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In this paper we describe a simple method for obtaining a clas-
sification of small-dimensional solvable Lie algebras. Using
this method, we obtain the classification of three- and four-
dimensional solvable Lie algebras (over fields of any character-
istic). Precise conditions for isomorphism are given.

1. INTRODUCTION

Several classifications of solvable Lie algebras of small di-
mension are known. Up to dimension 6 over a real field
they were classified by G. M. Mubarakzjanov [Mubarakz-
janov 63a, Mubarakzjanov 63b], and up to dimension 4
over any perfect field by J. Patera and H. Zassenhaus
[Patera and Zassenhaus 90]. In this paper we explore the
possibility of using the computer to obtain a classifica-
tion of solvable Lie algebras. The possible advantages
of this are clear. The problem of classifying Lie algebras
needs a systematic approach, and the more the computer
is involved, the more systematic the methods have to be.
However, the drawback is that the computer can only
handle finite data. For example, we will consider orbits
of the action of the automorphism group of a Lie alge-
bra on the algebra of its derivations. Now, if the ground
field is infinite, then we know of no algorithm for obtain-
ing these orbits. In our approach we use the computer
(specifically the technique of Gröbner bases) to decide
isomorphism of Lie algebras, and to obtain explicit iso-
morphisms if they exist.

The procedure that we use to classify solvable Lie al-
gebras is based on some simple ideas, which are described
in Section 2 (and for which we do not claim any original-
ity). Then in Section 3 we describe the use of Gröbner
bases for obtaining isomorphisms. In Section 4 solvable
Lie algebras of dimension 3 over any field are classified.
In Section 5 the same is done for dimension 4. We show
that our classification in dimension 4 differs slightly from
the one found in [Patera and Zassenhaus 90] (i.e., we find
a few more Lie algebras).
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For the explicit calculations reported here we have
used the computer algebra system Magma [Bosma
et al. 97].

2. GENERAL LEMMAS

In the following we denote the field we work with by F .
The strategy that we use for constructing solvable Lie
algebras of dimension n is to extend a solvable Lie algebra
of dimension n − 1 by a derivation. More precisely, let
K be a solvable Lie algebra of dimension n − 1, and d :
K → K a derivation. Then we construct a solvable Lie
algebra of dimension n by setting L = Fxd ⊕ K. The
Lie bracket on L is defined by [αxd + y1, βxd + y2] =
αd(y2)−βd(y1)+[y1, y2], where α, β ∈ F and y1, y2 ∈ K.
We recall that the derivations of a Lie algebra L that are
of the form adx for x ∈ L are called inner. Derivations
not of that form are called outer.

Lemma 2.1. Let L be a solvable Lie algebra. Then there
is a subalgebra K ⊂ L of codimension 1, and a derivation
d of K such that L = Fxd ⊕ K. Moreover, if L is not
Abelian, then d and K can be chosen such that d is an
outer derivation of K.

Proof: Let K be any subspace of codimension 1 contain-
ing [L,L], and let x ∈ L span a complementary sub-
space. Then K is an ideal of L and we get the result
with d = adx and xd = x.

The proof of the second statement is by induction on
dim L. If dimL = 2 then the statement is clear. Now
suppose dim L = n > 2 and write L = Fy ⊕ K. Suppose
that ady is an inner derivation of K, i.e., ady = adu

for some u ∈ K. Set z = y − u; then L = K ⊕ Fz and
[z,K] = 0. So K is non-Abelian and by induction we have
K = Fx ⊕ K1, where adx|K1 is an outer derivation. Set
K2 = K1 ⊕ Fz, then also adx|K2 is an outer derivation,
and L = Fx ⊕ K2.

Lemma 2.2. Let K be a solvable Lie algebra and d1, d2

derivations of K. Set Li = Fxdi
⊕ K, i = 1, 2. Sup-

pose that there is an automorphism σ of K such that
σd1σ

−1 = λd2, for some scalar λ �= 0. Then L1 and L2

are isomorphic.

Proof: Define a linear map σ̃ : L1 → L2 by σ̃(y) = σ(y)
for y ∈ K and σ̃(xd1) = λxd2 . Then σ̃ is a bijective
linear map. The fact that it is an isomorphism can be
established by direct verification.

The classification procedure based on these lemmas is
as follows. Let K be a solvable Lie algebra of dimension
n. We compute the automorphism group Aut(K) of K

and the derivation algebra Der(K) of K. We denote the
subalgebra of inner derivations by Inn(K). It is straight-
forward to see that Lie algebras defined by derivations
in the same coset of Inn(K) in Der(K) are isomorphic.
Now the group G(K) = F ∗ × Aut(K) acts on the cosets
d + Inn(K) for d ∈ Der(K) by (λ, σ) · d + Inn(K) =
λσdσ−1 + Inn(K). We compute orbit representatives of
the action of G(K) on Der(K)/Inn(K). For every such
representative we get a solvable Lie algebra of dimension
n + 1. Subsequently we weed out the isomorphic ones.

When doing this we often deal with Lie algebras given
by a multiplication table containing parameters. An
easy trick that often works to reduce the number of
parameters is to consider a diagonal base change. Let
{x1, . . . , xn} be a basis of L, and set yi = αixi. Then
write down the multiplication table of L with respect to
the yi. Often it is possible to choose the αi in such a way
that we can get rid of one or more parameters.

