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It is well known that the ring of polynomial invariants of a fi-
nite matrix group G becomes more and more messy the further
one moves away from groups generated by pseudoreflections,
see [Huffman and Sloane 79]. Also, the number of generators
has a tendency to become large. In this experimental study, we
try to create evidence for the observation that these unpleasant
properties might improve if one enlarges the ring of invariants in
one way or another. For instance, G might fix a symplectic form.
It can be used to turn the ring of invariants into a Lie algebra by
introducing a G-invariant Poisson bracket. In the absence of an
invariant symplectic form, one might still consider the Lie al-
gebra of invariant polynomial vector fields simultaneously with
the ring of polynomial invariants. If one is prepared to leave the
realm of commutative rings and Lie algebras, one can also take
G-invariant differential operators into account. Under these ad-
ditional operations the number of generators necessary to create
all invariants is often drastically decreased. A particularly nice
situation arises if the group fixes a quadratic form and a symplec-
tic form at the same time, because together they give rise to an
endomorphism on the space of homogeneous invariants of any
given degree that, for instance, can be used to single out more
effective generators in the new sense. In the classical situation of
fields of characteristic zero, to which this paper is restricted, the
averaging operator is both theoretically and algorithmically an
important tool, whose computational feasibility, however, de-
creases with increasing degrees. The methods presented here
might also help to avoid this difficulty.

1. INTRODUCTION

This paper starts with an outline of bigraded modules
that come up in invariant theory of finite groups. At
the end of Section 2, this is applied to reducible groups,
in particular, the complexity of constructing the ring
of invariants of a reducible finite group is shown to be
more or less additive only in the corresponding complex-
ities for the constituent groups. In Section 3, the bi-
grading approach is applied to the G-invariants in the
Weyl algebra, and consequences for ordinary invariants,
in particular, in the presence ofG-invariant bilinear forms
are investigated. The advantages of constructing the
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invariants of a group and the transposed group at the
same time are discussed in Section 4. The observation
that invariant polynomial vector fields are very effective
in reducing the number of generators for the invariant
ring is outlined in Section 5. The Poisson bracket de-
rived from a G-invariant symplectic form is discussed
in Section 6. Two examples are presented at the end,
a small one in Section 7 and one, where standard soft-
ware (cf. [Bosma et al. 97]) almost reaches its limits, in
Section 8.

2. BIGRADED MODULES

Throughout this paper K will be the field of complex
numbers, G a finite group, V a finitely generated KG-
module affording the matrix representation ∆ : G →
GL(n,K) with respect to some fixed basis, and V ∗ the
dual module affording the matrix representation ∆−tr

with respect to the dual basis x1, . . . , xn. Finally, Irr(G)
denotes the set of irreducible characters of G.

Z- or even Z≥0-graded modules are quite common
in invariant theory of finite groups. For instance, the
symmetric algebra S(V ) and the polynomial algebra
S(V ∗) = K[x1, . . . , xn] are Z≥0-graded KG-modules in
the obvious way, as well as the Grassmann algebras Λ(V )
and Λ(V ∗). For a Z-graded KG-module, M := ⊕i∈ZMi

with finite-dimensional components Mi, we define the
graded character χM :=

∑
i∈Z

χMi
ti as a generating func-

tion, where χMi
is the character of G afforded by Mi.

There are two ways to represent these graded charac-
ters, namely as class functions of G taking values in gen-
erating functions with complex coefficients or as linear
combinations of the irreducible characters of G with gen-
erating functions which have nonnegative integral coeffi-
cients. By extending the usual scalar product of charac-
ters, the latter form of graded characters could be written
as

∑
χ∈Irr(G)(χM (t), χ)χ.

For instance, the graded character of S(V ) (respec-
tively S(V ∗)) is given by the expansions of

1
(1 − ζ1t) · · · (1 − ζnt)

=
1

det(In − ∆(g)t)

(
respectively

1
(1 − ζ−1

1 t) · · · (1 − ζ−1
n t)

)
,

where ζ1, . . . , ζn are the eigenvalues of the action ∆(g) of
g ∈ G on V . Taking the scalar product (χS(V ∗), 1G) =
(χS(V ), 1G) of this graded character with the trivial
character 1G gives the Hilbert series for the (graded)
invariant ring S(V )G or S(V ∗)G in its well known Molien

expression. The reciprocal series of χS(V ) gives the
graded character for Λ(V ), i.e., χS(V ) · χΛ(V ) = 1.

The aim of this section is to extend the above well-
known results to the bigraded case.

Definition 2.1. Let M be a Z × Z-graded KG-module
with finite-dimensional components M(i,j). Then the bi-
graded character of M is defined by

χM (t1, t2) :=
∑
i,j∈Z

χM(i,j)t
i
1t
j
2.

The natural examples we are interested in are of the
form M ⊗N where M = ⊕iMi and N = ⊕jNj are Z≥0-
gradedKG-modules with finite-dimensional components.
Then M ⊗N = ⊕i,jMi ⊗Nj is a bigraded KG-module,
where all the tensor products are taken over K. One
obviously has:

Remark 2.2. For M,N as above one has χM⊗N (t1, t2) =
χM (t1)χN (t2).

One such example is S(V ∗) ⊗ Λ(V ∗), which, treated
in this way, would yield Theorem 5.2.2 of [Benson 93] as
a corollary. More relevant for this paper is the following
example.

Example 2.3. Let V = V1 ⊕ V2 be a decomposable KG-
module with direct KG-summands V1, V2 ≤ V . Then

S(V ) = S(V1) ⊗ S(V2) and S(V ∗) = S(V ∗
1 ) ⊗ S(V ∗

2 )

are even bigraded KG-algebras. For instance, if
x1, . . . , xk is a basis of V ∗

1 and y1, . . . , yl a basis for V ∗
2 ,

then S(V ∗) = K[x1, . . . , xk, y1, . . . , yl] and the bidegree
is given by the degree in the xi and the degree in the yj .
By the G-elementwise interpretation of Remark 2.2 one
gets the bigraded character value for g ∈ G

χS(V )(t1, t2)(g) =
1

(1 − ζ1t1) · · · (1 − ζkt1)(1 − ξ1t2) · · · (1 − ξlt2)
,

χS(V ∗)(t1, t2)(g) =
1

(1 − ζ−1
1 t1) · · · (1 − ζ−1

k t1)(1 − ξ−1
1 t2) · · · (1 − ξ−1

l t2)
,

where ζ1, . . . , ζk and ξ1, . . . , ξl are the eigenvalues of the
linear actions ∆1(g), ∆2(g) of g on V1 and V2 respectively.
Taking the scalar product with the trivial character 1G of
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G gives a generalized Molien formula for the Z2
≥0-Hilbert

series of S(V )G and S(V ∗)G:

(χS(V1⊕V2)(t1, t2), 1G)

:=
∑
d1,d2

Dim((S(V1)d1 ⊗ S(V2)d2)
G)td11 t

d2
2

=
1
|G|

∑
g∈G

1
det(Ik − ∆1(g)t1) det(Il − ∆2(g)t2)

,

which is equal to (χS(V ∗
1 ⊕V ∗

2 )(t1, t2), 1G).
Using the characterwise interpretation of Remark 2.2

one gets from

χS(Vi)(ti) =
∑

χ∈Irr(G)

(χS(Vi)(ti), χ)χ

to the formula

(χS(V )(t1, t2), 1G) =∑
χ∈Irr(G)

(χS(V1)(t1), χ)(χS(V2)(t2), χ)

because in the double sum over Irr(G) × Irr(G) one has
the scalar products (χψ, 1G) = (χ,ψ) = δχ,ψ. For S(V ∗),
which is more relevant for us, one of course has the cor-
responding formula. This formula might be better than
the original one above from the point of view of available
software, see [The GAP Group 00].

