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We show that there is initial order rather than chaos for the solu-
tion to a Diophantine difference equation when, and only when,
the associated parameter takes the smaller values of prime twins.

1. INTRODUCTION

Let 1 ≤ � ≤ k, and define the sequence (an) by the
Diophantine difference equation

a1 = �, an = an−1 +
⌈kan−1

n

⌉
, n > 1, (1–1)

where the ceiling function �x� denotes the least integer
not less than the real number x. The equation was first
considered by J. H. Conway, H. T. Croft, P. Erdős, and
M. J. T. Guy [Conway et al. 79] in their investigation of
the distribution of values of angles determined by copla-
nar points, wherein they needed and found the solution
corresponding to k = 3 and � = 1. The problem ap-
pears intractable when k > 3, but from computational
experiments, I managed to find the solution

an =
⌈ (n + 1) · · · (n + p) − (p − 1)!(n + p)

p p!

⌉
, n ≥ 1,

(1–2)
for the case when k = p is a prime and � = 1; see
[Shiu 96], where the solutions for the cases k = � = 2
and k = 3, � = 2, 3 are given.

The Diophantine condition in (1–1) dictates that one
has to determine the fractional parts

θn =
⌈kan−1

n

⌉
− kan−1

n
, n > 1, (1–3)

which amounts to the identification of the residue class
(mod n) to which kan−1 belongs. The direct proof
of (1–2) given in [Shiu 96] requires the fact that θn = 0
when p|n, and that θn has the asymptotic average value
1/p− 1/p2, but the explicit formula for θn given in (1–8)
was not stated there.

For other values of the parameters k and �, computa-
tional experiments indicate that θn seems to be chaotic,
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leading to the speculation that if θn has an asymptotic
average value, then the value should be 1

2 . However,
nothing concrete has been established and the problem
of whether θn can be zero infinitely often appears to be
difficult. Nevertheless, the results in [Shiu 96] show that
the primes are closely related to Equation (1–1), and re-
cent computational experiments have led me to discover
some further interesting properties related to the primes.
I found that, when � = 2, 3, 4, there is order in the initial
values of θn if, and only if, k = p, where p and p+2 both
are primes. More specifically, for such � and k, there is an
explicit formula for θn which is valid up to n ≤ p(p + 2),
and that, soon after this point, the values of θn appear
to be chaotic. Moreover, for other values of � and k, the
values of θn appear to be chaotic from the beginning.

For odd k, it follows at once from (1–1) and (1–3) that
θ2 = 0 or 1

2 , depending on whether � is even or odd. We
write

L =
⌈ �

2

⌉
, (1–4)

so that L = 1, 2, 2 correspond to � = 2, 3, 4, and we prove
the following two theorems.

Theorem 1.1. Let � = 2, 3, or 4, and k > 3. Then a
necessary and sufficient condition for

θn =
L

n
(1–5)

to hold for each n in 3 ≤ n < k is that k and k + 2 are
both primes.

Theorem 1.2. Let k = p > 3, with p and p + 2 prime.
Then, for p ≤ n < 2p and � = 2, 4, we have

θn = 0,
2L

p + 1
,

L

p + 2
,

5L

p + 3
,

0,
2L

p + 5
,

2L

p + 6
, . . . ,

2L

2p − 1
, (1–6)

and for � = 3, we have

θn = 0,
4

p + 1
,

3
p + 2

,
7

p + 3
,

2
p + 4

,
4

p + 5
,

4
p + 6

, . . . ,
4

2p − 1
. (1–7)

It is easy to check that, when � = 5 and 6, we have
3|a2 so that θ3 = 0. In any case, (1–5) cannot hold when
L ≥ n, so we can only have � = 2, 3, and 4. Note that
2p − 1 < p + 5 when p = 5, so only the first five terms
for θn in (1–6) and (1–7) are relevant. The extended
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FIGURE 1. k = 17, l = 1 (θn : 2 ≤ n ≤ 1000).
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FIGURE 2. k = 17, l = 5 (θn : 2 ≤ n ≤ 1000).

formulae for θn in 2p ≤ n ≤ p(p+2) are given in Section 4;
they can be proved in the same way, but there are more
exceptional cases.