When K is Abelian of dimension n we have that
Der(K) = Mn(F ) and Aut(K) = GL(n, F ). In this case
representatives of the orbits of Aut(K) are known, by
the following well-known theorem (for a proof we refer to
[Hartley and Hawkes 70]).

Theorem 2.3. Let A be an n × n-matrix over a field F .
Then A is similar over F to a unique block-diagonal ma-
trix, containing the blocks C(f1), . . . , C(fs) where C(fk)
is the companion matrix of the nonconstant monic poly-
nomial fk, and fk|fk+1 for 1 ≤ k ≤ s − 1.

The unique block-diagonal matrix is called the rational
canonical form of A.

In this paper we usually describe an n-dimensional Lie
algebra by giving its multiplication table with respect to
a basis, which on most occasions is denoted x1, . . . , xn.
In these multiplication tables we use the convention that
products which are not listed are zero. Also when rep-
resenting a linear map by a matrix we always use the
column convention.

3. CONSTRUCTING ISOMORPHISMS

One of the main problems when classifying Lie alge-
bras is to decide whether two of them are isomorphic.
A very convenient tool for doing that is Gröbner bases
(cf. [Gerdt and Lassner 93]). (For an introduction into
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Gröbner bases we refer to [Cox et al. 92].) By way of
example we describe how this works.

Consider the three-dimensional Lie algebra L1 with
basis x1, x2, x3 and multiplication table

[x1, x2] = x2, [x1, x3] = ax3,

and the three-dimensional Lie algebra L2 with basis
y1, y2, y3 and multiplication table

[y3, y1] = y2, [y3, y2] = by1 + y2.

The question is whether L1 and L2 are isomorphic, and if
so for which values of a, b. In that case we would also like
to have an explicit isomorphism. An isomorphism will
map the nilradical of L1 onto the nilradical of L2. So an
isomorphism φ : L1 → L2 has the form φ(x1) = a1y1 +
a2y2 + a3y3, φ(x2) = b1y1 + b2y2, φ(x3) = c1y1 + c2y2.
Now this is an isomorphism if and only if the following
polynomial equations are satisfied

ba3b2 − b1 = 0, a3b1 + a3b2 − b2 = 0,

ba3c2 − ac1 = 0, a3c1 + a3c2 − ac2 = 0,

and

D1a3 − 1 = 0, D2(b1c2 − b2c1) − 1 = 0.

The last two equations are added to ensure that the de-
terminant is nonzero. Now in Magma we compute a
Gröbner basis of the ideal of

Q[D1,D2, a1, a2, a3, b1, b2, c1, c2, a, b]

generated by the left hand sides of these equations. We
use the lexicographical ordering, with D1 > D2 > . . . >

c2 > a > b. This leads to a Gröbner basis with a tri-
angular structure, which on many occasions makes it
possible to find an explicit solution. Also, we let a, b

be the smallest variables in the ordering; this makes it
likely that the Gröbner basis contains polynomials in only
a and b (cf. [Cox et al. 92, Chapter 3, Theorem 2]).
From these we can derive necessary conditions for iso-
morphism. Using Magma we find that the Gröbner basis
contains 7 elements, including a3 −a− 1, b1 − b2ab− b2b,
c1 + c2ab + c2b + c2, a2b + 2ab + a + b. From the last
expression we get

b = − a

(a + 1)2
. (3–1)

From this we also see that the algebras are not isomorphic
if a = −1. Solutions to the other equations are easily
found, e.g., a1 = a2 = 0, a3 = a + 1, b1 = ab + b, b2 = 1,

c1 = ab+b+1, c2 = −1. By direct verification we get that
this indeed defines an isomorphism, if (3–1) holds, and
a �= 1 (otherwise the determinant is zero). If a = 1 then
by a separate calculation we get that the Gröbner basis
is {1}. So in that case L1 and L2 are not isomorphic.
The conclusion is that L1

∼= L2 if and only if (3–1) and
a �= ±1. Moreover, in that case we also have an explicit
isomorphism.

In the above discussion we have taken the ground field
to be Q. However, the conclusion holds over any field of
characteristic 0, since over any such field the Gröbner
basis will be the same. We can also easily reach the
same conclusion for any field of characteristic p > 0.
For that we note that the input polynomials gi are de-
fined over any field. Now by using the Magma func-
tion Coordinates we can find polynomials pi such that∑

pigi = a2b+2ab+a+b. The coefficients of the pi are ra-
tional numbers. So from these coefficients we find a finite
set of characteristics over which they are not defined. We
then have to do the computation separately over fields of
those characteristics. In our example we find that the
coordinates of a2b + 2ab + a + b with respect to the in-
put polynomials all have integral coefficients. So over all
fields we have that the ideal generated by the input poly-
nomials contains a2b+2ab+a+ b. We conclude that the
isomorphism of L1 and L2 implies (3–1), independently
of the base field. Furthermore, since the explicit isomor-
phism is defined over any field, we have that (3–1) and
a �= ±1 imply that L1 and L2 are isomorphic.

