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We adapt the p-group generation algorithm to classify small-
dimensional nilpotent Lie algebras over small fields. Using an
implementation of this algorithm, we list the nilpotent Lie alge-
bras of dimension up to 9 over F2 and those of dimension up
to 7 over F3 and F5.

1. INTRODUCTION

The classification of n-dimensional nilpotent Lie algebras
over a given field F is a very difficult problem even for
relatively small n. The aim of this article is to present a
series of computer calculations that imply the following
theorem.

Theorem 1.1. The number of isomorphism types of six-
dimensional nilpotent Lie algebras is 36 over F2, and 34
over F3 and F5. The number of isomorphism types of
seven-dimensional nilpotent Lie algebras is 202 over F2,
199 over F3, and 211 over F5. The number of isomor-
phism types of nilpotent Lie algebras with dimension 8
and 9 over F2 is 1, 831 and 27, 073, respectively.

The classifications in Theorem 1.1 were obtained us-
ing a GAP 4 [The GAP Group 04] implementation of
a nilpotent Lie algebra generation algorithm. The ideas
used in these calculations are the same as those used in
the classification of finite 2-groups with order up to 29;
see [O’Brien 90, Eick and O’Brien 99]. Let γi (L) denote
the ith term of the lower central series of a Lie algebra
L, so that γ1 (L) = L, γ2 (L) = L′, etc. If L is a finitely
generated nilpotent Lie algebra with nilpotency class c,
then L is an immediate descendant of L/γc (L) (see Sec-
tion 2 for definitions). Further, L/γc (L) is an immediate
descendant of L/γc−1 (L). Continuing this way, we can
see that every finitely generated nilpotent Lie algebra
can be obtained after finitely many steps from a finite-
dimensional abelian Lie algebra by computing immediate
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descendants. This suggests that, once we can efficiently
compute immediate descendants, a theoretical algorithm
to generate all n-dimensional nilpotent Lie algebras can
be designed. We will see that every immediate descen-
dant of L is a quotient of another nilpotent Lie algebra,
that is referred to as the cover. It is shown, in this pa-
per, that, for a finite-dimensional nilpotent Fp-Lie alge-
bra L, it is possible to effectively compute the cover, and
then to compute a complete and irredundant list of the
isomorphism types of the immediate descendants of L.
Repeating the immediate descendant calculation finitely
many times, it is, in theory, possible to obtain a com-
plete and irredundant list of all isomorphism types of the
nilpotent Lie algebras with a given dimension n over a
finite field. In practice, this calculation quickly becomes
unfeasible as n grows. Nevertheless, using this approach,
it is possible to obtain classifications of Lie algebras that
would otherwise be beyond hope; see Theorem 1.1.

The structure of this paper is as follows. In Section 2,
we develop the theory of a Lie algebra generation algo-
rithm. An application of the algorithm to prove Theo-
rem 1.1 will be presented in Section 3. Finally, Section 4
will discuss an implementation of the algorithm.

2. A NILPOTENT LIE ALGEBRA GENERATION
ALGORITHM

Our nilpotent Lie algebra generation algorithm is an
adaptation of O’Brien’s p-group generation algorithm,
whose details can be found in [O’Brien 90]. In this section
we describe our algorithm without proofs. Another vari-
ation on this theme is presented in [O’Brien et al. 04]
where the authors classified groups and nilpotent Lie
rings of order p6. Recently O’Brien and Vaughan-Lee
used the same approach to extend these results to p7, see
[O’Brien and Vaughan-Lee 05].

Throughout this section, L is a finite-dimensional,
nilpotent Lie algebra. Let Z(L) denote the center of L.
A nilpotent Lie algebra K is said to be a central exten-
sion of L if K has an ideal I such that I � K ′∩Z(K) and
K/I ∼= L. Using the terminology of [Batten et al. 96, Bat-
ten and Stitzinger 96], (K, I) is said to be a defining pair
for L. The algebra K is said to be an immediate descen-
dant of L if L ∼= K/γc (K) where c is the nilpotency class
of K. Hence an immediate descendant is a special kind
of central extension. Suppose that dimL/L′ = d. Then
L is a d-generator Lie algebra, and so the free Lie algebra
Fd with rank d has an ideal I such that Fd/I ∼= L. The
cover L∗ of L is defined as the Lie algebra Fd/[I, Fd]. The
multiplicator of L∗ is the ideal I/[I, Fd]. The cover L∗

is also a finite-dimensional nilpotent Lie algebra. More-
over, if L has nilpotency class c then the class of L∗ is
at most c+ 1, and γc+1 (L∗) is referred to as the nucleus
of L∗.

