A New Algorithm for the Computation of Logarithmic ℓ-Class Groups of Number Fields

Francisco Diaz y Diaz, Jean-François Jaulent, Sebastian Pauli, Michael Pohst, and Florence Soriano-Gafiuk

CONTENTS

1. Introduction
2. The Theoretical Background
3. The Algorithms
4. Examples

References

We present an algorithm for the computation of logarithmic ℓ class groups of number fields. Our principal motivation is the effective determination of the ℓ-rank of the wild kernel in the K-theory of number fields.

1. INTRODUCTION

A new invariant of number fields, called group of logarithmic classes, was introduced by J. -F. Jaulent in 1994 [Jaulent 94]. The interest in the arithmetic of logarithmic classes comes from its applicability in K-Theory. Indeed, this new group of classes is revealed to be mysteriously related to the wild kernel in the K-Theory of number fields. The new approach to the wild kernel is very attractive since the arithmetic of logarithmic classes is very efficient. Thus it provides an algorithmic and original study of the wild kernel. An early algorithm for the computation of the group of logarithmic classes of a number field F was developed by F. Diaz y Diaz and F. Soriano in 1999 [Diaz y Diaz and Soriano 99]. We present a new and significantly better performing algorithm, which also eliminates the restriction to Galois extensions.

Let ℓ be a prime number. If a number field F contains the 2ℓ th roots of unity, then the wild kernel of F and its logarithmic ℓ-class group have the same ℓ-rank. If F does not contain the 2ℓ th roots of unity, the arithmetic of the logarithmic classes still yields the ℓ-rank of the the wild kernel. More precisely:

- If ℓ is odd [Jaulent and Soriano 01, Soriano 00] we consider $F^{\prime}:=F\left(\zeta_{\ell}\right)$, where ζ_{ℓ} is the ℓ th root of unity, and use classic techniques from the theory of semisimple algebras.
- If $\ell=2$ [Jaulent and Soriano-Gafiuk 04] we introduce a new group, which we call the ℓ-group of the
positive divisor classes and which can be constructed from the ℓ-group of logarithmic classes.

In the present article we consider the general situation where F is a number field which does not necessarily contain the 2ℓ th roots of unity.

2. THE THEORETICAL BACKGROUND

This section is devoted to the introduction of the main notions of logarithmic arithmetic. We also review the facts that are of interest for our purpose. We do not attempt to give a fully detailed account of the logarithmic language. Most proofs may be found in [Jaulent 94, pages 303-313].

2.1 Review of the Main Logarithmic Objects

For any number field F, let \mathcal{J}_{F} be the ℓ-adified group of idèles of F, i.e., the restricted product

$$
\mathcal{J}_{F}=\prod_{\mathfrak{p}}^{\text {res }} \mathcal{R}_{\mathfrak{p}}
$$

of the ℓ-adic compactifications $\mathcal{R}_{\mathfrak{p}}=\lim F_{\mathfrak{p}}^{\times} / F_{\mathfrak{p}}^{\times \ell^{n}}$ of the multiplicative groups of the completions of F at each \mathfrak{p}. For each finite place \mathfrak{p} the subgroup $\widetilde{\mathcal{U}}_{\mathfrak{p}}$ of $\mathcal{R}_{\mathfrak{p}}$ of the cyclotomic norms (that is to say the elements of $\mathcal{R}_{\mathfrak{p}}$ which are norms at any finite step of the local cyclotomic $\mathbb{Z}_{\ell^{-}}$ extension $F_{\mathfrak{p}}^{c} / F_{\mathfrak{p}}$) will be called the group of logarithmic units of $F_{\mathfrak{p}}$. The product

$$
\tilde{\mathcal{U}}_{F}=\prod_{\mathfrak{p}} \tilde{\mathcal{U}}_{\mathfrak{p}}
$$

is called the group of idelic logarithmic units; it happens to be the kernel of the logarithmic valuations

$$
\widetilde{v}_{\mathfrak{p}} \left\lvert\, x \mapsto-\frac{\log _{\ell}\left(N_{F_{\mathfrak{p}} / \mathbb{Q}_{p}}(x)\right)}{\operatorname{deg}_{F} \mathfrak{p}}\right.
$$

defined on the $\mathcal{R}_{\mathfrak{p}}$ and \mathbb{Z}_{ℓ}-valued. These are obtained by taking the Iwasawa logarithm of the norm of x in the local extension $F_{\mathfrak{p}} / \mathbb{Q}_{p}$ with a normalization factor $\operatorname{deg}_{F} \mathfrak{p}$ whose precise definition is given in the next subsection.