4. THE THREE-DIMENSIONAL CASE

There are only two (isomorphism classes of) Lie algebras
of dimension 2.

First we consider the Lie algebra K spanned by x1, x2

with [x1, x2] = 0. Then Aut(K) = GL(2, F ), and
Der(K) = M2(F ) (i.e., the space of all 2 × 2-matrices).
In this case the rational canonical form of an element in
Der(K) is either

λ

(
1 0
0 1

)
,

or (
0 a
1 b

)
.

λ = 0 gives a Lie algebra that is the three-dimensional
Abelian Lie algebra. If λ �= 0 then by Lemma 2.2 we
may divide by λ and get the Lie algebra L2 spanned by
x1, x2, x3 and nontrivial brackets [x3, x1] = x1, [x3, x2] =
x2. If the derivation is of the second type, we get the
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Lie algebras La,b spanned by x1, x2, x3 and multiplication
table

[x3, x1] = x2, [x3, x2] = ax1 + bx2.

From a Gröbner basis computation we get that La,b
∼=

Lc,d implies ad2 − b2c = 0 and α2c − a = 0, for some
nonzero α ∈ F . Furthermore, this holds over any field
since the coordinates of these polynomials (with respect
to the input basis) all have integer coefficients.

Also by applying a diagonal base change we see that
La,b

∼= Lα2a,αb for α �= 0 (the base change is y1 = x1,
y2 = αx2 y3 = αx3). Now we distinguish two cases:

1. b �= 0. Then La,b
∼= La,1. So we get the class of Lie

algebras L3
a = La,1. The above discussion implies

that L3
a
∼= L3

b if and only if a = b.

2. b = 0. We get the class of Lie algebras L4
a = La,0.

In this case La
∼= Lb if and only if a = α2b for some

nonzero α ∈ F .

The Lie algebras L3
a and L4

c are never isomorphic. This
can be established by a Gröbner basis computation. It
can also be shown in the following way. Suppose that
L3

a
∼= L4

c . Then ad2 − b2c = 0 amounts to c = 0. How-
ever, L4

0 is nilpotent, and L3
a is not. We have established

the nonisomorphism of L2 with L3
a, L4

a by Gröbner basis
calculations.

The other two-dimensional Lie algebra (with basis
x1, x2 and [x1, x2] = x2) does not have to be considered,
as it has no outer derivations.

Summarising we get the following solvable Lie algebras
of dimension 3:

L1 The Abelian Lie algebra.

L2 [x3, x1] = x1, [x3, x2] = x2.

L3
a [x3, x1] = x2, [x3, x2] = ax1 + x2.

L4
a [x3, x1] = x2, [x3, x2] = ax1. Condition of isomor-

phism: L4
a
∼= L4

b if and only if there is an α ∈ F ∗

with a = α2b.

We count the number of nonisomorphic solvable Lie
algebras over the finite field with q elements. The classes
L1, L2, L3 always give q + 2 Lie algebras. If the charac-
teristic of the ground field is not 2, then L4

a gives 3 more
Lie algebras. In that case the total number is q + 5. If
the characteristic is 2, then all elements of Fq are squares,
meaning that the L4

a give two isomorphism classes of Lie
algebras (i.e., L4

0 and L4
1). In that case the total number

is q + 4.

Remark 4.1. Our classification is the same as the one
obtained in [Patera and Zassenhaus 90]. More precisely,
we have L3,1

∼= L1, L3,2
∼= L4

0, L3,3
∼= L3

0, L3,4
∼= L2,

L3,5
∼= L4

α (where α is as in [Patera and Zassenhaus 90]),
L3,6

∼= L3
−α, and L3,7

∼= L3
−1/4 (if the characteristic is

not 2) and L3,7
∼= L4

1 (if the characteristic is 2).
So we have the same classification, but with a shorter

description.

Remark 4.2. From the method used, we get a simple algo-
rithm for recognising a given three-dimensional Lie alge-
bra K as one of the Li. First we find a two-dimensional
Abelian ideal. Let x span a complement to this ideal.
Then we find the rational canonical form of the adjoint
action of x on the ideal. From this we immediately see
to which algebra K is isomorphic.

5. THE FOUR-DIMENSIONAL CASE

Here we have to find derivation algebras and automor-
phism groups of three-dimensional Lie algebras K. For
every such K we have a subsection. The algebras that
will appear in the final classification will be denoted M i.

5.1 K = L1

This Lie algebra is Abelian, so the orbits of the deriva-
tions under the action of Aut(K) are given by the rational
canonical form of matrices. If this form consists of three
1× 1 blocks, then because of the divisibility condition in
Theorem 2.3, they have to be the same. After division we
get two algebras: the 4-dimensional commutative algebra
(denoted by M1), and

M2 : [x4, x1] = x1, [x4, x2] = x2, [x4, x3] = x3.

If there is a 1 × 1-block and a 2 × 2-block, then again
because of divisibility we have

D =


s 0 0

0 0 −st
0 1 s + t


 .

Denote the corresponding Lie algebra by Ks,t. After mul-
tiplying x4, x3 by α (and x1, x2 by 1) we see that this Lie
algebra is isomorphic to Kαs,αt, where α �= 0. We con-
sider the following cases:

1. s �= 0. We can take α = s−1, and we get the Lie
algebras

M3
a : [x4, x1] = x1,

[x4, x2] = x3,

[x4, x3] = −ax2 + (a + 1)x3.
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Gröbner basis computations reveal that M3
a
∼= M3

b

if and only if a = b.