We leave it as an exercise to the reader to deal with
multigradings in the case where one has more than two
direct summands. The results above will be applied in
the next section to Weyl algebras and later on to specific
examples.

We finish this section by remarking that the compu-
tational complexity for handling S(V ∗

1 ⊕ V ∗
2 ) under the

bigrading point of view is essentially the sum of the two
complexities for handling S(V ∗

1 ) and S(V ∗
2 ).

Let us recall that involutive bases [Blinkov et al. 01,
Blinkov et al. 03, Cid and Plesken 01] provide a power-
ful tool for commutative algebra. Given the polynomial
algebra K[z1, . . . , zn] and a finite set L ⊆ K[z1, . . . , zn],
the involutive basis algorithm transforms L into another
finite set J ⊆ K[z1, . . . , zn] which generates the same
ideal 〈L〉 as L, but has nice combinatorial properties.
For instance, the reduction process of an element of
K[z1, . . . , zn] modulo 〈L〉 is unique when using the in-
volutive basis J . A characterizing property of J is that
by taking K[z1, . . . , zn]-linear combinations of the ele-
ments of J no nonzero element of 〈L〉 can be produced
that is not reducible by elements of J (taking also into

account the distinction between multiplicative and non-
multiplicative variables). We mainly use Janet bases
[Blinkov et al. 03, Plesken and Robertz 05], which are
involutive bases defined by Janet division, but the fol-
lowing techniques are also valid for general involutive
bases.

In our setting, with a decomposable KG-module V =
V1 ⊕V2 having direct summands V1, V2 ≤ V as in Exam-
ple 2.3, we identify S(V ∗

1 ) with K[x1, . . . , xk] and S(V ∗
2 )

with K[y1, . . . , yl]. Proposition 2.4 will be applied to the
construction of secondary invariants.

Proposition 2.4. Identifying S(V ∗
1 ) = K[x1, . . . , xk] and

S(V ∗
2 ) = K[y1, . . . , yl] with their embeddings in S(V ∗

1 ⊕
V ∗

2 ) = K[x1, . . . , xk, y1, . . . , yl], we have:

(1) If p1, . . . , pk are primary invariants for S(V ∗
1 )G and

q1, . . . , ql are primary invariants for S(V ∗
2 )G, then

p1, . . . , pk, q1, . . . , ql form primary invariants for
S(V ∗

1 ⊕ V ∗
2 )G.

(2) Let J1, respectively J2, be a Janet basis for
〈p1, . . . , pk〉 in S(V ∗

1 ), respectively for 〈q1, . . . , ql〉
in S(V ∗

2 ). A unique coset representative for
any element of S(V ∗

1 ⊕ V ∗
2 ) can be obtained by

first performing involutive reduction modulo J1 in
K(y1, . . . , yl)[x1, . . . , xk] and then for the result mod-
ulo J2 in K(x1, . . . , xk)[y1, . . . , yl].

Proof: (1) This is clear. (2) The coset representa-
tive is unique if and only if the zero polynomial is the
unique representative of the coset given by the ideal I
in S(V ∗

1 ⊕ V ∗
2 ) which is generated by the union of J1

and J2. The latter is satisfied if and only if every ele-
ment of I is mapped to zero by the successive reductions
given in the assertion. If the yj , respectively the xi, lie
in the coefficient field for the reduction modulo J1, re-
spectively J2, the previous condition is met if and only
if the S-polynomials of all pairs (p, q), p ∈ J1, q ∈ J2,
involutively reduce to zero (see [Gerdt and Blinkov 98]).
These reductions, however, are done as follows, where lt
denotes the leading term:

S(p, q) := lt(q) p− lt(p) q
red.mod J1−−−−−−−→ S(p, q) + (q − lt(q)) p
red.mod J2−−−−−−−→ S(p, q) + (q − lt(q)) p− (p− lt(p)) q = 0.
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The proof also reveals that involutive bases for
〈p1, . . . , pk〉 in S(V ∗

1 ) and 〈q1, . . . , ql〉 in S(V ∗
2 ) can be

joined and simply completed (in the sense of Algo-
rithm 15 in [Plesken and Robertz 05]) to yield an involu-
tive basis for the ideal 〈p1, . . . , pk, q1, . . . , ql〉 in S(V ∗

1 ) ⊗
S(V ∗

2 ), provided the xi are ranked higher than the yj . In
fact, Proposition 2.4 remains valid outside the context
of invariants—it simplifies the computation of involutive
bases of tensor products considerably and even makes it
superfluous, since involutive reduction can be done suc-
cessively modulo J1 and modulo J2.

The application of Proposition 2.4 to invariant the-
ory follows. Λ := S(V ∗

1 ⊕ V ∗
2 )/〈p1, . . . , pk, q1, . . . , ql〉 is a

finite-dimensional bigraded commutative K-algebra with
G-action. Representatives si of a K-basis of the algebra
ΛG of fixed points can be chosen to be G-invariant, i.e.,
to lie in S(V ∗

1 ⊕ V ∗
2 )G, and are known as secondary in-

variants:

S(V ∗
1 ⊕ V ∗

2 )G =
⊕
i

K[p1, . . . , pk, q1, . . . , ql]si. (2–1)

In the present situation, the si can be chosen to be ho-
mogeneous in the bigraded sense. Proposition 2.4 can
be used very effectively to decompose any invariant ac-
cording to (2–1), even if not all of the si are known
already—either one comes up with a decomposition or
one has found a new si. The computational trick (see
also Algorithm 2 in [Cid and Plesken 01]) is to intro-
duce new parameters Pi and Qj as names for the pi and
qj for bookkeeping and iterate the simplified Janet re-
duction of Proposition 2.4 to express any invariant as
a polynomial in the Pi and Qj , where the coefficients
are Janet-reduced polynomials in the xi and yj . This
reduces the decomposition of the new invariant to ordi-
nary Gauss elimination over K. As for the dimensions,
note that both S(V ∗

1 )/〈p1, . . . , pk〉 and S(V ∗
2 )/〈q1, . . . , ql〉

are free KG-modules (see [Stanley 79, Proposition 4.9])
if G acts faithfully on both V1 and V2, in particular,
their dimensions are multiples of |G|. Therefore, Λ, as
the tensor product over K of the two components, has
a rather big dimension, namely the product of the di-
mensions of the components and Dim ΛG = Dim Λ/|G|,
which is the number of the secondary invariants si. Ex-
amples show that the approach via Algorithm 2 in [Cid
and Plesken 01] supersedes the classical methods, even if
one ignores the bigrading and gets other primary invari-
ants for S(V ∗

1 ⊕V ∗
2 )G. The most trivial examples one can

look at are given by cyclic groups with one dimensional
modules V1 and V2.

3. THE WEYL ALGEBRA

A good way to survey the possibilities of how the various
enrichments of the ring of invariants can be described is
to start with the Weyl algebra. Since we have already
looked at S(V ∗) = K[x1, . . . , xn] it might be more mo-
tivating to define the Weyl algebra as a K-algebra of
K-vector space endomorphisms of K[x1, . . . , xn].