The quotient $\mathcal{D} \ell_{F}=\mathcal{J}_{F} / \widetilde{\mathcal{U}}_{F}$ is the ℓ-group of logarithmic divisors of F; via the logarithmic valuations $\widetilde{v}_{\mathfrak{p}}$, it may be identified with the free \mathbb{Z}_{ℓ}-module generated by the prime ideals of F

$$
\mathcal{D} \ell_{F}=\mathcal{J}_{F} / \tilde{\mathcal{U}}_{F}=\oplus_{\mathfrak{p}} \mathbb{Z}_{\ell} \mathfrak{p}
$$

The degree of a logarithmic divisor $\mathfrak{d}=\sum_{\mathfrak{p}} n_{\mathfrak{p}} \mathfrak{p}$ is then defined by

$$
\operatorname{deg}_{F}\left(\sum_{\mathfrak{p}} n_{\mathfrak{p}} \mathfrak{p}\right)=\sum_{\mathfrak{p}} n_{\mathfrak{p}} \operatorname{deg}_{F} \mathfrak{p}
$$

inducing a \mathbb{Z}_{ℓ}-valued \mathbb{Z}_{ℓ}-linear map on the class group of logarithmic divisors. The logarithmic divisors of degree zero form a subgroup of $\mathcal{D} \ell_{F}$ denoted by

$$
{\widetilde{\mathcal{D}} \ell_{F}}=\left\{\mathfrak{d} \in \mathcal{D} \ell_{F} \mid \operatorname{deg}_{F} \mathfrak{d}=0\right\}
$$

The image of the map $\widetilde{\operatorname{div}}_{F}$ defined via the set of logarithmic valuations from the principal idèle subgroup

$$
\mathcal{R}_{F}=\mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} F^{\times}
$$

of \mathcal{J}_{F} to $\widetilde{\mathcal{D} \ell}_{F}$ is a subgroup denoted by $\widetilde{\mathcal{P} \ell}_{F}$, which will be referred to as the subgroup of principal logarithmic divisors. The quotient

$$
{\widetilde{\mathcal{C}} \ell_{F}}={\widetilde{\mathcal{D} \ell} \ell_{F}}^{/ \widetilde{\mathcal{P} \ell}}
$$

is, by definition, the ℓ-group of logarithmic classes of F. And the kernel

$$
\widetilde{\mathcal{E}}_{F}=\mathcal{R}_{F} \cap \widetilde{\mathcal{U}}_{F}
$$

of the morphism $\widetilde{\operatorname{div}}_{F}$ from \mathcal{R}_{F} in $\widetilde{\mathcal{D} \ell_{F}}$ is the group of global logarithmic units.

2.2 Logarithmic Ramification and ℓ-adic Degrees

Next we review the basic notions of the logarithmic ramification, which mimic, as a rule, the classical ones.

Let L / F be any finite extension of number fields. Let p be a prime number. Denote by $\widehat{\mathbb{Q}}_{p}^{c}$ the cyclotomic $\widehat{\mathbb{Z}}^{-}$ extensions of \mathbb{Q}_{p}, that is to say the compositum of all cyclotomic \mathbb{Z}_{q}-extensions of \mathbb{Q}_{p} on all prime numbers q. Let \mathfrak{p} be a prime of F above (p) and \mathfrak{P} a prime of L above \mathfrak{p}. The logarithmic ramification (respectively inertia) index $\widetilde{e}\left(L_{\mathfrak{P}} / F_{\mathfrak{p}}\right)$ (respectively $\left.\widetilde{f}\left(L_{\mathfrak{P}} / F_{\mathfrak{p}}\right)\right)$ is defined to be the relative degree

$$
\begin{array}{ll}
& \widetilde{e}\left(L_{\mathfrak{P}} / F_{\mathfrak{p}}\right)=\left[L_{\mathfrak{P}}: L_{\mathfrak{P}} \cap \widehat{\mathbb{Q}}_{p}^{c} F_{\mathfrak{p}}\right] \\
\text { (respectively } & \left.\widetilde{f}\left(L_{\mathfrak{P}} / F_{\mathfrak{p}}\right)=\left[L_{\mathfrak{P}} \cap \widehat{\mathbb{Q}}_{p}^{c} F_{\mathfrak{p}}: F_{\mathfrak{p}}\right]\right)
\end{array}
$$

As a consequence, L / F is logarithmically unramified at \mathfrak{P}, that is to say $\widetilde{e}\left(L_{\mathfrak{P}} / F_{\mathfrak{p}}\right)=1$, if and only if $L_{\mathfrak{P}}$ is contained in the cyclotomic extension of $F_{\mathfrak{p}}$. Moreover, for any $q \neq p$ the classical and the logarithmic indexes have the same q-part (see Proposition 3.2). Hence they are equal as soon as $p \nmid\left[F_{\mathfrak{p}}: \mathbb{Q}_{p}\right]$.