2. s = 0, t �= 0. We take α = t−1, and get

M4 : [x4, x2] = x3, [x4, x3] = x3.

3. s = t = 0. We get

M5 : [x4, x2] = x3.

If there is a 3 × 3-block in the rational normal form,
then we get the Lie algebras Ks,t,u:

[x4, x1] = x2, [x4, x2] = x3, [x4, x3] = sx1+tx2+ux3.

Multiplying x2, x3, x4 by α, α2, α respectively, we see
that Ks,t,u

∼= Kα3s,α2t,αu. Here there are two cases to
consider:

1. u �= 0. We take α = u−1, and get the Lie algebras

M6
a,b : [x4, x1] = x2,

[x4, x2] = x3,

[x4, x3] = ax1 + bx2 + x3.

A Gröbner basis computation shows that M6
a,b

∼=
M6

c,d if and only if a = c and b = d.

2. u = 0. We get the Lie algebras

M7
a,b : [x4, x1] = x2,

[x4, x2] = x3,

[x4, x3] = ax1 + bx2.

From the above discussion we see that M7
a,b

∼= M7
c,d

if a = α3c and b = α2d (for some α �= 0). From a
Gröbner basis computation we get that this is also
a necessary condition. So, if both parameters are
nonzero, than by a suitable choice for α we can make
them equal. Hence this class splits into three sub-
classes: M7

a,a, M7
a,0, M7

0,b. Among the first class
there are no isomorphisms.

5.2 K = L2

The coset representatives of the outer derivations of K

(modulo inner derivations) are

D =


s t 0

u 0 0
0 0 0


 .

We consider the cases s �= 0 and s = 0 separately.

1. s �= 0. We can divide by it and get that D is conju-
gate to 

1 w 0
v 0 0
0 0 0




for some v, w. This leads to the Lie algebras Kv,w

with basis x1, x2, x3, x4 and nonzero commutators

[x4, x1] = x1 + vx2, [x4, x2] = wx1,

[x3, x1] = x1, [x3, x2] = x2.

Here again there is a subdivision in several cases.

(a) w �= 0. By setting y1 = wx1, yi = xi for i =
2, 3, 4, we see that Kv,w

∼= Kv′,1. Denote this
Lie algebra simply by Kv. By some calculations
it is seen that the centraliser C(adKv) in the
full (associative) matrix algebra is spanned by
the identity and




1 1 0 0
v 0 0 0
0 0 0 v
0 0 1 1


 .

The minimal polynomial of this last matrix is
T 2 − T − v.
Suppose that the characteristic of F is not 2.
Then, if v = − 1

4 , this algebra has a nonzero
radical. We get the Lie algebra

N : [x4, x1] = x1 − 1
4
x2,

[x4, x2] = x1,

[x3, x1] = x1,

[x3, x2] = x2.

(We denote this algebra by N and not by
M8, because it is isomorphic to a Lie algebra
that we define later). On the other hand, if
v �= − 1

4 then C(adKv) is semisimple. Also, if
T 2 − T − v has a root in the base field, then
it splits. This implies that Kv is isomorphic
to the direct sum of two, two-dimensional Lie
algebras (namely the noncommutative ones)
(cf. [de Graaf 00, Rand et al. 88]). We get the
Lie algebra

M8 : [x1, x2] = x2, [x3, x4] = x4.

Now suppose that T 2 − T − v does not have a
root in F . Then Kv is indecomposable. Sup-
pose that Kv

∼= Kw, where also T 2 − T − w
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has no root in F . Then from the Gröbner ba-
sis it follows that v + 1

4 = α2(w + 1
4 ) for some

nonzero α ∈ F . (There is also another argu-
ment to prove this: as seen above Kv splits
over F (

√
1 + 4v) so also Kw splits over this

field. Hence
√

1 + 4w ∈ F (
√

1 + 4v). This
implies the claim.) Conversely, suppose that
v + 1

4 = α2(w + 1
4 ) for some nonzero α ∈ F .

Let φ : Kv → Kw be the linear map given
by φ(x1) = αy1 + 1

2 (1 − α)y2, φ(y2) = y2,
φ(y3) = y3, φ(x4) = 1

2 (1−α)y3+αy4. Then φ is
an isomorphism. We conclude that Kv

∼= Kw if
and only if v + 1

4 = α2(w+ 1
4 ) for some nonzero

α ∈ F .
Now we deal with the case where the character-
istic of F is 2. Just as above, if T 2+T+v factors
over F , then Kv is isomorphic to a direct sum.
If the polynomial does not factor, then Kv is
indecomposable. From the Gröbner basis com-
putation it follows that Kv

∼= Kw implies that
X2+X+v+w has roots in F . Conversely, sup-
pose that this equation has a root α ∈ F . Then
there is an isomorphism φ : Kv → Kw given by
φ(x1) = y1 + αy2, φ(x2) = y2, φ(x3) = y3,
φ(x4) = αy3 + y4. So Kv

∼= Kw if and only if
X2 +X +v +w has roots in F . The conclusion
is that we get the Lie algebras

M9
a : [x4, x1] = x1 + ax2,

[x4, x2] = x1,

[x3, x1] = x1,

[x3, x2] = x2,

where a ∈ F is such that T 2−T −a has no root
in the base field.