The Weyl algebra Wn = Wn(K) is the noncom-
mutative K-algebra of K-vector space endomorphisms
of K[x1, . . . , xn] with generators x1, . . . , xn, ∂1, . . . , ∂n,
where xi stands for the multiplication by xi and ∂i for
the partial differentiation with respect to xi. The obvious
commuting and noncommuting relations

[xi, xj ] = 0, [∂i, ∂j ] = 0, [∂i, xj ] = δij , 1 ≤ i, j ≤ n,

define a presentation for Wn as a K-algebra. As a K-
vector space (not as a K-algebra) Wn carries a bigrading
resulting from the gradings of the two polynomial subal-
gebras K[x1, . . . , xn] and K[∂1, . . . , ∂n], and

Wn = K[x1, . . . , xn] ⊗K[∂1, . . . , ∂n],

where the (K-) tensor product is realized by the product
in Wn. Note, the original polynomial ring K[x1, . . . , xn]
is by definition a right Wn-module. As such, it can also
be defined as the residue class module of Wn modulo the
right ideal generated by ∂1, . . . , ∂n.

Starting again with a KG-module V for the fi-
nite group G and identifying (the faithful Wn-
module) K[x1, . . . , xn] with S(V ∗), the action of G

on K[x1, . . . , xn] gives rise to an action of G by K-
algebra automorphisms on Wn, by conjugation within
the ring of vector space endomorphisms of K[x1, . . . , xn].
One easily checks that the two commutative subalge-
bras K[x1, . . . , xn] and K[∂1, . . . , ∂n] of Wn are mapped
onto themselves by this action and can be identified with
S(V ∗) and S(V ) respectively as far as the G-action is
concerned. Note, the K-span of ∂1, . . . , ∂n in Wn can
be identified with V , because it is dual to V ∗, which is
the K-span of x1, . . . , xn. Also, the bigrading of Wn is
respected by the action of G so that the results of Sec-
tion 2 can be used to write down the bigraded character
for Wn.

Now we turn toG-fixed points. It should be noted that
our primary interest lies in S(V ∗)G, but WG

n will help us
get information about S(V ∗)G. Therefore, the bihomoge-
neous components (WG

n )(d1,d2) ofWn are of interest to us,
since they map (S(V ∗)G)d into (S(V ∗)G)max (0,d+d1−d2).
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Our discussion shows

Dim(WG
n )(d1,d2) =

coefficient of td11 t
d2
2 in MV ∗⊕V (t1, t2),

where MV ∗⊕V (t1, t2) := (χS(V ∗⊕V )(t1, t2), 1G).
Here is an example demonstrating how elements of

WG
n can help in generating S(V ∗)G.

Example 3.1. Let the symmetric group Σn act on V :=
Kn by permuting coordinates in the natural way. It is
well known that the induced action on K[x1, . . . , xn] =
S(V ∗) yields an invariant ring generated by p1 := x1 +
. . . + xn, . . . , pn := xn1 + . . . + xnn, in fact, S(V ∗)Σn =
K[p1, . . . , pn] is a polynomial ring in the pi, which are
algebraically independent. Note, d := x2

1∂1+. . .+x2
n∂n ∈

(WΣn
n )(2,1) is an invariant vector field (to be treated in

Section 5), which generates all pi from p1:

dpi = ipi+1, i = 1, 2, . . . , n− 1.

Note also, δ := x1∂
2
1 + . . .+xn∂

2
n ∈ (WΣn

n )(1,2) generates
all pi from pn:

δpi = i(i− 1)pi−1, i = 2, . . . , n.

In very much the same way, as for the pseudoreflec-
tion group of degree n isomorphic to the wreath product
Ck 	 Σn acting by permuting the standard basis vectors
of V := Cn and multiplying them with kth roots of 1,
the invariant pk together with the invariant vector field
xk+1

1 ∂1 + . . .+ xk+1
n ∂n can be used to generate the poly-

nomial invariants.

Since the bigraded Hilbert series for the Weyl alge-
bra is symmetric in the two variables, the question arises
whether the passage from (WG

n )(d1,d2) to (WG
n )(d2,d1)

can be made explicit. This is the case and will now
be shown separately in the two cases where V and
V ∗ are isomorphic, respectively nonisomorphic, as KG-
modules. The first case has the additional advantage that
one gets an explicit epimorphism from (WG

n )(d1,d2) onto
(S(V ∗)G)d1+d2 which is very useful for constructing in-
variants. One word on conventions—we assume that any
element of Wn or (Wn)G is given as a K-linear combina-
tion of elements of the form

xα∂β := xα1
1 · · ·xαn

n ∂β1
1 · · · ∂βn

n .

Therefore, by substituting yi for ∂i, the elements of Wn

are in natural one-to-one correspondence with the ele-
ments of the polynomial ring K[x1, . . . , xn, y1, . . . , yn].

We abbreviate x for both x1, . . . , xn and the column vec-
tor with these entries, analogously for ∂ and y.

Proposition 3.2. Let Ψ : V × V → K be a (not
necessarily symmetric) nondegenerate G-invariant bilin-
ear form on V represented by its Gram matrix F , i.e.,
∆(g)trF∆(g) = F for all g ∈ G. Then the following
assertions hold:

(1) For each p(x1, . . . , xn, ∂1, . . . , ∂n) ∈ (WG
n )(d1,d2) one

has q(x1, . . . , xn, ∂1, . . . , ∂n) ∈ (WG
n )(d2,d1), where

q(x, y) := p(F−1y, Fx). In fact, this procedure de-
fines a K-linear involution (i.e., antiautomorphism
of order 2) of WG

n in the case where Ψ is symmetric
and an automorphism of order 2 if Ψ is skewsym-
metric.

(2) The map

(WG
n )(d1,d2) → (S(V ∗)G)d1+d2 :

p(x1, . . . , xn, ∂1, . . . , ∂n)


→ p(x, Fx)

is an epimorphism of K-vector spaces.

Proof: (1) Proving this is analogous to the slightly
more complicated proof of Proposition 3.4. (2) One has
F∆(g) = ∆(g−1)trF for all g ∈ G. Hence

p(∆(g)x, F∆(g)x) = p(∆(g)x,∆(g−1)trFx) = p(x, Fx)

and the map is well defined. To prove surjectivity, let
p(x) ∈ (S(V ∗)G)d1+d2 . Polarizing yields

p(x+ ty) =
d1+d2∑
i=0

pi(x, y)ti,

where pi(x, y) is homogeneous of degree d1 + d2 − i in
the xi and homogeneous of degree i in the yj and t is
some independent new variable. Hence, pi(x, y) can be
viewed as an element of S(V ∗)d1+d2−i ⊗ S(V ∗)i. It is
clearly G-invariant and by expanding p((1 + t)x) in two
ways, one sees that pi(x, x) =

(
d1+d2
i

)
p(x). This holds in

particular for i = d2. Interpret the matrix F as a KG-
isomorphism from V to V ∗. Now one easily checks that(
d1+d2
d2

)−1
pd2(x, F

−1∂) is the desired preimage of p(x) in
(WG

n )(d1,d2) ≡ (S(V ∗)d1 ⊗ S(V )d2)
G.

Example 3.3. Let the symmetric group G := Σn act on
V := Kn by coordinate permutations. In Example 3.1,
S(V ∗) was generated by one vector field d and one invari-
ant p1. Using Proposition 3.2 we can now do the same
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with just the vector field d alone (knowing that the stan-
dard scalar product is Σn-invariant). This is because d
produces δ as well as p3 by Proposition 3.2.