Suppose now, without loss of generality, that L =
Fd/I as in the previous paragraph. Let L∗ be the cover of
L with multiplicator M and nucleus N . Then K is a cen-
tral extension of L if and only if K ∼= L∗/J for some ideal
J � M . Further, in this case, K is an immediate descen-
dant of L if and only if J �= M and J+N = M . A proper
subspace J of M with J+N = M is said to be allowable.
Thus it is possible to obtain a complete list of immediate
descendants of L by listing all quotients L∗/J where J
runs through the allowable subspaces of the multiplica-
tor M . Unfortunately, two different allowable subspaces
may lead to isomorphic Lie algebras. This problem can,
however, be tackled using the automorphism group of
L. If α is an automorphism, then α can be lifted to an
automorphism α∗ of L∗ as follows. Let ψ : L∗ → L de-
note the natural epimorphism with kernel M . Suppose
that b1, . . . , bd is a minimal generating set for L∗; then
b1ψ, . . . , bdψ is a minimal generating set for L. Suppose
that y1, . . . , yd ∈ L∗ are chosen so that biψα = yiψ for all
i ∈ {1, . . . , d}. Then the map bi �→ yi, for i = 1, . . . , d,
can uniquely be extended to an automorphism of L∗.
This automorphism is denoted α∗, even though it is not
uniquely determined by α. On the other hand the re-
striction of α∗ to M = I/[I, Fd] depends only on α. This
defines a linear representation

� : Aut(L) → GL(M) given by α �→ α∗|M . (2–1)

Using a familiar argument, it is not hard to see that
two allowable subspaces J1 and J2 give isomorphic Lie
algebras L∗/J1 and L∗/J2 if and only if J1 and J2 are in
the same orbit under the action Aut(L)�.

If J is an allowable subspace of the multiplicator then
the automorphism group of K = L∗/J can also be com-
puted using Aut(L). Let S denote the stabilizer in Aut(L)
of J under the representation �. Let X denote a gener-
ating set for S. For each α ∈ X choose α∗ ∈ Aut(L∗), as
in the previous paragraph, and let X∗ = {α∗ | α ∈ X}.
Suppose that {b1, . . . , bd} is a minimal generating set for
K and that {c1, . . . , cl} is a basis for the last non-trivial
term of the lower central series of K. For i ∈ {1, . . . , d}
and j ∈ {1, . . . , l} let ψi,j denote the automorphism that
maps bi to bi+cj and fixes b1, . . . , bi−1, bi+1, . . . , bd. Then
X∗ ∪ {ψi,j | i = 1, . . . , d, j = 1, . . . , l} is a generating set
for Aut(K).

A similar approach to compute the automorphism
group of a soluble Lie algebra over a finite field is de-
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scribed in [Eick 04]. Our method is, however, more effi-
cient for nilpotent Lie algebras.

The cover of a finite-dimensional nilpotent Lie algebra
L can be constructed in a way that is very similar to
the construction of the p-covering group of a finite p-
group. A good description of this procedure can be found
in [Newman et al. 98]. Suppose that L has class c, and
hence the lower central series is

L = γ1 (L) > γ2 (L)

= L′ > γ3 (L) > · · · > γc (L) > γc+1 (L)

= 0.

We say that a basis B = {b1, . . . , bn} for L is compatible
with the lower central series if there are indices 1 = i1 <

i2 < · · · < ic−1 < ic � n such that {bik
, . . . , bn} is a basis

of γk (L) for k ∈ {1, . . . , c}.
Suppose that bi ∈ γj (L) \ γj+1 (L). Then we say that

the number j is the weight of bi. We call a basis B a
nilpotent basis if the following hold.

(i) The basis B is compatible with the lower central se-
ries.

(ii) For each bi ∈ B with weight w � 2 there are bj1 , bj2 ∈
B with weight 1 and w − 1, respectively, such that
bi = [bj1 , bj2 ]. The product [bj1 , bj2 ] is called the
definition of bi.

If {b1, . . . , bn} is a nilpotent basis for a Lie algebra L,
then there are coefficients αk

i,j for i < j < k such that

[bi, bj ] =
n∑

k=j+1

αk
i,jbk. (2–2)

It is routine to see that every finitely generated nilpo-
tent Lie algebra has a nilpotent basis.

Suppose that B = {b1, . . . , bn} is a nilpotent basis for
a d-generator nilpotent Lie algebra and the αk

i,j are as
in (2–2). We build a presentation for the Lie algebra L∗

as follows. The set {bd+1, . . . , bn} is a basis for L′. If,
for some i < j, the product [bi, bj ] is not a definition
and w(bi) + w(bj) � c + 1, then we modify the product
in (2–2) by introducing a central basis element bi,j and
set

[bi, bj ] =
n∑

k=j+1

αk
i,jbk + bi,j .

We introduce the new basis elements so that different
nondefining products [bi, bj ] are augmented with differ-
ent basis elements bi,j . We also ensure that the newly
introduced basis elements bi,j are central. If a product

[bi, bj ] is a definition of bk, then the product [bi, bj ] = bk
is not modified. Similarly if w(bi) + w(bj) > c + 1 then
[bi, bj ] is left untouched. This way we obtain an anticom-
mutative algebra L̂ with basis {b1, . . . , bd} ∪ {bi,j} where
the product of two basis elements is defined using the
rules above. We compute the ideal J in L̂ generated by
the set of elements

{[[bi, bj ], bk] + [[bj , bk], bi] + [[bk, bi], bj ] |
i, j, k ∈ {1, . . . , n}}.

Then we obtain the cover L∗ as L̂/J .
It is possible to make this basic algorithm to compute

the cover more effective. In practice, we only introduce a
new basis element for products of the form [bi, bj ] where
w(bi) = 1 and compute products [bi, bj ] with w(bi) > 1
using the Jacobi identity. We also use the result in [Havas
et al. 90] that J is already generated by the set of element

{[[bi, bj ], bk] + [[bj , bk], bi] + [[bk, bi], bj ] |
i ∈ {1, . . . , d}, i < j < k � n}.

The proof that the resulting Lie algebra is isomorphic
to L∗ is completely analogous to that in the p-group case;
see [Newman et al. 98] for details.