(b) w = 0. Kv,0 is the direct sum of ideals with
bases x1 + vx2, x4, and x2, x3 − x4. So Kv,0

∼=
M8.

2. s = 0. D is equal to

0 t 0

u 0 0
0 0 0


 .

Now we consider the following cases.

(a) u �= 0. We divide by u and obtain the deriva-
tion 

0 a 0
1 0 0
0 0 0


 .

This leads to the Lie algebras

M10
a : [x4, x1] = x2,

[x4, x2] = ax1,

[x3, x1] = x1,

[x3, x2] = x2.

If the characteristic of F is not 2, then M10
a

∼=
M9

a− 1
4
. The isomorphism is given by φ(x1) =

2y2, φ(x2) = 2y1 − y2, φ(x3) = y3, φ(x4) =
− 1

2y3 + y4 (where the xi are the basis elements
of M10

a ). Note that, if a = 0, this gives an
isomorphism with N .

If the characteristic is 2, then from a Gröbner
basis computation it follows that M10

a is not
isomorphic to M9

b . So in this instance, we have
a new series of Lie algebras. From a Gröbner
basis computation we get that M10

a
∼= M10

b im-
plies that Y 2 + X2b + a = 0 is solvable in F ,
with X �= 0. On the other hand, if α �= 0
and β are such that β2 + α2b + a = 0, then
φ(x1) = y1, φ(x2) = βy1 + αy2, φ(x3) = y3,
φ(x4) = βy3 + αy4 is an isomorphism. So
M10

a
∼= M10

b if and only if Y 2 + X2b + a = 0
has a solution in F , with X �= 0. In particu-
lar, if the field is perfect (i.e., F 2 = F ) then
M10

a
∼= M10

0 .

(b) u = 0, t �= 0. We divide by t. The correspond-
ing Lie algebra has multiplication table

[x4, x2] = x1, [x3, x1] = x1, [x3, x2] = x2.

If the characteristic is not 2, then it is iso-
morphic to N , the isomorphism being φ(x1) =
2y1 − y2, φ(x2) = y2, φ(x3) = y3, φ(x4) =
−y3 + 2y4. If the characteristic is 2, then
this algebra is isomorphic to M10

0 , within this
case, φ(x1) = y2, φ(x2) = y1, φ(x3) = y3,
φ(x4) = y4.

(c) u = t = 0. The derivation is inner, and we
obtain nothing new.

5.3 K = L3
a

Its derivations consist of

u av s

v u + v t
0 0 0


 .
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If a �= 0, this means that, then modulo scalar factors,
there is only one outer derivation, namely

D =


1 0 0

0 1 0
0 0 0


 ,

leading to the Lie algebras

[x4, x1] = x1, [x4, x2] = x2,

[x3, x1] = x2, [x3, x2] = ax1 + x2.

However, by interchanging x3, x4 and x1, x2 we get the
Lie algebra Ka considered before (leading to the algebras
N , M8, M9

a ).
If a = 0, then apart from the derivation above, we get

two more:

D1 =


1 0 v

0 1 0
0 0 0


 and D2 =


0 0 1

0 0 0
0 0 0


 .

Let σ be the automorphism with matrix

1 0 v

0 1 0
0 0 1


 .

Then σD1σ
−1 is equal to D, so we get nothing new from

D1. However, we can not get rid of D2 in this way. It
leads to the Lie algebra

[x4, x3] = x1, [x3, x1] = x2, [x3, x2] = x2.

But this is isomorphic to M6
0,0, given by φ(x1) = y2,

φ(x2) = y3, φ(x3) = y4, φ(x4) = −y1.

5.4 K = L4
a

If a �= 0 and the characteristic of F is not 2, then the
derivations of L4

a are given by

u av s

v u t
0 0 0


 .

Here modulo inner derivations, and scalar factors, there
remains only one derivation


1 0 0

0 1 0
0 0 0


 ,

leading to the Lie algebras

[x4, x1] = x1, [x4, x2] = x2,

[x3, x1] = x2, [x3, x2] = ax1.

This Lie algebra is isomorphic to M9
a− 1

4
. The isomor-

phism is given by φ(x1) = 2y2, φ(x2) = 2y1 − y2,
φ(x3) = − 1

2y3 + y4, φ(x4) = y3.
If a �= 0 and the characteristic of F is 2, then the

derivations are given by
u av s

v u + w t
0 0 w


 .

So modulo inner derivations we get
u 0 0

0 u + w 0
0 0 w


 .

We consider a few cases.

1. w = 0. This leads to the algebra that we have seen
in the case where the characteristic is not 2. In this
case it is isomorphic to M10

a , given by φ(x1) = y1,
φ(x2) = y2, φ(x3) = y4, φ(x4) = y3.

2. u �= 0 �= w. After dividing by u and setting b =
1 + w/u, we get the derivations

1 0 0
0 b 0
0 0 1 + b


 .