Let denote complex conjugation. For a polynomial
p ∈ K[x1, . . . , xn] denote by p the polynomial obtained
from p by applying to each coefficient. Also for a ma-
trix F ∈ Kn×n, the matrix F is obtained from F in the
same way.

Proposition 3.4. Let Ψ : V × V → K be a nondegener-
ate G-invariant Hermitian form on V represented by its
Gram matrix F , i.e., ∆(g)

tr
F∆(g) = F for all g ∈ G.

Then for each p(x1, . . . , xn, ∂1, . . . , ∂n) ∈ (WG
n )(d1,d2)

one has q(x1, . . . , xn, ∂1, . . . , ∂n) ∈ (WG
n )(d2,d1), where

q(x, y) := p(F
−1
y, Fx). In fact, this procedure defines

a K-semilinear involution of WG
n .

Proof: One has F∆(g) = ∆(g−1)
tr
F for all g ∈ G, which

can be manipulated by inverting, applying the field au-
tomorphism, and substituting g−1 for g. Hence

q(∆(g)x,∆(g−1)try) = p(F
−1

∆(g−1)try, F∆(g)x)

= p(∆(g)F
−1
y,∆(g−1)

tr
Fx)

= p(F
−1
y, Fx)

= q(x, y)

for all g ∈ G, which proves the first half of the assertion.
That one has a self-inverting semilinear mapping of Wn

and also of WG
n is obvious to check. That it reverses the

order of the multiplication can be seen immediately from
the defining relations for Wn in the case F = In and
also follows for the general case by checking the defining
relations by using a bit more linear algebra.

4. CONSTRUCTING INVARIANTS FOR V AND V ∗
SIMULTANEOUSLY

The first possibility to more systematically generate
S(V ∗)G is E. Fischer’s approach from 1911 see [Fis-
cher 11]. He suggested looking at S(V ∗)G and S(V )G

simultaneously rather than just at S(V ∗)G. One sim-
ply identifies S(V ∗) with the Wn-module K[x1, . . . , xn]
and S(V ) with the subalgebra K[∂1, . . . , ∂n] of Wn,
as we did earlier. Both have the same Hilbert se-
ries, K[x1, . . . , xn]G becomes a K[∂1, . . . , ∂n]G-module,
where elements of (K[x1, . . . , xn]G)d are multiplied
by elements of (K[∂1, . . . , ∂n]G)e to get elements of
(K[x1, . . . , xn]G)d−e. The nice aspect of this approach

is that one gets a lot for free, because the invariant dif-
ferential operators can immediately be constructed from
the invariant polynomials (and vice versa). So the next
remark is a consequence of Propositions 3.2 and 3.4.

Remark 4.1. Let Φ be a nondegenerate G-invariant bi-
linear or Hermitian form on V with Gram matrix F ,
i.e., ∆(g)trF∆(g) = F , respectively ∆(g)

tr
F∆(g) = F ,

for all g ∈ G. Then for each invariant p(x1, . . . , xn) ∈
K[x1, . . . , xn]G = S(V ∗)G one has p(y1, . . . , yn) ∈
K[∂1, . . . , ∂n]G = S(V )G (respectively p(y1, . . . , yn) ∈
K[∂1, . . . , ∂n]G = S(V )G) with yi :=

∑
j fij∂j (respec-

tively yi :=
∑
j fij∂j), where the fij denote the entries

of F−1.

Fischer himself concentrates on real orthogonal rep-
resentations, therefore he deals only with the first case
with F = In. One must not expect wonders from this ap-
proach. For instance, if p(x1, . . . , xn) is a quadratic non-
degenerate invariant and the matrix F above is just the
Hessian matrix of p, then q(∂1, . . . , ∂n), obtained from p

in the above way, only yields polynomials in p if applied
to pk in some power. This is because the full orthogonal
group does not have any other invariants.

We shall now demonstrate a more successful exam-
ple: the group SL(2, 7) of degree 4. The invariants were
worked out by Maschke, see [Maschke 96], and repro-
duced for the purposes of coding theory in [MacWilliams
et al. 72]. We demonstrate how simple it becomes, if one
uses Fischer’s ideas—all invariants can be constructed
from the invariant of degree 4 and the one of degree 6
mainly by using the homogeneous invariant linear dif-
ferential operator of degree 4 with constant coefficients
which can be read off from the invariant of degree 4.

Example 4.2. The group G = SL(2, 7) has a faithful char-
acter of degree 4. Here is the Molien series:

1 + t8 + t10 + t12 + t16 + t18 + t20 + t28

(1 − t14) (1 − t8) (1 − t6) (1 − t4)
.

The group can be taken to be generated by




1 0 0 0

0 ζ 0 0

0 0 ζ4 0

0 0 0 ζ2



,




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0



,
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1√−7




1 1 1 1

2 ζ + ζ6 ζ2 + ζ5 ζ3 + ζ4

2 ζ2 + ζ5 ζ3 + ζ4 ζ + ζ6

2 ζ3 + ζ4 ζ + ζ6 ζ2 + ζ5



,

where ζ is a primitive 7th root of unity. As it stands, the
group is not represented by unitary matrices, instead the
Gram matrix of the invariant Hermitian form is given
by the diagonal matrix Diag(2, 1, 1, 1). Therefore, any
invariant p(x1, x2, x3, x4) ∈ S(V ∗)G yields the invariant
differential operator p(1

2∂1, ∂2, ∂3, ∂4) according to Re-
mark 4.1. So for instance, the invariant of degree 4

p4 = p4(x1, x2, x3, x4)

:= 2x4
1 + 6x1x2x3x4 + x3

2x3 + x3
3x4 + x3

4x2

gives rise (up to scaling) to the invariant differential op-
erator of degree 4

P4 := ∂4
1 + 24∂1∂2∂3∂4 + 8∂3

2∂3 + 8∂3
3∂4 + 8∂3

4∂2.

One needs to compute one more invariant to get the rest
automatically. This is

p6 := 8x6
1 − 20x2x3x4x

3
1 − 10(x3

2x3 + x3
3x4 + x3

4x2)x2
1

− 10(x2
2x

3
3 + x2

3x
3
4 + x2

4x
3
2)x1 − 15x2

2x
2
3x

2
4

− x2x
5
3 − x3x

5
4 − x4x

5
2.

Since G is perfect, the matrices all have determinant 1
and therefore the Hessian determinant of p4 is an invari-
ant, which we call p8. Let p14 := P4(p3

6). Using involu-
tive reduction one easily checks that p4, p6, p8, p14 form
primary invariants. One can also use it to check that
the following choices can, for instance, be made for the
secondary invariants:

q8 := P4(p2
6),

q10 := P4(p14),

q12 := P4(p2
8),

q16 := q28 ,

q18 := q8q10,

q20 := q210,

q28 := q210q8.

5. INVARIANT VECTOR FIELDS AND DERIVATIONS

The second approach we want to put forward is the use of
invariant vector fields, i.e., working with V(V )G, where

V(V ) :=
∞⊕
i=0

(Wn)(i,1)

is brought into the game. V(V ) and hence also V(V )G is
closed under the Lie bracket

[a, b] := ab− ba =
∑
i

(a(bi) − b(ai))∂i,

where a :=
∑
ai∂i, b :=

∑
bi∂i ∈ V(V ), respectively

V(V )G. Hence, for a ∈ (Wn)G(i,1), b ∈ (Wn)G(j,1) one
has [a, b] ∈ (Wn)G(i+j−1,1) and for a ∈ (Wn)G(i,1), p ∈
(S(V ∗)G)l one has ap ∈ (S(V ∗)G)i+l−1. This enforces
the grading

V(V )i := (Wn)(i+1,1)

on V(V ) and hence also on V(V )G. Summarizing we have
Remark 5.1.