3. SOME CLASSIFICATIONS OF SMALL LIE
ALGEBRAS

In theory, it is possible to use the procedures described
in Section 2 to classify nilpotent Fq-Lie algebras of a
given dimension using recursion. It is clear that there
is a unique one-dimensional nilpotent Lie algebra over
each field Fq; the automorphism group of this algebra
is naturally isomorphic to the multiplicative group F

∗
q .

Suppose that we have a complete and irredundant list
of nilpotent Fq-Lie algebras of dimension 1, . . . , n− 1 for
some n � 2 and we are also given the automorphism
groups of these algebras. Up to isomorphism, there is
exactly one n-dimensional abelian Fq-Lie algebra. Each
nonabelian nilpotent Lie algebra with dimension n is an
immediate descendant of a smaller-dimensional Lie alge-
bra. Hence, for each algebra L with dimension m in the
precomputed list we construct the Lie cover L∗, the mul-
tiplicator M , and Aut(L)� where � is the representation
in (2–1). Then, using the fact that M is finite, we con-
struct the orbits of the (m+ dimM − n)-dimensional al-
lowable subspaces under the finite linear group Aut(L)�.
For each orbit representative U , we construct the quo-
tient L∗/U and the stabiliser of U in Aut(L) under the
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Number Number
Type of this Type of this

Type Type

[ 6 ][ 6 ] 1 [ 3, 2, 1 ][ 2 ] 3
[ 5, 1 ][ 4 ] 1 [ 3, 2, 1 ][ 1 ] 3
[ 5, 1 ][ 2 ] 1 [ 3, 1, 2 ][ 3 ] 1
[ 4, 2 ][ 3 ] 1 [ 3, 1, 2 ][ 2 ] 3
[ 4, 2 ][ 2 ] 3 [ 3, 1, 1, 1 ][ 2 ] 2

[ 4, 1, 1 ][ 3 ] 1 [ 3, 1, 1, 1 ][ 1 ] 4
[ 4, 1, 1 ][ 2 ] 1 [ 2, 1, 2, 1 ][ 2 ] 1
[ 4, 1, 1 ][ 1 ] 1 [ 2, 1, 2, 1 ][ 1 ] 2
[ 3, 3 ][ 3 ] 1 [ 2, 1, 1, 1, 1 ][ 1 ] 6

TABLE 1. The nilpotent Lie algebras of dimension 6
over F2.

representation �. The automorphism group of L∗/U can
now be constructed as described in Section 2. The col-
lection of all Lie algebras L∗/U so obtained is a complete
and irredundant list of the isomorphism types of the non-
abelian nilpotent Lie algebras with dimension n.

Suppose that L is a finite-dimensional nilpotent Lie
algebra. Let c denote the class of L. Then the type of
the Lie algebra L is

[dimL/L′,dimL′/γ3 (L) , . . . ,dim γc (L)][dimZ(L)].

It is well known that, over an arbitrary field, there is
just one nilpotent Lie algebra with dimension 1 and 2.
There are two nilpotent Lie algebras with dimension 3
(the types are [3][3] and [2, 1][1]), and three nilpotent Lie
algebras with dimension 4 (the types are [4][4], [3, 1][2],
[2, 1, 1][1]). The number of isomorphism types of five-
dimensional nilpotent Lie algebras is nine over all fields;
see [Goze and Khakimdjanov 96]. Up to isomorphism,
there is exactly one Lie algebra with each of the fol-
lowing types: [5][5], [4, 1][3], [4, 1][1], [3, 2][2], [3, 1, 1][2],
[3, 1, 1][1], [2, 1, 2][2]; there are two Lie algebras with type
[2, 1, 1, 1][1].

The number of six-dimensional nilpotent Lie algebras
depends on the underlying field. Using the GAP 4 pack-

Number Number
Type of this Type of this

Type Type

[ 6 ][ 6 ] 1 [ 3, 2, 1 ][ 2 ] 3
[ 5, 1 ][ 4 ] 1 [ 3, 2, 1 ][ 1 ] 3
[ 5, 1 ][ 2 ] 1 [ 3, 1, 2 ][ 3 ] 1
[ 4, 2 ][ 3 ] 1 [ 3, 1, 2 ][ 2 ] 3
[ 4, 2 ][ 2 ] 3 [ 3, 1, 1, 1 ][ 2 ] 2

[ 4, 1, 1 ][ 3 ] 1 [ 3, 1, 1, 1 ][ 1 ] 3
[ 4, 1, 1 ][ 2 ] 1 [ 2, 1, 2, 1 ][ 2 ] 1
[ 4, 1, 1 ][ 1 ] 1 [ 2, 1, 2, 1 ][ 1 ] 2
[ 3, 3 ][ 3 ] 1 [ 2, 1, 1, 1, 1 ][ 1 ] 5

TABLE 2. The nilpotent Lie algebras with dimension 6
over F3 and F5.