Here we assume that b �= 1—we have already listed
the corresponding algebra (it is isomorphic to M10

a ).
The Lie algebras we now get are:

M11
a,b : [x4, x1] = x1,

[x4, x2] = bx2,

[x4, x3] = (1 + b)x3,

[x3, x1] = x2,

[x3, x2] = ax1.

(Recall that, here a �= 0, b �= 1.) Let c �= 0 and d �= 1.
Set δ = (b + 1)/(d + 1). We claim that M11

a,b
∼= M11

c,d

if and only if (δ2+(b+1)δ+b)/c and a/c are squares
in F . The only if part follows from inspection of the
Gröbner basis; the if part, from explicit construction
of an isomorphism. Let γ, ε ∈ F be such that

γ2 =
1
c
(δ2 + (b + 1)δ + b), and ε2 =

a

c
.

If δ = 1 then b = d and isomorphism follows already
from the dimension-3 isomorphism. So we suppose
that δ �= 1, and we set β = δ + 1, α = cγ. Then
φ : Ka,b → Kc,d given by φ(x1) = αy1+βy2, φ(x2) =
cεβy1 + αεy2, φ(x3) = εy3, φ(x4) = γy3 + δy4, is
an isomorphism. In particular, if F is perfect, then
M11

a,b
∼= M11

1,0.
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3. w �= 0, u = 0. We divide by w and get the algebra

[x4, x2] = x2, [x4, x3] = x3,

[x3, x1] = x2, [x3, x2] = ax1.

If a �= 1 then this is isomorphic to M11
a,a, given by

φ(x1) = y1 + a−1y2, φ(x2) = y1 + y2, φ(x3) = y3,
φ(x4) = 1

a+1 (y3 +y4). If a = 1, then it is isomorphic
to M11

1,0, given by φ(x1) = y2, φ(x2) = y1, φ(x3) =
y3, φ(x4) = y4.

Now suppose that a = 0. Then the derivations (mod-
ulo inner derivations) are

D =


u1 0 v1

0 u1 + v3 0
u3 0 v3


 .

A general automorphism of L4
0 is given by

φ =


α1 0 γ1

α2 α1γ3 − α3γ1 γ2

α3 0 γ3


 ,

where α1γ3 − α3γ1 �= 0. The entry at position (3, 3) of
(α1γ3 − α3γ1)φDφ−1 is −u1α3γ1 − u3γ1γ3 + v1α1α3 +
v3α1γ3. It is straightforward to see that, except in the
case where u1 = v3 �= 0 and u3 = v1 = 0, we can choose
the αi, γi such that this becomes zero. If u1 = v3 �= 0
and u3 = v1 = 0 then we divide by u1 and get the Lie
algebra

M12 : [x4, x1] = x1,

[x4, x2] = 2x2,

[x4, x3] = x3,

[x3, x1] = x2.

Otherwise D is conjugate to

D′ =


u1 0 v1

0 u1 0
u3 0 0


 .

Now let φ be the automorphism given by the matrix

α 0 0

0 αβ 0
0 0 β


 ,

where both α, β are nonzero. Then

φD′φ−1 =


 u1 0 α

β v1

0 u1 0
β
αu3 0 0


 .

We have a subdivision into four cases.

1. u1 �= 0 �= v1. We divide by u1, and choose α = u1

and β = v1. This leads to the Lie algebras

M13
b : [x4, x1] = x1 + bx3,

[x4, x2] = x2,

[x4, x3] = x1,

[x3, x1] = x2.

From the Gröbner basis it follows that two of those
algebras, with parameters b and c, are isomorphic if
and only if b = c.

2. u1 �= 0, v1 = 0. If u3 �= 0, then set α = u3, β = u1.
We get the Lie algebra

[x4, x1] = x1 + x3, [x4, x2] = x2, [x3, x1] = x2.

If we set x̃1 = x1 + x3, x̃2 = −x2, x̃3 = x1, x̃4 =
x4, then we see that with respect to this new basis
the Lie algebra has the same multiplication table as
M13

0 .

On the other hand, if u3 = 0 then we get the Lie
algebra

[x4, x1] = x1, [x4, x2] = x2, [x3, x1] = x2.

In this case we set x̃1 = x1, x̃2 = x2, x̃3 = x1 + x3,
x̃4 = x4. Again we get the multiplication table of
M13

0 .

3. u1 = 0, v1 �= 0. We divide by v1 and get the deriva-
tions 

0 0 1
0 0 0
b 0 0


 ,

leading to the Lie algebras

M14
b : [x4, x1] = bx3,

[x4, x3] = x1,

[x3, x1] = x2.

By setting yi = αxi for i = 1, 2, 4 and y3 = x3, we
see that this Lie algebra is isomorphic to the same
one with parameter α2b. On the other hand, from a
Gröbner basis computation we get that M14

b
∼= M14

c

implies b = α2c for some α.

4. u1 = v1 = 0. We get two more algebras. The first is
a direct sum isomorphic to M5. The other is

[x4, x1] = x3, [x3, x1] = x2.