Remark 5.1. V(V )G is a Z-graded Lie algebra, i.e.,
[(V(V )G)i, (V(V )G)j ] ⊆ (V(V )G)i+j , and S(V ∗)G is a
graded V(V )G-module. (V(V )G)j = {0} for j < −1 and
also for j = −1, unless the trivial character occurs in V .

To get the Hilbert series of V(V )G one need not go via
the bigraded Hilbert series for WG

n , but can go directly.
V(V ) is isomorphic as a graded G-module to S(V ∗) ⊗ V

shifted by −1 and therefore its Hilbert series is given as
follows.

Remark 5.2. The Hilbert series of V(V )G is given by the
shifted Molien series

t−1(χS(V ∗)(t), χ) =
1
t|G|

∑
g∈G

χ(g)
det(In − ∆(g)t)

,

where ∆ is the matrix representation on V with charac-
ter χ.

Clearly, V(V )G is also a module for S(V ∗)G,
since an invariant vector field multiplied by an in-
variant is again an invariant vector field. On the
other hand, each vector field acts as a derivation on
S(V ∗)G. Hence, the question arises whether the mod-
ule HomS(V ∗)G(Ω(S(V ∗)G), S(V ∗)G) of all K-derivations
of the invariant ring coincides with V(V )G, where
Ω(S(V ∗)G) denotes the module of Kähler differentials of
the invariant ring S(V ∗)G. This is a theoretical side issue
in view of our aims, since the module of all derivations
can only be constructed when one has a presentation of
the ring, i.e., at the stage when our job is already done,
whereas invariant vector fields can be constructed simi-
larly to invariants. Nevertheless, it is interesting to see
from examples that there might be nonpolynomial vec-
tor fields as derivations for invariant rings, at least in the
presence of pseudoreflections in the group.



182 Experimental Mathematics, Vol. 14 (2005), No. 2

Example 5.3. Let G act faithfully as a pseudoreflec-
tion group on V . Then S(V ∗)G is a polynomial ring
K[p1, . . . , pn] in n := DimK V independent homogeneous
invariants pi. Hence, a derivation δ of S(V ∗)G can be ob-
tained by assigning arbitrary values in S(V ∗)G to each pi.
Hence the δi defined by δj(pi) := δi,j form an S(V ∗)G-
basis of the module of all derivations. Easy degree consid-
erations show that these are not representable as poly-
nomial vector fields. However, they seem to be repre-
sentable as vector fields with rational functions as coeffi-
cients. For instance, in the case of the symmetric group
acting by coordinate permutations and pi := xi1+. . .+xin
one gets the Vandermonde determinant in the denomina-
tor.

Some work with groups without pseudoreflections
shows that V(V )G may very well coincide with the mod-
ule of all derivations.

Coming back to the issue of constructing invariants,
we shall discuss the effect of (V(V )G)0. Note first that
V ∗ ⊗ V ⊂ S(V ∗) ⊗ V ∼= V(V ) can be identified with
EndK(V ) via

xi∂j 
→ eji,

where eji(∂k) = δik∂j and V is identified with the vec-
tor subspace of V(V ) with basis ∂1, . . . , ∂n. Note that
eklers = δlreks. Hence, the Lie bracket induced by the
associative product of EndK(V ) yields

[eij , ekl] = eijekl − ekleij = δjkeil − δilekj .

The Lie bracket of the corresponding vector fields is

[xj∂i, xl∂k] = (xj∂i(xlδki) − xl∂k(xj))∂i
+(1 − δik)(xj∂i(xl) − xl∂k(xjδki))∂k

= −δjkxl∂i + δilxj∂k,

i.e., we have an anti-isomorphism of Lie algebras. Since
the brackets are compatible with the group action, pas-
sage to the G-fixed points yields:

Remark 5.4. (V(V )G)0 is anti-isomorphic as a Lie algebra
to (EndKG(V ), [ , ]).

Example 5.5. Let G := Cr = 〈g〉 be the cyclic group of
order r acting on V := Kn by multiplication with rth
roots of unity, i.e., g 
→ ζr IdV , where ζr is a primitive
rth root of unity. Then the invariants are given by all
homogeneous polynomials of degrees divisible by r and a
set of generators will be quite big (at least DimS(V ∗)r =(
n+r−1

r

)
elements). However, S(V ∗)dr is a simple module

for the Lie algebra EndKG(V ) = EndK(V ) = gl(n,K).

Therefore xr1 alone generates S(V ∗)G as a K-algebra un-
der this Lie algebra action. But, as a Lie algebra, gl(n,K)
can clearly be generated by two elements. Hence, S(V ∗)G

can be generated by xr1 under the action of two invari-
ant vector fields. In this sense, one has three instead of(
n+r−1

r

)
generators.

One element which is always present in (V(V )G)0
is

∑
i xi∂i corresponding to the identity element of

EndKG(V ). It certainly is of no value for generating
new invariants, as Euler’s identity for applying this el-
ement to homogeneous polynomials shows and also since
[
∑
i xi∂i, v] = lv for all v ∈ V(V )l. In the case where

V is absolutely simple as a KG-module, the above ele-
ment is up to K-multiples the only one of (V(V )G)0. Any
additional element of (V(V )G)0 does not only help gen-
erating S(V ∗)G but also gives more structure to S(V ∗)G,
because one might ask for eigenspaces in each (S(V ∗)G)k
or, more generally, decompose it as a (V(V )G)0-module.

There is one important situation, where one has a
closer connection between S(V ∗)G and V(V )G than in
the general situation.

Proposition 5.6. Let V be a KG-module with nondegen-
erate G-invariant quadratic form q. Then the gradient
with respect to q defined by

∇ = ∇q : S(V ∗)G → V(V )G : p 
→
∑
i,j

q̂ij∂i(p)∂j

is a derivation of the ring S(V ∗)G taking values in
V(V )G, where (q̂ij) is the inverse matrix of the scaled
Hessian ( 1

2∂i∂jq) ∈ Kn×n. It is of degree −2, i.e., it
maps (S(V ∗)G)l to (V(V )G)l−2. The map

ε = εq : V(V )G → S(V ∗)G : d 
→ d(q)

is of degree 2 and satisfies ε(∇(p)) = kp for any p ∈
(S(V ∗)G)k. In particular, ε is surjective from (V(V )G)l
onto (S(V ∗)G)l+2.

Proof: The Hessian is the matrix of a KG-isomorphism
V → V ∗. Hence, the gradient is easily checked to be a
KG-map of graded KG-modules from S(V ∗) to V(V ) ∼=
S(V ∗)⊗ V of degree −2. The derivation property is well
known. Hence, one only needs to pass to G-fixed points.
The last assertion follows from the identity

(∇p1)(p2) = (∇p2)(p1)


=

∑
i,j

∂ip1∂ijq∂jp2




applied to p1 := p, p2 := q and ∇q =
∑
i xi∂i.
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Corollary 5.7. Under the assumption of Proposition 5.6
one has a new bilinear (nonassociative) product on S(V ∗)
defined by

{ , }q = { , } : S(V ∗)G × S(V ∗)G → S(V ∗)G

: (p1, p2) 
→ [∇p1,∇p2](q)

such that {(S(V ∗)G)a, (S(V ∗)G)b}q ⊆ (S(V ∗)G)a+b−2

for all a, b ≥ 0.