The argument used here differs substantially from the
direct proof of (1–2) given in [Shiu 96], and it is easy to
adapt it to show that, for the case k = p is a prime and
� = 1,

θ(r+1)p = 0, θn =
r + 1

n
, (1–8)

where max(1, rp) < n < (r + 1)p, for r = 0, 1, 2, . . . .

These results do not seem to have any practical value,
such as using them as primality tests or prime twins tests,
nevertheless they do give new criteria for the primes and
prime twins, and it is by no means obvious that (1–1)
should possess such properties.

We use Roman letters to denote integers, with p and q

being reserved for primes. We write n̄ for the integer
reciprocal of n, that is n̄n ≡ 1, with respect to the modu-
lus being considered. Figures 1–6 are computer generated
plots of θn, illustrating its different behaviour associated
with the chosen parameters k and �; in Figure 6 the val-
ues on the horizontal axis have been reduced by 10, 000.
There seems little doubt from these experimental results
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FIGURE 3. k = 17, l = 2 (θn : 2 ≤ n ≤ 1000).
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FIGURE 4. k = 37, l = 2 (θn : 2 ≤ n ≤ 1000).

that there is chaos in the system, unless the parameters
concerned are as specified previously.

2. PROOF OF THEOREM 1.1

We use arithmetic (mod n) to prove the theorem, so we
replace (1–5) by the equivalent formulation

kan−1 ≡ −L (mod n), 3 ≤ n < k. (2–1)

For the sufficiency part of the theorem, we write k = p,
with p, p + 2 primes. From (1–1) and (1–4) we find that

pa2 = L(p + 1)2 − L, (2–2)

for the cases � = 2 and 4, with the additional term
−p(p+1)/2 being required for � = 3. Since p and p+2 are
primes, we need to have p + 1 ≡ 0 (mod 3), so (2–1) cer-
tainly holds when n = 3. We proceed by induction on n

in 3 < n < p and suppose that pam−1 + L ≡ 0 (mod m)
holds for 3 ≤ m < n. For 3 < j ≤ n we then have,
by (1–1),
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FIGURE 5. k = 101, l = 2 (θn : 2 ≤ n ≤ 1000).
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FIGURE 6. k = 101, l = 2 (θn : 10000 + 0 ≤ n ≤
10000 + 1000).

paj−1 + L = p
(
aj−2 +

⌈paj−2

j − 1

⌉)
+ L

= p
(
aj−2 +

paj−2 + L

j − 1

)
+ L

=
(paj−2 + L)(p + j − 1)

j − 1
,

so that, for 3 < n < p,

pan−1 + L =
p + n − 1

n − 1
(pan−2 + L) = · · ·

=
p + n − 1

n − 1
p + n − 2

n − 2
· · · p + 3

3
(pa2 + L),

that is

pan−1+L = n·
(p + n

n

)
· 2
(p + n)(p + 2)

· pa2 + L

p + 1
. (2–3)

From (2–2) and the fact that p + 2 is prime, we deduce
that n|(pan−1 +L), the required inductive step for (2–1).
The sufficiency part of the theorem is established.

For the necessity part of the theorem, we note
that if k has a proper prime divisor q then trivially
kaq−1 ≡ 0 (mod q), so (2–1) fails for n = q < k. Now
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let k = p be a prime and let q be a prime divisor of p+2.
We proceed to prove that

ai ≡ aj (mod q) for i + j = q + 1, (2–4)

using induction on j in w < j < q, where

w =
q + 1

2
.

We now define

um ≡ w(w + m) (mod q) (2–5)

for m �≡ w − 1 (mod q). Then, for m �≡ w ± 1 (mod q),
we find that

ūm + ū1−m ≡ w(w + m) + w(w − m + 1)

≡ 2w2 + w ≡ 2w ≡ 1 (mod q),

and so, multiplying by umu1−m,

um + u1−m (mod q) ≡ umu1−m. (2–6)

Continuing with the proof of (2–4), we now consider

an ≡ an−1 + n̄(pan−1 + L) (mod q), 3 ≤ n < q,

since we may assume that (2–1) holds for n < q.
Upon applying this congruence twice with n = w + 1
and n = w, we find, using p ≡ −2 ≡ −w̄ (mod q), that
aw+1 ≡ A1aw−1 + B1L (mod q), where

Ar ≡ (1 − ur)(1 − u1−r) (mod q),

Br ≡ w(u1−r + ur − u1−rur) (mod q),

with ur being given by (2–5). Thus A1 ≡ 1 (mod q)
and B1 ≡ 0 (mod q) according to (2–6), so aw+1 ≡
aw−1 (mod q). Taking as the induction hypothesis that
aw+i ≡ aw−i (mod q) holds for 1 ≤ i < r and making
use of the iterative congruence 2r times, we find that
aw+r ≡ Araw−r + BrL (mod q). The inductive step is
completed using (2–6), so (2–4) is proved. In particu-
lar, we have aq−1 ≡ a2 (mod q).