Here we set x̃1 = x3, x̃2 = −x2, x̃3 = x1, x̃4 = x4.
This gives us the multiplication table of M14

0 .
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5.5 Putting It Together

There are some additional isomorphisms between the al-
gebras that we have found. If the characteristic of F

is not 2, then M13
0

∼= N , given by φ(x1) = y1 + y2,
φ(x2) = 3y1− 3

2y2, φ(x3) = y1+y2−y3+2y4, φ(x4) = y3.
For this reason we do not list N separately (if the char-
acteristic is 2, then it does not exist).

M7
0,0

∼= M14
0 , by φ(x1) = −y4, φ(x2) = y1, φ(x3) = y2,

φ(x4) = y3.
If the characteristic is 2, and a = α2 �= 0, then M10

a
∼=

M13
0 , given by φ(x1) = y1, φ(x2) = αy1 + αy2, φ(x3) =

y1 + y2 + y4, φ(x4) = αy3 + αy4. Note that if a = 0 we
also have isomorphism: M10

0
∼= M10

1
∼= M13

0 .
I have established the nonisomorphism of the remain-

ing Lie algebras M i by Gröbner basis computations.

Remark 5.1. The Lie algebras M11
0,b do exist, and one may

wonder where they occur in the list. We have M11
0,0

∼=
M12, and M11

0,b
∼= M13

(b+1)/b2 if b �= 0, b �= 1.

Summarising, we have the following classes of solvable
Lie algebras of dimension 4:

M1 The Abelian Lie algebra.

M2 [x4, x1] = x1, [x4, x2] = x2, [x4, x3] = x3.

M3
a [x4, x1] = x1, [x4, x2] = x3,

[x4, x3] = −ax2 + (a + 1)x3.

M4 [x4, x2] = x3, [x4, x3] = x3.

M5 [x4, x2] = x3.

M6
a,b [x4, x1] = x2, [x4, x2] = x3, [x4, x3] = ax1 +bx2 +x3.

M7
a,b [x4, x1] = x2, [x4, x2] = x3, [x4, x3] = ax1 + bx2.

Isomorphism condition: M7
a,b

∼= M7
c,d if and only if

there is an α ∈ F ∗ with a = α3c and b = α2d.

M8 [x1, x2] = x2, [x3, x4] = x4.

M9
a [x4, x1] = x1 + ax2, [x4, x2] = x1, [x3, x1] = x1,

[x3, x2] = x2. Condition on the parameter a: T 2 −
T − a has no roots in F . Isomorphism condition:
M9

a
∼= M9

b if and only if the characteristic of F is
not 2 and there is an α ∈ F ∗ with a+ 1

4 = α2(b+ 1
4 ),

or the characteristic of F is 2 and X2 + X + a + b

has roots in F .

M10
a [x4, x1] = x2, [x4, x2] = ax1, [x3, x1] = x1, [x3, x2] =

x2. Condition on F : the characteristic of F is 2.
Condition on the parameter a: a �∈ F 2. Isomorphism

condition: M10
a

∼= M10
b if and only if Y 2 + X2b + a

has a solution (X,Y ) ∈ F × F with X �= 0.

M11
a,b [x4, x1] = x1, [x4, x2] = bx2, [x4, x3] = (1 + b)x3,

[x3, x1] = x2, [x3, x2] = ax1. Condition on F : the
characteristic of F is 2. Condition on the parameters
a, b: a �= 0, b �= 1. Isomorphism condition: M11

a,b
∼=

M11
c,d if and only if a

c and (δ2 + (b + 1)δ + b)/c are
squares in F , where δ = (b + 1)/(d + 1).

M12 [x4, x1] = x1, [x4, x2] = 2x2, [x4, x3] = x3,
[x3, x1] = x2.

M13
a [x4, x1] = x1 + ax3, [x4, x2] = x2, [x4, x3] = x1,

[x3, x1] = x2.

M14
a [x4, x1] = ax3, [x4, x3] = x1, [x3, x1] = x2. Condi-

tion on parameter a: a �= 0. Isomorphism condition:
M14

a
∼= M14

b if and only if there is an α ∈ F ∗ with
a = α2b.

We count the number of solvable Lie algebras of di-
mension 4 over the finite field Fq, where q = pm for a
prime p. For that we start with a well-known lemma (see
[Berlekamp 68], Theorems 6.69, 6.695).

Lemma 5.2. Let u ∈ Fq, where q = 2m. Then the equa-
tion X2 + X + u has a solution in Fq if and only if

Tr2(u) =
m−1∑
i=0

u2i

= 0.

The classes M1, M2, M3
a , M4, M5, M6

a,b contain 1, 1,
q, 1, 1, q2 algebras respectively.

As noted before, the class M7
a,b splits in three sub-

classes: M7
a,a, M7

a,0 (a �= 0), and M7
0,b (b �= 0). The first

of these contains q elements. We have M7
a,0

∼= M7
a′,0 if

and only if a = α3a′ for some α ∈ Fq. First suppose that
q is odd. If q ≡ 1 mod 6, then X3 = 1 has 3 solutions in
Fq. In that case Fq contains (q−1)/3 cubes and hence we
get 3 algebras. If q �≡ 1 mod 6 then X3 = 1 has 1 solution
in Fq and hence F3

q = Fq and we get only 1 algebra. Now
suppose that p = 2, q = 2m; then Tr2(1) = m. So by
Lemma 5.2, X2 +X +1 has solutions in Fq if and only if
m is even. This is the same as saying that pm ≡ 4 mod 6.
In the same way as above we conclude that in this case
M7

a,0 has 3 algebras. In the case q ≡ 2 mod 6, we get 1
algebra. The class M7

0,b contains 1 algebra if p = 2, and
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2 algebras if p > 2. Summarizing

|M7
a,b| =




q + 5 q ≡ 1 mod 6
q + 2 q ≡ 2 mod 6
q + 3 q ≡ 3 mod 6
q + 4 q ≡ 4 mod 6
q + 3 q ≡ 5 mod 6

.