Example 5.8. The symmetric group Σ5 has a threefold
transitive permutation representation on six letters. The
resulting permutation group can be chosen to be

〈(1, 3, 4, 2), (3, 5)(4, 6)〉.
The Molien series for S(V ∗)Σ5 , where V = C6 is the
permutation module, is given by

1 + t6 + t8 + t9 + t10 + t12

(1 − t6) (1 − t5) (1 − t4) (1 − t3) (1 − t2) (1 − t)
.

The primary invariants can be chosen to be the pri-
mary invariants of S(V ∗)Σ6 , i.e., p1 :=

∑6
i=1 xi, . . . , p6 :=∑6

i=1 x
6
i . One can take gradients with respect to p2. In

doing this, all the additional information already lies in
the secondary invariant q6 :=

∑
g∈Σ5

g(x1x2x
2
3x

2
4), be-

cause one easily checks that the other secondary invari-
ants can be chosen as q8 := {q6, p4} for degree 8, {q6, p5}
or {q8, p3} for degree 9, {q8, p4} for degree 10, and finally
q26 or {q6, q8} for degree 12.

6. INVARIANT POISSON BRACKETS

In the previous section it was shown that the existence
of a quadratic invariant leads to a product on S(V ∗)G,
yielding homogeneous invariants of degree a+ b− 2 from
homogeneous factors of degree a and b. A similar con-
struction is possible in the presence of a nondegenerate
invariant symplectic bilinear form.

Proposition 6.1. Let V be a KG-module with nondegen-
erate G-invariant symplectic form s represented by its
Gram matrix S, i.e., ∆(g)trS∆(g) = S for all g ∈ G.
Then the gradient with respect to s defined by

∇ = ∇q : S(V ∗)G → V(V )G : p 
→
∑
i,j

ŝij∂i(p)∂j

is a derivation of the ring S(V ∗)G taking values in
V(V )G, where (ŝij) is the inverse matrix of S. More-
over, the Poisson bracket

{ , }s = { , } : S(V ∗)G × S(V ∗)G → S(V ∗)G

: (p1, p2) 
→ (∇p1)(p2)

defines a Lie algebra structure on S(V ∗) with
{(S(V ∗)G)a, (S(V ∗)G)b}s ⊆ (S(V ∗)G)a+b−2 for all
a, b ≥ 0.

The proof is straightforward and analogous to the one
of Proposition 5.6.

Example 6.2. The quaternion group Q8, acting on K2 via
the matrices (

i 0
0 −i

)
,

(
0 1
−1 0

)
,

leaves the standard symplectic form invariant. The two
primary invariants p1 := x4+y4, p2 := x2y2 yield the only
missing secondary invariant q := {p1, p2} = 6xy(x4−y4).

The following remark will be used repeatedly to re-
place several generators of the same degree by a single
generator.

Remark 6.3. If in the situation of Proposition 6.1 one
has a homogeneous invariant q ∈ (S(V ∗)G)2, then one
has linear maps

πq,d : (S(V ∗)G)d → (S(V ∗)G)d : p 
→ {q, p}.

Very often, for small d ≥ 2, (S(V ∗)G)d or at least
(S(V ∗)G)d/q(S(V ∗)G)d−2 is cyclic as a K[πq,d]-module,
for example, if the space decomposes into a direct sum
of one-dimensional eigenspaces. Whether or not an el-
ement in this particular situation is not contained in
any eigenspace can be seen from its minimal polynomial
for πq,d.

7. THE GROUP GL(2, 3) WITH CHARACTER 2 + 2

The group G := GL(2, 3) has two faithful characters of
degree 2 taking values in K := Q[

√−2]. Their sum is
rational and has the following Molien series:

1 + 3t6 + 4t8 + 8t12 + 4t16 + 3t18 + t24

(1 − t12) (1 − t8) (1 − t6) (1 − t2)
=

1 + t2 + t4 + 5t6 + 10t8 + 10t10 + 23t12 + . . .

and hence has every potential to have a messy ring of
invariants. One expects four primary invariants of de-
grees 2, 6, 8, and 12, and 24 secondary invariants with
degrees 0, 6, 6, 6, 8, . . . (according to the numerator) as
generators. If one remembers that the two constituent
characters correspond to groups generated by pseudore-
flections, with degrees of basic invariants 6 and 8, the
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Molien series gets an even worse representation with de-
nominator (1− t8)2 (1− t6)2 and numerator 1+ t2 + t4 +
3t6 +6t8 +6t10 +12t12 +6t14 +6t16 +3t18 + t20 + t22 + t24

with 48 secondary invariants to be expected. However,
this time the Molien series is a specialization of a two-
variable Molien series as introduced in Section 2 with
denominator (1− t81) (1− t61) (1− t82) (1− t62) and numer-
ator

1 + t121 t
12
2 + (t41 + t81)(t

4
2 + t82) + (t1 + t111 )(t2 + t112 )

+ (t51 + t71)(t
5
2 + t72) + (t61 + t81 + t101 )(t62 + t82 + t102 )

+ (t21 + t41 + t61)(t
2
2 + t42 + t62)

+ (t31 + t51 + t71 + t91)(t
3
2 + t52 + t72 + t92),

where the eight summands correspond to the irreducible
characters of G of degrees

1, 1, 2, 2, 2, 3, 3, 4

in the sense of Section 2. So not only can we count
the secondary invariants according to their bidegrees, but
also have a definite idea where they come from. To be
more specific, let x1, x2 be the variables for the first sum-
mand and y1, y2 the ones for the second, that are dual
to the first. Therefore,

q := x1y1 + x2y2

is the invariant corresponding to the term t1t2 in the
numerator. For the sake of concreteness, let us assume
that we know the basic invariants for the components:

p6(x1, x2) := x1x2(x4
1 − x4

2), p8(x1, x2)

:= x8
1 + 14x4

1x
4
2 + x8

2, p6(y1, y2), p8(y1, y2).

Now it turns out that it is not so difficult to construct the
invariants of given bidegree and to check whether they are
suitable as secondary invariants. The first is done by ap-
plying the invariant differential operator ∂y1∂x1 + ∂y2∂x2

corresponding to x1y1 +x2y2 (the module is self-dual) to
p6(x1, x2)a p8(x1, x2)b p6(y1, y2)c p8(y1, y2)d, say k-times,
to obtain an invariant of bidegree (6a+8b−k, 6c+8d−k).
Multiplying by q increases the bidegree again, by (1, 1).
To check whether one has secondary invariants, one has
to check whether they yield linearly independent ele-
ments (in numbers indicated by the numerator polyno-
mial) in

Q := K[x1, x2, y1, y2]/

〈p6(x1, x2), p8(x1, x2), p6(y1, y2), p8(y1, y2)〉,
which can easily be done by involutive reduction (see
Section 2).

In the process of this construction, one obviously can
not expect to obtain secondary invariants corresponding
to the irreducible characters. Here is an example. For
bidegree (12, 12) one can take q12 which does not seem to
have any relation to the (nontrivial) character of degree
1. But the product of the Jacobi determinants

∂(p6(x1, x2), p8(x1, x2))
∂(x1, x2)

· ∂(p6(y1, y2), p8(y1, y2))
∂(y1, y2)

defines the same coset up to a factor in Q. Anyhow,
the construction of the invariants in the proposed form
leaves one with twelve secondary invariants (including 1)
that have to be multiplied with powers of q according to
the Jordan blocks of the multiplication by this polyno-
mial on Q, that are of lengths 13, 7, 7, 5, 5, 5, 1, 1, 1, 1, 1, 1
with (0, 0), (4, 2), (2, 4), (4, 4), (6, 2), (2, 6), (11, 1), (1, 11),
(9, 3), (3, 9), (7, 5), (5, 7) as bidegrees for the generators
according to the numerator polynomial. (Usually, 1 does
not count as a generator, but q definitely has to be
amongst the generators!)