Number Number Number Number
Type of this Type of this Type of this Type of this

Type Type Type Type

[ 7 ][ 7 ] 1 [ 5, 1, 1 ][ 1 ] 1 [ 4, 1, 1, 1 ][ 2 ] 4 [ 3, 1, 2, 1 ][ 2 ] 11
[ 6, 1 ][ 5 ] 1 [ 4, 3 ][ 4 ] 1 [ 4, 1, 1, 1 ][ 1 ] 5 [ 3, 1, 2, 1 ][ 1 ] 8
[ 6, 1 ][ 3 ] 1 [ 4, 3 ][ 3 ] 5 [ 3, 3, 1 ][ 3 ] 1 [ 3, 1, 1, 1, 1 ][ 2 ] 6
[ 6, 1 ][ 1 ] 1 [ 4, 2, 1 ][ 3 ] 3 [ 3, 3, 1 ][ 2 ] 3 [ 3, 1, 1, 1, 1 ][ 1 ] 21
[ 5, 2 ][ 4 ] 1 [ 4, 2, 1 ][ 2 ] 12 [ 3, 3, 1 ][ 1 ] 2 [ 2, 1, 2, 2 ][ 2 ] 3
[ 5, 2 ][ 3 ] 3 [ 4, 2, 1 ][ 1 ] 9 [ 3, 2, 2 ][ 3 ] 2 [ 2, 1, 2, 1, 1 ][ 2 ] 4
[ 5, 2 ][ 2 ] 2 [ 4, 1, 2 ][ 4 ] 1 [ 3, 2, 2 ][ 2 ] 21 [ 2, 1, 2, 1, 1 ][ 1 ] 14

[ 5, 1, 1 ][ 4 ] 1 [ 4, 1, 2 ][ 3 ] 3 [ 3, 2, 1, 1 ][ 2 ] 9 [ 2, 1, 1, 1, 2 ][ 2 ] 4
[ 5, 1, 1 ][ 3 ] 1 [ 4, 1, 2 ][ 2 ] 5 [ 3, 2, 1, 1 ][ 1 ] 13 [ 2, 1, 1, 1, 1, 1 ][ 1 ] 15
[ 5, 1, 1 ][ 2 ] 1 [ 4, 1, 1, 1 ][ 3 ] 2 [ 3, 1, 2, 1 ][ 3 ] 1

TABLE 3. The nilpotent Lie algebras of dimension 7 over F2.

age described in Section 4, we obtained 36 isomorphism
classes of six-dimensional nilpotent Lie algebras over F2,
and 34 such classes over F3 and F5. It is mentioned
in Wilkinson’s paper [Wilkinson 88] that the number
of isomorphism classes of finite p-groups with order p6

and exponent p is 34 whenever p � 7. Though there
are several mistakes in the main part of Wilkinson’s
paper (see discussion after Theorem 1 in [O’Brien and
Vaughan-Lee 05]), this particular claim appears to be
true, as verified in [O’Brien et al. 04]. Using the Lazard
correspondence [O’Brien et al. 04, Section 4] we obtain
that, for p � 7, there are 34 pairwise nonisomorphic six-
dimensional nilpotent Fp-Lie algebras. In fact, the com-
putation referred to above implies that this claim holds
for p = 3, 5. The number of six-dimensional, nilpotent
F2-Lie algebras for each possible type can be found in Ta-
ble 1, while Table 2 contains the same information over
F3 and F5. One can read off, for instance, from these ta-
bles that there are six pairwise nonisomorphic nilpotent
Lie algebras with type [2, 1, 1, 1, 1][1] over F2 and there
are only five such Lie algebras over F3 and F5.

Shedler’s thesis [Shedler 64] contains a classification
of six-dimensional nilpotent Lie algebras over any field.
However, this work is unpublished and as [Gong 98]
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Number Number Number Number
Type of this Type of this Type of this Type of this

Type Type Type Type

[ 7 ][ 7 ] 1 [ 5, 1, 1 ][ 1 ] 1 [ 4, 1, 1, 1 ][ 2 ] 3 [ 3, 1, 2, 1 ][ 2 ] 10
[ 6, 1 ][ 5 ] 1 [ 4, 3 ][ 4 ] 1 [ 4, 1, 1, 1 ][ 1 ] 5 [ 3, 1, 2, 1 ][ 1 ] 12
[ 6, 1 ][ 3 ] 1 [ 4, 3 ][ 3 ] 5 [ 3, 3, 1 ][ 3 ] 1 [ 3, 1, 1, 1, 1 ][ 2 ] 5
[ 6, 1 ][ 1 ] 1 [ 4, 2, 1 ][ 3 ] 3 [ 3, 3, 1 ][ 2 ] 3 [ 3, 1, 1, 1, 1 ][ 1 ] 17
[ 5, 2 ][ 4 ] 1 [ 4, 2, 1 ][ 2 ] 12 [ 3, 3, 1 ][ 1 ] 5 [ 2, 1, 2, 2 ][ 2 ] 3
[ 5, 2 ][ 3 ] 3 [ 4, 2, 1 ][ 1 ] 9 [ 3, 2, 2 ][ 3 ] 2 [ 2, 1, 2, 1, 1 ][ 2 ] 4
[ 5, 2 ][ 2 ] 2 [ 4, 1, 2 ][ 4 ] 1 [ 3, 2, 2 ][ 2 ] 21 [ 2, 1, 2, 1, 1 ][ 1 ] 16

[ 5, 1, 1 ][ 4 ] 1 [ 4, 1, 2 ][ 3 ] 3 [ 3, 2, 1, 1 ][ 2 ] 8 [ 2, 1, 1, 1, 2 ][ 2 ] 3
[ 5, 1, 1 ][ 3 ] 1 [ 4, 1, 2 ][ 2 ] 5 [ 3, 2, 1, 1 ][ 1 ] 14 [ 2, 1, 1, 1, 1, 1 ][ 1 ] 11
[ 5, 1, 1 ][ 2 ] 1 [ 4, 1, 1, 1 ][ 3 ] 2 [ 3, 1, 2, 1 ][ 3 ] 1

TABLE 4. The nilpotent Lie algebras with dimension 7 over F3.