From M8 we get 1 algebra.
Now we consider M9

a . First suppose that q is odd. We
have to find the set of a ∈ Fq such that T 2 − T − a has
no root in Fq. Suppose that this equation has a root α.
Then the other root is 1−α and a = α2−α. Let B be the
set of all α2 − α for α ∈ Fq. If the equation X2 − X = c

has one solution in Fq, then it has two solutions, unless
c = − 1

4 . This implies that |B| = (q + 1)/2. Let A be the
set of all a ∈ Fq such that T 2 − T − a has no root in Fq.
Then |A| = (q − 1)/2. Also, for 0 �= β ∈ Fq we define
hβ : Fq → Fq by hβ(x) = β2(x + 1

4 ) − 1
4 . Then hβ is a

bijection. It stabilizes B and hence A. Now M9
a
∼= M9

b

precisely if hβ(a) = b for some 0 �= β ∈ Fq. There are
exactly (q − 1)/2 different hβ ’s. So all M9

a for a ∈ A are
isomorphic. Hence we get 1 algebra. Secondly, suppose
that q is even. Choose a, b such that T 2 + T + a and
T 2 + T + b have no roots in Fq. Then by Lemma 5.2,
Tr2(a) = Tr2(b) = 1. But then Tr2(a + b) = 0 and
T 2 + T + a + b has roots in Fq. Hence M9

a
∼= M9

b . So we
get one algebra in this case as well.

The classes M10
a and M11

a,b are only defined for charac-
teristic 2. For perfect fields they both have one algebra.
However, the algebra in M10

a disappears due to the iso-
morphism with M13

0 .
The classes M12 and M13

a have 1 and q algebras re-
spectively. For M14

a we exclude a = 0, as that algebra
is isomorphic to M7

0,0. Therefore this class contains 1
algebra if p = 2 and 2 algebras if p > 2.

Now we add these numbers, and find that the total
number of solvable Lie algebras over Fq is

q2 + 3q + 9 +




5 q ≡ 1 mod 6
2 q ≡ 2 mod 6
3 q ≡ 3 mod 6
4 q ≡ 4 mod 6
3 q ≡ 5 mod 6

,

which is slightly more than the number found in [Patera
and Zassenhaus 90].

Remark 5.3. With L4,i as in [Patera and Zassenhaus 90]
we have L4,1

∼= M1, L4,2
∼= M5 (for this one has to

correct the table given in [Patera and Zassenhaus 90];
with the table as given in [Patera and Zassenhaus 90], we
have L4,2

∼= L4,3), L4,3
∼= M7

0,0, L4,4
∼= M4, L4,5

∼= M3
0 ,

L4,6
∼= M7

0,α, L4,7
∼= M6

0,−α, L4,8
∼= M8, L4,9

∼= M6
0,− 1

4

(if the characteristic is not 2), L4,9
∼= M7

0,1 (if the charac-
teristic is 2), L4,10

∼= M2, L4,11
∼= M3

α, L4,12
∼= M6

α3,−α2
,

L4,13
∼= M7

α,α, L4,14
∼= M7

α,0, L′
4,8

∼= M9
−α, L4,15

∼= M7
−2,3

(characteristic not 3) L4,15
∼= M3

1 (characteristic 3),
L4,16

∼= M6
−2α3+α2,3α2−2α (α �= 1

3 ), L4,16
∼= M3

1 (α = 1
3 ),

L4,17
∼= M6

1
27 ,− 1

3
(characteristic not 3 and α �= 0),

L4,17
∼= M7

1,0 (characteristic 3, and α �= 0), L4,17
∼= M7

0,0

(α = 0), L4,18
∼= M12, L4,19

∼= M14
α , L4,20

∼= M13
−α.

In [Patera and Zassenhaus 90] the algebra M11
a,b is miss-

ing. This can be explained by the circumstance that the
method used in [Patera and Zassenhaus 90] relies on the
derived algebra being nilpotent. Now, if a �= 0 and b �= 1
then the derived algebra of M11

a,b is not nilpotent.

Remark 5.4. As in the dimension-3 case, it is possible
to formulate an algorithm that, for a given solvable Lie
algebra K of dimension 4, finds the M i to which it is
isomorphic. First we find a three-dimensional ideal and
establish to which of the Li it is isomorphic. Then for
each of the four possibilities we basically follow the clas-
sification procedure.

Remark 5.5. Of course the next step will be to describe
the classification for dimension 5. However, in this case
the Gröbner basis computations can be rather time con-
suming, and there are even instances where it did not
terminate in reasonable time. So for the classification in
dimension 5 a better isomorphism test has to be devised.
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