There is one structure on R := K[x1, x2, y1, y2]G that
we have not yet utilized—the group allows the standard
symplectic form and therefore one has the standard Pois-
son bracket for the invariants

(a, b) 
→ {a, b} :=
∑
i

(∂xi
(a)∂yi

(b) − ∂xi
(b)∂yi

(a)).

Taking the Poisson bracket with q leaves the bidegree in-
variant. In fact, the homogeneous invariants of bidegree
(d1, d2) form the eigenspace for the eigenvalue d2 − d1

under πq,d1+d2 , as defined in Remark 6.3. Hence, if
we allow the Poisson bracket to be part of our invari-
ant generation process, the number of generating invari-
ants can be drastically decreased. For example, for de-
gree 6, we had four generating invariants, namely one
of each of the bidegrees (6, 0), (4, 2), (2, 4), (0, 6), say
q(6,0) = p6(x1, x2), q(4,2), q(2,4), q(0,6) = p6(y1, y2). These
four can be replaced by one, namely u := r1q(6,0) +
r2q(4,2) + r3q(2,4) + r4q(0,6) with ri ∈ K∗, because all four
of them lie in the K-span of the πiq,6(u) for i = 0, 1, . . . .
Testing whether some invariant q6 has nonzero compo-
nents in each of these eigenspaces can obviously be ac-
complished by applying πq,6 repeatedly to q6. If the re-
sulting minimal polynomial of q6 for πq,6 is divisible by
(t − 6)(t + 6)(t − 2)(t + 2), then q6 has enough compo-
nents and can therefore be chosen as generating invariant
u. (Note, the only missing invariant q3 is not among the
generating invariants.) Similarly, for degree 8 one can
replace the five generators by any linear combination of
them with nonzero coefficients, because any such combi-
nation has these five generators in its span under K and
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πq,8. (Note again, the invariants divisible by q can be
ignored.) For degree 12 the analogous argument reduces
the number of generators from six to one. One can even
do without the generator of degree 12, because it can be
chosen to be the Poisson bracket of the two generators
of degree 6 and 8. To prove this, note first the follow-
ing immediate consequence of Jacobi’s identity and the
derivation property of the Poisson bracket for the usual
product in K[x1, x2, y1, y2].

Remark 7.1. If a, b are invariants with {q, a} = λaa and
{q, b} = λbb for some λa, λb ∈ K, then {q, {a, b}} =
(λa + λb){a, b} and {q, ab} = (λa + λb)ab.

One checks that all homogeneous invariants of bide-
grees (11, 1), (1, 11), (9, 3), (3, 9), (7, 5), (5, 7) can be
obtained from Poisson brackets of bihomogeneous invari-
ants of degree 6 and 8. This proves that the generating
invariant of degree 12 can be removed from our gener-
ating set. If we call V the KG-module having one of
the chosen characters, we can summarize as follows in
Lemma 7.2.

Lemma 7.2. The ring R := S((V ∗ ⊕ V )∗)G is generated
as a K-vector space together with the usual multiplication
and Poisson multiplication { , } by the quadratic invari-
ant q and two further invariants q6 ∈ R6 and q8 ∈ R8,
if

(1) the minimal polynomial of q6 under πq,6, see Re-
mark 6.3, is divisible by (t− 6)(t+ 6)(t− 2)(t+ 2),
and

(2) the minimal polynomial of q8 under πq,8 is divisible
by t(t − 8)(t + 8)(t − 4)(t + 4) and the t-component
of q8 is not a K-multiple of q4.

Testing these properties for q6 and q8 comes down to
straightforward linear dependence checks, where one has
to ensure that the criterion does not require a decom-
posed form of the module, so that it can be applied
abstractly as done in Proposition 7.3. For instance, to
analyse the condition for q6 from a probabilistic point of
view, note that R6 decomposes into the direct sum of the
one-dimensional eigenspaces Eλ := {p ∈ R6 | {q, p} =
λp} with λ ∈ {−6,−2, 0, 2, 6}. Condition (1) means that
q6 must not lie in any of the four codimension-1 sub-
spaces E0 ⊕ Ei ⊕ Ej ⊕ Ek with i, j, k nonzero. Similar
remarks apply to q8. In particular, almost all q6 ∈ R6

and q8 ∈ R8 satisfy the conditions of Lemma 7.2. This

reduces the number of generators from 4+47 in the clas-
sical regime to three, namely q, q6, q8, if one allows the
use of the Poisson bracket.

We now proceed to the QG-module W with the same
character 2 + 2. The invariant ring S(W ∗)G no longer
has the bigraded structure, since W is simple. But it
still has the Poisson bracket and a quadratic invariant
ρ, that is positive definite this time and of discriminant
22. Therefore, it makes sense to ask for the nature of
the linear action of πρ,d, see Remark 6.3, on the spaces
of homogeneous invariants of fixed degree d. One gets
the following characteristic polynomials, the degrees of
which are the coefficients in the Taylor expansion of the
Molien series.

degree characteristic polynomial
2, 4 χ2 := t

6 χ6 := χ2 · (t2 + 2 · 22)(t2 + 2 · 62)
8, 10 χ8 := χ6 · t · (t2 + 2 · 42)(t2 + 2 · 82)

12 χ12 := χ2
8 · t−1 · (t2 + 2 · 102)(t2 + 2 · 122)

It is clear that the earlier eigenvalues λ = d1 − d2

coming from the bidegrees are replaced by
√−2λ here.

This yields the final result.

Proposition 7.3. The ring R := S(W ∗)G is generated as a
Q-vector space together with the usual multiplication and
Poisson multiplication { , } by the quadratic invariant
ρ and two further invariants q6 ∈ R6 and q8 ∈ R8, if

(1) the minimal polynomial of q6 under πρ,6, see Re-
mark 6.3, is divisible by (t+ 2 · 62)(t+ 2 · 22), and

(2) the minimal polynomial of q8 under πρ,8 is divisible
by t(t+ 2 · 82)(t+ 2 · 42) and the t-component of q8
is not a Q-multiple of ρ4.