Number Number Number Number
Type of this Type of this Type of this Type of this

Type Type Type Type

[ 7 ][ 7 ] 1 [ 5, 1, 1 ][ 1 ] 1 [ 4, 1, 1, 1 ][ 2 ] 3 [ 3, 1, 2, 1 ][ 2 ] 10
[ 6, 1 ][ 5 ] 1 [ 4, 3 ][ 4 ] 1 [ 4, 1, 1, 1 ][ 1 ] 5 [ 3, 1, 2, 1 ][ 1 ] 16
[ 6, 1 ][ 3 ] 1 [ 4, 3 ][ 3 ] 5 [ 3, 3, 1 ][ 3 ] 1 [ 3, 1, 1, 1, 1 ][ 2 ] 5
[ 6, 1 ][ 1 ] 1 [ 4, 2, 1 ][ 3 ] 3 [ 3, 3, 1 ][ 2 ] 3 [ 3, 1, 1, 1, 1 ][ 1 ] 16
[ 5, 2 ][ 4 ] 1 [ 4, 2, 1 ][ 2 ] 12 [ 3, 3, 1 ][ 1 ] 6 [ 2, 1, 2, 2 ][ 2 ] 3
[ 5, 2 ][ 3 ] 3 [ 4, 2, 1 ][ 1 ] 9 [ 3, 2, 2 ][ 3 ] 2 [ 2, 1, 2, 1, 1 ][ 2 ] 4
[ 5, 2 ][ 2 ] 2 [ 4, 1, 2 ][ 4 ] 1 [ 3, 2, 2 ][ 2 ] 21 [ 2, 1, 2, 1, 1 ][ 1 ] 18

[ 5, 1, 1 ][ 4 ] 1 [ 4, 1, 2 ][ 3 ] 3 [ 3, 2, 1, 1 ][ 2 ] 8 [ 2, 1, 1, 1, 2 ][ 2 ] 3
[ 5, 1, 1 ][ 3 ] 1 [ 4, 1, 2 ][ 2 ] 5 [ 3, 2, 1, 1 ][ 1 ] 18 [ 2, 1, 1, 1, 1, 1 ][ 1 ] 13
[ 5, 1, 1 ][ 2 ] 1 [ 4, 1, 1, 1 ][ 3 ] 2 [ 3, 1, 2, 1 ][ 3 ] 1

TABLE 5. The nilpotent Lie algebras with dimension 7 over F5.

Number Number Number Number
Type of this Type of this Type of this Type of this

Type Type Type Type

[ 8 ][ 8 ] 1 [ 5, 2, 1 ][ 1 ] 13 [ 4, 2, 1, 1 ][ 1 ] 54 [ 3, 2, 1, 1, 1 ][ 1 ] 88
[ 7, 1 ][ 6 ] 1 [ 5, 1, 2 ][ 5 ] 1 [ 4, 1, 2, 1 ][ 4 ] 1 [ 3, 1, 2, 2 ][ 3 ] 3
[ 7, 1 ][ 4 ] 1 [ 5, 1, 2 ][ 4 ] 3 [ 4, 1, 2, 1 ][ 3 ] 11 [ 3, 1, 2, 2 ][ 2 ] 37
[ 7, 1 ][ 2 ] 1 [ 5, 1, 2 ][ 3 ] 5 [ 4, 1, 2, 1 ][ 2 ] 48 [ 3, 1, 2, 1, 1 ][ 3 ] 4
[ 6, 2 ][ 5 ] 1 [ 5, 1, 2 ][ 2 ] 14 [ 4, 1, 2, 1 ][ 1 ] 26 [ 3, 1, 2, 1, 1 ][ 2 ] 71
[ 6, 2 ][ 4 ] 3 [ 5, 1, 1, 1 ][ 4 ] 2 [ 4, 1, 1, 1, 1 ][ 3 ] 6 [ 3, 1, 2, 1, 1 ][ 1 ] 82
[ 6, 2 ][ 3 ] 2 [ 5, 1, 1, 1 ][ 3 ] 4 [ 4, 1, 1, 1, 1 ][ 2 ] 21 [ 3, 1, 1, 1, 2 ][ 3 ] 4
[ 6, 2 ][ 2 ] 8 [ 5, 1, 1, 1 ][ 2 ] 5 [ 4, 1, 1, 1, 1 ][ 1 ] 39 [ 3, 1, 1, 1, 2 ][ 2 ] 39