Now if � = 2 and 4 then a2 = L(p + 2) ≡ 0 (mod q),
and if � = 3 then a2 = (3p + 7)/2 ≡ 2̄ (mod q), so
pa2 ≡ −1 �≡ −L (mod q). Thus, paq−1 �≡ −L (mod q)
for � = 2, 3, 4. Therefore, if q is a proper divisor of p + 2
the congruence in (2–1) fails at n = q < p. Theorem 1.1
is proved.

3. PROOF OF THEOREM 1.2

First, it follows from (1–1) that ap = 2ap−1, so θp = 0
for all �.

Since p+1 is even, the next result θp+1 = 2L/(p+1) is
equivalent to pap−1 + L ≡ 0 (mod (p + 1)/2), and it can
be established similarly to the proof for the sufficiency
part of Theorem 1.1. Thus, we find that

pap−1 + L = p
(
ap−2 +

⌈pap−2

p − 1

⌉)
+ L

=
(pap−2 + L)(2p − 1)

p − 1
= · · ·

=
2p − 1
p − 1

2p − 2
p − 2

· · · p + 3
3

· (pa2 + L)

=
( 2p

p − 1

)
· pa2 + L

p(p + 2)
,

which shows that p+1 divides pap−1 +L, and hence also
pap + 2L. Therefore we have

ap+1 = ap +
pap + 2L

p + 1
,

θp+1 =
2L

p + 1
,

� = 2, 3, 4.

(3–1)

The next modulus p + 2 is a prime, and the above ar-
gument does not apply. However, we may take q =
p + 2 in (2–4) giving ap−1 ≡ a4 (mod p + 2), and hence
pap ≡ −4a4 (mod p+2). For even and odd �, this residue
has different formulae involving L. We deal with the
cases � = 2 and 4 and find that a2 ≡ 0, a3 ≡ 3̄L,
a4 ≡ 4̄(2 − 3̄)L, and hence pap ≡ (3̄ − 2)L. From (3–1)
we now have pap+1 ≡ (3̄ − 2)L + 2×3̄L ≡ −L and we
have established that

ap+2 = ap+1 +
pap+1 + L

p + 2
,

θp+2 =
L

p + 2
,

� = 2, 4.

(3–2)

The next two moduli, namely p + 3 and p + 4, are
both composite, the former being even and the latter
being a multiple of 3. From the established results for
ap, ap+1, ap+2, we find that

ap+3 = ap+2 +
pap+2 + 5L

p + 3
, ap+4 =

2(p + 2)ap+3

p + 4
,

θp+3 =
5L

p + 3
, θp+4 = 0,

(3–3)
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for � = 2, 4. Thus, we have

pap+2 + 5L = p
( (2p + 2)ap+1 + L

p + 2

)
+ 5L

≡ −12ap+1 + 8L

≡ −30ap + 20L

≡ 20(pap−1 + L) (mod p + 3),

and our earlier evaluation of pap−1 + L gives

pap+2 + 5L

≡ 20· (2p − 1)(2p − 2) · · · (p + 3)
(p − 1)(p − 2) · · · 3 ·(pa2 + L)

≡
(2p + 2

p − 1

)
·10(p + 3)(pa2 + L)

p(p + 1)(2p + 1)
(mod p + 3).

Therefore (p + 3)|(pap+2 + 5L) and a similar argument
shows that (p + 4)|ap+3, so Equation (3–3) holds.

Now let 5 ≤ n < p. First, Formula (2–2) yields

pan = pan−1 +
p

n
(pan−1 + L)

≡ pan−1 − (pan−1 + L)

≡ −L (mod p + n).