8. THE GROUP C2 × PSL(2, 7) WITH
CHARACTER 3 + 3

We choose two algebraically conjugate characters of de-
gree 3 of G := C2 × PSL(2, 7) (which take values in
K := Q[

√−7]). As in the preceding example, we study
the sum of the two characters. The Molien series for this
sum has denominator (1− z14) (1− z6)2 (1− z4)2 (1− z2)
and numerator 1 + 3z6 + 4z8 + 5z10 + 6z12 + 5z14 +
5z16 + 6z18 + 5z20 + 4z22 + 3z24 + z30 which equals
1 + z2 + 3z4 + 8z6 + 15z8 + 30z10 + 57z12 + 96z14 +
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 2 0 2 0 1 0 1 0 1 0 2 0 1 0 0 0 0 0 0

0 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 0 0 0 0

0 0 0 2 0 3 0 3 0 2 0 2 0 3 0 2 0 1 0 0 0 0

0 0 1 0 2 0 3 0 3 0 3 0 3 0 3 0 2 0 1 0 0 0

0 0 0 1 0 3 0 5 0 3 0 3 0 3 0 3 0 2 0 0 0 0

0 0 1 0 2 0 3 0 4 0 3 0 3 0 3 0 3 0 2 0 0 0

0 1 0 1 0 2 0 3 0 4 0 4 0 3 0 3 0 2 0 1 0 0

0 0 1 0 2 0 3 0 3 0 4 0 4 0 3 0 2 0 1 0 1 0

0 1 0 1 0 2 0 3 0 4 0 4 0 3 0 3 0 2 0 1 0 0

0 0 1 0 2 0 3 0 3 0 4 0 4 0 3 0 2 0 1 0 1 0

0 0 0 2 0 3 0 3 0 3 0 3 0 4 0 3 0 2 0 1 0 0

0 0 0 0 2 0 3 0 3 0 3 0 3 0 5 0 3 0 1 0 0 0

0 0 0 1 0 2 0 3 0 3 0 3 0 3 0 3 0 2 0 1 0 0

0 0 0 0 1 0 2 0 3 0 2 0 2 0 3 0 3 0 2 0 0 0

0 0 0 0 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 0

0 0 0 0 0 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




FIGURE 1. Matrix M , M ∈ Z22×22
≥0 .

158z16 + 252z18 + 381z20 + . . . . Passing to the bigraded
Molien series via the irreducible characters of G yields

(1, t1, t21, . . . , t
21
1 )M (1, t2, t22, . . . , t

21
2 )tr

(1 − t141 ) (1 − t61) (1 − t41) (1 − t142 ) (1 − t62) (1 − t42)

with M ∈ Z22×22
≥0 given in Figure 1.

Let x1, x2, x3 be the variables for the first summand
V ∗ and y1, y2, y3 the ones for the second summand V .
Then we have the quadratic invariant

q := x1y1 + x2y2 + x3y3,

that corresponds to the second 1 on the diagonal of M .
For the moment, we assume that we know the primary
invariants

p4(x1, x2, x3) := x1x
3
2 + x2x

3
3 + x3x

3
1,

p6(x1, x2, x3), p14(x1, x2, x3), p4(y1, y2, y3),

p6(y1, y2, y3), p14(y1, y2, y3),

where p6 is the Hessian determinant of p4, and p14 is
given by (see [Burnside 55])

p14(x1, x2, x3) :=

∣∣∣∣∣∣∣∣∣∣

∂2p4
∂x2

1

∂2p4
∂x1∂x2

∂2p4
∂x1∂x3

∂p6
∂x1

∂2p4
∂x1∂x2

∂2p4
∂x2

2

∂2p4
∂x2∂x3

∂p6
∂x2

∂2p4
∂x1∂x3

∂2p4
∂x2∂x3

∂2p4
∂2x3

∂p6
∂x3

∂p6
∂x1

∂p6
∂x2

∂p6
∂x3

0

∣∣∣∣∣∣∣∣∣∣
.

(However, the latter construction is not needed, see be-
low.) Again, multiplication by q increases the bidegree
by (1, 1) and the corresponding invariant differential op-
erator

Dk
q := (∂y1∂x1 + ∂y2∂x2 + ∂y3∂x3)

k

maps p4(x1, x2, x3)a p6(x1, x2, x3)b p14(x1, x2, x3)c

p4(y1, y2, y3)d p6(y1, y2, y3)e p14(y1, y2, y3)f to an invari-
ant of bidegree (4a + 6b + 14c − k, 4d + 6e + 14f − k).
In matrix M the number for secondary invariants of
bidegree (i, j) is boxed if and only if there is a secondary
invariant of this bidegree that is not obtained as a
product of a secondary invariant of lower bidegree
with a power of q (up to a constant factor). Only in
bidegree (7, 7) two new secondary invariants s7,7, s′7,7
are found, all other boxes demanding only one. The
lengths of the Jordan blocks of multiplication by q

on K[x, y]/〈p4(x), p6(x), p14(x), p4(y), p6(y), p14(y)〉 can
easily be read off from M ; for instance, the correspond-
ing length for the new invariant s3,3 of bidegree (3, 3)
is 16.

Since G allows the standard symplectic form, the Pois-
son bracket

(a, b) 
→ {a, b} :=
∑
i

(∂xi
(a)∂yi

(b) − ∂xi
(b)∂yi

(a))
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maps pairs of invariants to invariants again. The
eigenspaces of πq,d are analogous to those in Section 7.
For the generation of S((V ∗ ⊕ V )∗)G it is advantageous
to choose invariants q4 and q6 in degrees 4 and 6 hav-
ing components in the eigenspaces of eigenvalues −4, 4
and 0, 2, 6 respectively, where the 0-component of q6
is not a K-multiple of q3. Then one can check that all
but two of the “boxed” secondary invariants in M as
well as p14(x1, x2, x3) and p14(y1, y2, y3) can be obtained
from Poisson brackets of invariants of appropriate lower
bidegrees, the exceptions being generating invariants for
bidegrees (2, 6) and (6, 2). However, using the invariant
differential operator Dq we succeed by choosing

s2,6 := D2
q(p4(x) p4(y)2), s6,2 := D2

q(p4(x)2 p4(y)).

More precisely, we remark that, except for s2,6, s6,2, s′7,7,
s14,14, all other generating secondary invariants can be
constructed as Poisson brackets {p1, p2}, where p1, p2

are primary or secondary invariants that are already com-
puted. Only the last two exceptions involve products of
invariants inside the Poisson bracket; they may be chosen
as follows:

s′7,7 := {s5,3, s2,4 · q}, s14,14 := {s8,2 · s3,3, s2,8 · q2}.

We summarize in Lemma 8.1.

Lemma 8.1. The ring R := S((V ∗ ⊕ V )∗)G is generated
as a K-vector space together with the usual multiplication
and Poisson multiplication { , } by the quadratic invari-
ant q and two further invariants q4 ∈ R4 and q6 ∈ R6,
if

(1) the minimal polynomial of q4 under πq,4, see Re-
mark 6.3, is divisible by (t− 4)(t+ 4), and

(2) the minimal polynomial of q6 under πq,6 is divisible
by t(t− 6)(t+6)(t− 2)(t+2), the t-component of q6
not being a K-multiple of q3.

As discussed in Section 7, a random choice of q4
and q6 most likely gives a generating set in the sense
of Lemma 8.1, so that the number of generators for
S((V ∗ ⊕ V )∗)G is decreased by Lemma 8.1 from 4 + 335
to three, if one allows the use of { , }.

For the QG-module W with the same character 3 + 3,
we have a quadratic invariant ρ which gives rise to a map
πρ,d on S(W ∗)Gd , see Remark 6.3. The earlier eigenvalues
λ = d1−d2 are replaced by

√−7λ here. We finish similar
to Section 7:

Proposition 8.2. The ring R := S(W ∗)G is generated as a
Q-vector space together with the usual multiplication and
Poisson multiplication { , } by the quadratic invariant
ρ and two further invariants q4 ∈ R4 and q6 ∈ R6, if

(1) the minimal polynomial of q4 under πρ,4, see Re-
mark 6.3, is divisible by (t+ 7 · 42), and

(2) the minimal polynomial of q6 under πρ,6 is divisible
by t(t+ 7 · 62)(t+ 7 · 22) and the t-component of q6
is not a Q-multiple of ρ3.
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