[ 6, 1, 1 ][ 5 ] 1 [ 5, 1, 1, 1 ][ 1 ] 5 [ 3, 3, 2 ][ 4 ] 1 [ 3, 1, 1, 1, 1, 1 ][ 2 ] 15
[ 6, 1, 1 ][ 4 ] 1 [ 4, 4 ][ 4 ] 4 [ 3, 3, 2 ][ 3 ] 15 [ 3, 1, 1, 1, 1, 1 ][ 1 ] 80
[ 6, 1, 1 ][ 3 ] 1 [ 4, 3, 1 ][ 4 ] 1 [ 3, 3, 2 ][ 2 ] 77 [ 2, 1, 2, 3 ][ 3 ] 1
[ 6, 1, 1 ][ 2 ] 1 [ 4, 3, 1 ][ 3 ] 29 [ 3, 3, 1, 1 ][ 3 ] 3 [ 2, 1, 2, 2, 1 ][ 2 ] 26
[ 6, 1, 1 ][ 1 ] 1 [ 4, 3, 1 ][ 2 ] 51 [ 3, 3, 1, 1 ][ 2 ] 13 [ 2, 1, 2, 2, 1 ][ 1 ] 20
[ 5, 3 ][ 5 ] 1 [ 4, 3, 1 ][ 1 ] 25 [ 3, 3, 1, 1 ][ 1 ] 6 [ 2, 1, 2, 1, 2 ][ 3 ] 2
[ 5, 3 ][ 4 ] 5 [ 4, 2, 2 ][ 4 ] 2 [ 3, 2, 3 ][ 3 ] 28 [ 2, 1, 2, 1, 2 ][ 2 ] 24
[ 5, 3 ][ 3 ] 16 [ 4, 2, 2 ][ 3 ] 48 [ 3, 2, 2, 1 ][ 3 ] 11 [ 2, 1, 2, 1, 1, 1 ][ 2 ] 12

[ 5, 2, 1 ][ 4 ] 3 [ 4, 2, 2 ][ 2 ] 209 [ 3, 2, 2, 1 ][ 2 ] 164 [ 2, 1, 2, 1, 1, 1 ][ 1 ] 24
[ 5, 2, 1 ][ 3 ] 12 [ 4, 2, 1, 1 ][ 3 ] 9 [ 3, 2, 2, 1 ][ 1 ] 84 [ 2, 1, 1, 1, 2, 1 ][ 2 ] 11
[ 5, 2, 1 ][ 2 ] 35 [ 4, 2, 1, 1 ][ 2 ] 59 [ 3, 2, 1, 1, 1 ][ 2 ] 49 [ 2, 1, 1, 1, 1, 1, 1 ][ 1 ] 47

TABLE 6. The nilpotent Lie algebras with dimension 8 over F2.

points out, contains several mistakes. There exist classifi-
cations of six-dimensional nilpotent Lie algebras over infi-
nite fields; see for instance [Goze and Khakimdjanov 96].

A classification of finite p-groups with exponent p and
order p7 was obtained by Wilkinson [Wilkinson 88]. If

p � 7 then, by the Lazard correspondence, the num-
ber of finite p-groups with exponent p and order p7 co-
incides with the number of seven-dimensional nilpotent
Fp-Lie algebras. According to Wilkinson this number is
173 + 7p+ 2gcd(p− 1, 3), but as [O’Brien and Vaughan-
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Number Number Number Number
Type of this Type of this Type of this Type of this

Type Type Type Type

[ 9 ][ 9 ] 1 [ 5, 3, 1 ][ 5 ] 1 [ 4, 2, 2, 1 ][ 4 ] 11 [ 3, 2, 2, 1, 1 ][ 1 ] 1282
[ 8, 1 ][ 7 ] 1 [ 5, 3, 1 ][ 4 ] 29 [ 4, 2, 2, 1 ][ 3 ] 402 [ 3, 2, 1, 1, 2 ][ 3 ] 33
[ 8, 1 ][ 5 ] 1 [ 5, 3, 1 ][ 3 ] 327 [ 4, 2, 2, 1 ][ 2 ] 2859 [ 3, 2, 1, 1, 2 ][ 2 ] 325
[ 8, 1 ][ 3 ] 1 [ 5, 3, 1 ][ 2 ] 318 [ 4, 2, 2, 1 ][ 1 ] 713 [ 3, 2, 1, 1, 1, 1 ][ 2 ] 163
[ 8, 1 ][ 1 ] 1 [ 5, 3, 1 ][ 1 ] 133 [ 4, 2, 1, 1, 1 ][ 3 ] 49 [ 3, 2, 1, 1, 1, 1 ][ 1 ] 435
[ 7, 2 ][ 6 ] 1 [ 5, 2, 2 ][ 5 ] 2 [ 4, 2, 1, 1, 1 ][ 2 ] 487 [ 3, 1, 2, 3 ][ 4 ] 1
[ 7, 2 ][ 5 ] 3 [ 5, 2, 2 ][ 4 ] 48 [ 4, 2, 1, 1, 1 ][ 1 ] 565 [ 3, 1, 2, 3 ][ 3 ] 21
[ 7, 2 ][ 4 ] 2 [ 5, 2, 2 ][ 3 ] 502 [ 4, 1, 2, 2 ][ 4 ] 3 [ 3, 1, 2, 2, 1 ][ 3 ] 26
[ 7, 2 ][ 3 ] 8 [ 5, 2, 2 ][ 2 ] 799 [ 4, 1, 2, 2 ][ 3 ] 37 [ 3, 1, 2, 2, 1 ][ 2 ] 622
[ 7, 2 ][ 2 ] 6 [ 5, 2, 1, 1 ][ 4 ] 9 [ 4, 1, 2, 2 ][ 2 ] 258 [ 3, 1, 2, 2, 1 ][ 1 ] 302