(3–4)

The argument used for the proof of (2–1) shows that
pap−1 ≡ −L (mod p + n), and using θp = 0 and (3–1),
we find that pap ≡ pap+1 ≡ −2L. Because of the “ex-
ceptional” values for θp+2 and θp+3, the residues pap+2

and pap+3 (mod p + n) will depend on n. However,
with the next exceptional value for θp+4, it turns out
that the residue pap+4 will not depend on n, and in
fact pap+4 ≡ −2L (mod p + n) again. Thus, from (3–2)
and (3–3) together with p ≡ −n (mod p+n), we find that

pap+2 ≡ −2L + n
n−2 (−L)

≡ 3n−4
n−2 (−L),

pap+3 = (2p+3)pap+2
p+3 + 5Lp

p+3

≡ 2n−3
n−3 ·3n−4

n−2 (−L) + 5nL
n−3 ,

pap+4 ≡ 2(n−2)
n−4 pap+3,

where the notation ···
n−i for i = 2, 3, 4 means the

reciprocal of n − i modulo p + n. The claim that
pap+4 ≡ −2L (mod p + n) amounts to verifying

n − 2
n − 4

(2n − 3
n − 3

·3n − 4
n − 2

− 5n

n − 3

)
≡ 1 (mod p + n),

which is indeed the case. An inductive argument
then delivers pap+n−1 ≡ −2L (mod p + n), so θp+n =
2L/(p + n). Thus, Formula (1–6) is established.

The derivation of (1–7) differs from that of (1–6) only
in the calculations for the exceptional values θp+2, θp+3,
and θp+4. Theorem 1.2 is proved.

4. THE VALUES FOR θn IN 2p ≤ n ≤ p(p + 2)

We give the values of θn in the intervals rp ≤ n < (r+1)p,
with r = 2, 3, . . . , p+1. In each of these intervals, we may
expect from (1–6), (1–7), and (1–8) that

θn =
(r + 1)L

n
, (4–1)

apart from a few exceptional values. This is indeed the
case, and we take � = 2, 4 first. Then, for 2 ≤ r ≤
(p − 3)/2 the four exceptional values are

θrp = 0,

θr(p+2) =
L

r(p + 2)
,

θr(p+2)+1 =
(3r + 2)L

r(p + 2) + 1
,

θr(p+2)+2 = 0;

(4–2)

in particular, θn takes the value 0 twice in such an inter-
val. The same result still holds when r = (p − 1)/2, but
with only the first two exceptional values in (4–2) being
relevant, because r(p + 2) + 1 = (r + 1)p, so the indices
for the last two values fall outside the interval.

When r = (p + 1)/2 we find that there are also only
two exceptional values, given by

θrp =
L

r
, θrp+1 =

L

rp + 1
, (4–3)

so θn > 0 in this interval. When (p+1)/2 < r ≤ p, there
are four exceptional values again, and they are given by

θrp = 0, θR =
2L

R
,

θR+1 =
3rL

R + 1
, θR+2 =

L

R + 2
,

(4–4)

with R = (r − 1)(p + 1). Note that θn takes the value 0
only once in such intervals.

For the interval p(p+1) ≤ n ≤ p(p+2), Formula (4–1)
no longer applies, and we find that, for � = 2,

θp(p+1) =
p

p + 1
, θp(p+2) =

p

p + 2
, θn =

2
n

,

for p(p + 1) < n < p(p + 2), while for � = 4,



6 Experimental Mathematics, Vol. 14 (2005), No. 11

θp(p+1) =
p − 1
p + 1

, θp(p+2) =
p − 1
p + 2

, θn =
p + 4

n
,

(4–5)
for p(p + 1) < n < p(p + 2).

When � = 3, some of the numerators in these formulae
have to be changed. The last three numerators in (4–2)
and (4–4) have to be changed to r + 2, 4r + 3, r + 1, and
the two in (4–3) have to be changed to 1 and (p + 5)/2,
respectively. Also, in (4–5), we need to change p − 1 to
p. Note that θn is positive in the last given interval, and
that θp(p+1) and θp(p+2) are near 1 when p is large; in
fact they are the first values to exceed 1

2 .
The same method used in establishing (1–6) can be ap-

plied to these extended formulae, but we omit the rather

tedious argument. From Figures 3 and 6 we see that
although it is possible to keep track of θn for a few more
such intervals, its values seem to become chaotic before
long. In particular, we do not know any useful necessary
or sufficient condition for θn = 0 when n > p(p + 2).
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