposes but also interesting from the
group-theoretic point of view, and it is worth further in-
vestigations.

ADDITIONAL NOTE

During the refereeing process of this paper the attention
of the authors was drawn to the preprint “On Minimal
Factorisations of Sporadic Groups” by P. E. Holmes,
where the existence problem of minimal factorisation of
the sporadic groups J1, J2, HS, M cL, He, and Co3 is
solved using methods similar to the ones presented here.
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