[ 7, 1, 1 ][ 6 ] 1 [ 5, 2, 1, 1 ][ 3 ] 59 [ 4, 1, 2, 1, 1 ][ 4 ] 4 [ 3, 1, 2, 1, 2 ][ 4 ] 2
[ 7, 1, 1 ][ 5 ] 1 [ 5, 2, 1, 1 ][ 2 ] 231 [ 4, 1, 2, 1, 1 ][ 3 ] 71 [ 3, 1, 2, 1, 2 ][ 3 ] 79
[ 7, 1, 1 ][ 4 ] 1 [ 5, 2, 1, 1 ][ 1 ] 129 [ 4, 1, 2, 1, 1 ][ 2 ] 463 [ 3, 1, 2, 1, 2 ][ 2 ] 353
[ 7, 1, 1 ][ 3 ] 1 [ 5, 1, 2, 1 ][ 5 ] 1 [ 4, 1, 2, 1, 1 ][ 1 ] 318 [ 3, 1, 2, 1, 1, 1 ][ 3 ] 12
[ 7, 1, 1 ][ 2 ] 1 [ 5, 1, 2, 1 ][ 4 ] 11 [ 4, 1, 1, 1, 2 ][ 4 ] 4 [ 3, 1, 2, 1, 1, 1 ][ 2 ] 230
[ 7, 1, 1 ][ 1 ] 1 [ 5, 1, 2, 1 ][ 3 ] 48 [ 4, 1, 1, 1, 2 ][ 3 ] 39 [ 3, 1, 2, 1, 1, 1 ][ 1 ] 314
[ 6, 3 ][ 6 ] 1 [ 5, 1, 2, 1 ][ 2 ] 180 [ 4, 1, 1, 1, 2 ][ 2 ] 191 [ 3, 1, 1, 1, 2, 1 ][ 3 ] 11
[ 6, 3 ][ 5 ] 5 [ 5, 1, 2, 1 ][ 1 ] 37 [ 4, 1, 1, 1, 1, 1 ][ 3 ] 15 [ 3, 1, 1, 1, 2, 1 ][ 2 ] 181
[ 6, 3 ][ 4 ] 16 [ 5, 1, 1, 1, 1 ][ 4 ] 6 [ 4, 1, 1, 1, 1, 1 ][ 2 ] 80 [ 3, 1, 1, 1, 1, 1, 1 ][ 2 ] 47
[ 6, 3 ][ 3 ] 122 [ 5, 1, 1, 1, 1 ][ 3 ] 21 [ 4, 1, 1, 1, 1, 1 ][ 1 ] 213 [ 3, 1, 1, 1, 1, 1, 1 ][ 1 ] 423

[ 6, 2, 1 ][ 5 ] 3 [ 5, 1, 1, 1, 1 ][ 2 ] 39 [ 3, 3, 3 ][ 4 ] 16 [ 2, 1, 2, 3, 1 ][ 3 ] 5
[ 6, 2, 1 ][ 4 ] 12 [ 5, 1, 1, 1, 1 ][ 1 ] 47 [ 3, 3, 3 ][ 3 ] 642 [ 2, 1, 2, 3, 1 ][ 2 ] 10
[ 6, 2, 1 ][ 3 ] 35 [ 4, 5 ][ 5 ] 2 [ 3, 3, 2, 1 ][ 4 ] 2 [ 2, 1, 2, 2, 2 ][ 3 ] 19
[ 6, 2, 1 ][ 2 ] 70 [ 4, 4, 1 ][ 4 ] 19 [ 3, 3, 2, 1 ][ 3 ] 104 [ 2, 1, 2, 2, 2 ][ 2 ] 170
[ 6, 2, 1 ][ 1 ] 18 [ 4, 4, 1 ][ 3 ] 77 [ 3, 3, 2, 1 ][ 2 ] 808 [ 2, 1, 2, 2, 1, 1 ][ 2 ] 60
[ 6, 1, 2 ][ 6 ] 1 [ 4, 4, 1 ][ 2 ] 127 [ 3, 3, 2, 1 ][ 1 ] 316 [ 2, 1, 2, 2, 1, 1 ][ 1 ] 98
[ 6, 1, 2 ][ 5 ] 3 [ 4, 4, 1 ][ 1 ] 54 [ 3, 3, 1, 1, 1 ][ 3 ] 16 [ 2, 1, 2, 1, 2, 1 ][ 3 ] 6
[ 6, 1, 2 ][ 4 ] 5 [ 4, 3, 2 ][ 5 ] 1 [ 3, 3, 1, 1, 1 ][ 2 ] 86 [ 2, 1, 2, 1, 2, 1 ][ 2 ] 62
[ 6, 1, 2 ][ 3 ] 14 [ 4, 3, 2 ][ 4 ] 55 [ 3, 3, 1, 1, 1 ][ 1 ] 76 [ 2, 1, 2, 1, 2, 1 ][ 1 ] 16
[ 6, 1, 2 ][ 2 ] 25 [ 4, 3, 2 ][ 3 ] 814 [ 3, 2, 4 ][ 4 ] 12 [ 2, 1, 2, 1, 1, 1, 1 ][ 2 ] 40

[ 6, 1, 1, 1 ][ 5 ] 2 [ 4, 3, 2 ][ 2 ] 2510 [ 3, 2, 3, 1 ][ 3 ] 258 [ 2, 1, 2, 1, 1, 1, 1 ][ 1 ] 124
[ 6, 1, 1, 1 ][ 4 ] 4 [ 4, 3, 1, 1 ][ 4 ] 3 [ 3, 2, 3, 1 ][ 2 ] 429 [ 2, 1, 1, 1, 2, 2 ][ 2 ] 7
[ 6, 1, 1, 1 ][ 3 ] 5 [ 4, 3, 1, 1 ][ 3 ] 131 [ 3, 2, 3, 1 ][ 1 ] 203 [ 2, 1, 1, 1, 2, 1, 1 ][ 2 ] 45
[ 6, 1, 1, 1 ][ 2 ] 5 [ 4, 3, 1, 1 ][ 2 ] 396 [ 3, 2, 2, 2 ][ 3 ] 44 [ 2, 1, 1, 1, 2, 1, 1 ][ 1 ] 18
[ 6, 1, 1, 1 ][ 1 ] 5 [ 4, 3, 1, 1 ][ 1 ] 296 [ 3, 2, 2, 2 ][ 2 ] 908 [ 2, 1, 1, 1, 1, 1, 2 ][ 2 ] 32

[ 5, 4 ][ 5 ] 4 [ 4, 2, 3 ][ 4 ] 28 [ 3, 2, 2, 1, 1 ][ 3 ] 71 [ 2, 1, 1, 1, 1, 1, 1, 1 ][ 1 ] 124
[ 5, 4 ][ 4 ] 53 [ 4, 2, 3 ][ 3 ] 1377 [ 3, 2, 2, 1, 1 ][ 2 ] 1296

TABLE 7. The nilpotent Lie algebras with dimension 9 over F2.

Lee 05] points out there are several mistakes in Wilkin-
son’s calculations and the correct number is

174 + 7p+ 2gcd(p− 1, 3). (3–1)

Computer calculations with the GAP 4 package described
in Section 4 show that the number of seven-dimensional
nilpotent Lie algebras over F2, F3, and F5 is 202, 199,
and 211, respectively; the number of Lie algebras for each
possible type is presented in Tables 3–5. This calculation
also shows that (3–1) is valid over F5. Michael Vaughan-
Lee independently obtained a classification of nilpotent
Lie rings with order p7, and the numbers above were also
confirmed by his computation.

For some classifications of seven-dimensional nilpotent
Lie algebras over infinite fields we refer to [Ancochéa-

Bermúdez and Goze 89, Romdhani 89, Gong 98, Goze
and Remm 04].

The author’s GAP 4 program was also used the obtain
a classification of nilpotent F2-Lie algebras with dimen-
sion 8 and 9. The total number of such Lie algebras is
1, 831 and 27, 073. More detailed information about the
possible types can be found in Tables 6–8.

The classifications of nilpotent Lie algebras in The-
orem 1.1 are available in GAP 4 format on the
author’s web site http://www.sztaki.hu/∼schneider/
Research/SmallLie/.

4. IMPLEMENTATION OF THE ALGORITHMS

Implementations of all procedures described in Section 2
are available in the GAP 4 computer algebra package So-
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phus. This program can be freely downloaded from the
author’s web page http://www.sztaki.hu/∼schneider/
Research/Sophus/. The current version of Sophus con-
tains

(i) a program to compute the cover of a nilpotent Lie
algebra;

(ii) a program to compute the automorphism group of a
nilpotent Lie algebra;

(iii) a program to compute the set of immediate descen-
dants of a nilpotent Lie algebra; and

(iv) a program to check if two nilpotent Lie algebras are
isomorphic.

The full implementation of these procedures is nearly
4, 000 lines long.

The classifications presented in the previous section
were computed on several Pentium 4 computers between
1.7- and 2.5-GHz CPU speed and 1-2 GB memory. The
computation of the list of the F2-Lie algebras with di-
mension up to 6 takes only a few seconds, while those for
dimension 7 take about three minutes.

Determining the remaining classes of nilpotent Lie al-
gebras in Theorem 1.1 is more complicated and requires
human intervention. Most of the descendant computa-
tions for the eight- and nine-dimensional Lie algebras
over F2 could easily be carried out. However, computing
the eight-dimensional descendants of the six-dimensional
abelian Lie algebra requires finding representatives of
the GL(6, 2)-orbits on the set of 178,940,587 allowable
subspaces under the action in (2–1). In the computa-
tion of the nine-dimensional descendants of the seven-
dimensional abelian Lie algebra, the number of allowable
subspaces is 733,006,703,275. In such cases we applied
the Cauchy-Frobenius Lemma (see [Eick and O’Brien 99,
Section 4]) to predict the number of descendants. Then
we used either the ideas of O’Brien’s extended algorithm
presented in [O’Brien 91, Section 2] or the existing classi-
fication of 2-groups of order up to 29. In the latter case we
constructed Lie algebras associated with the 2-central se-
ries filtration of the groups, tested them for isomorphism,
and eliminated the duplicates.

For computing the seven-dimensional descendants of
the five-dimensional abelian Lie algebras over F3 and F5,
we used the result of the corresponding computation over
F2. The Cauchy-Frobenius Lemma implies that the num-
ber of these Lie algebras is the same over F2, F3, and F5.
It is possible to interpret the structure constants table

of the F2-Lie algebras over F3 and F5 and obtain the re-
quired lists. Then the algebras in these lists were tested
for nonisomorphism.

The most difficult problem when computing the im-
mediate descendants of a nilpotent Lie algebra is com-
puting the orbits of the allowable subspaces under the
representation (2–1). Further, for computing the auto-
morphism group of an immediate descendant, the sta-
biliser of an allowable subspace must also be calculated;
see Section 2. These orbit-stabiliser computations were
carried out adopting the procedures described in [Eick et
al. 02].
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