As usual, in the special case $L / F=K / \mathbb{Q}$, the absolute logarithmic indexes of a finite place \mathfrak{p} of K over the prime
p are just denoted by $\widetilde{e}_{\mathfrak{p}}$ and $\widetilde{f}_{\mathfrak{p}}$. With these notations, the ℓ-adic degree of \mathfrak{p} is defined by the formula:

$$
\begin{aligned}
& \operatorname{deg}_{K} \mathfrak{p}=\widetilde{f}_{\mathfrak{p}} \operatorname{deg}_{\ell} p \quad \text { with } \\
& \operatorname{deg}_{\ell} p=\left\{\begin{array}{lr}
\log _{\ell} p & \text { for } p \neq \ell ; \\
\ell & \text { for } p=\ell \neq 2 ; \\
4 & \text { for } p=\ell=2 .
\end{array}\right.
\end{aligned}
$$

The extension and norm maps between groups of divisors, denoted by $\iota_{L / F}$ and $N_{L / F}$ respectively, have their logarithmic counterparts, $\widetilde{\iota}_{L / F}$ and $\widetilde{N}_{L / F}$ respectively. To be more explicit, $\widetilde{\iota}_{L / F}$ is defined on every finite place \mathfrak{p} of F by

$$
\tilde{\iota}_{L / F}(\mathfrak{p})=\sum_{\mathfrak{P} \mid \mathfrak{p}} \widetilde{e}_{L_{\mathfrak{F}} / F_{\mathfrak{p}}} \mathfrak{P}
$$

while $\widetilde{N}_{L / F}$ is defined on all \mathfrak{P} lying above \mathfrak{p} by

$$
\tilde{N}_{L / F}(\mathfrak{P})=\widetilde{f}_{L_{\mathfrak{P}} / F_{\mathfrak{p}}} \mathfrak{p}
$$

These applications are compatible with the usual extension and norm maps defined between \mathcal{R}_{L} and \mathcal{R}_{F}, in the sense that they sit inside the commutative diagrams.

$$
\begin{array}{lll}
\mathcal{R}_{L} \xrightarrow{\widetilde{\operatorname{div}_{L}}} \widetilde{\mathcal{D} \ell_{L}} \xrightarrow{\operatorname{deg}_{L}} \mathbb{Z}_{\ell} \\
\downarrow^{N_{L / F}} & \downarrow^{\widetilde{N}_{L / F}} \quad \| \text { and } \\
\mathcal{R}_{F} \xrightarrow{\widetilde{\operatorname{div}_{F}}} \widetilde{\mathcal{D} \ell_{F}} \xrightarrow{\operatorname{deg}_{F}} \mathbb{Z}_{\ell} \\
\mathcal{R}_{L} \xrightarrow{\widetilde{\operatorname{div}_{L}}} \widetilde{\mathcal{D} \ell_{L}} \xrightarrow{\operatorname{deg}_{L}} & \mathbb{Z}_{\ell} \\
\uparrow_{\widetilde{\iota}_{L / F}} & \uparrow_{\tau_{L / F}} & \uparrow[L: F] \\
\mathcal{R}_{F} \xrightarrow{\widetilde{\widetilde{\operatorname{div}}_{F}}} \widetilde{\mathcal{D} \ell_{F}} \xrightarrow{\operatorname{deg}_{F}} \mathbb{Z}_{\ell}
\end{array}
$$

When L / F is a Galois extension with Galois group $\operatorname{Gal}(L / F)$, one deduces from the very definitions the unsurprising and obvious properties:

$$
\begin{aligned}
& \tilde{N}_{L / F} \circ \tilde{\iota}_{L / F}=[L: F] \text { and } \\
& \widetilde{\iota}_{L / F} \circ \widetilde{N}_{L / F}=\sum_{\sigma \in \operatorname{Gal}(L / F)} \sigma .
\end{aligned}
$$

2.3 Ideal Theoretic Description of Logarithmic Classes

By the weak density theorem every class in $\mathcal{J}_{F} / \widetilde{\mathcal{U}}_{F} \mathcal{R}_{F}$ may be represented by an idèle with trivial components at the ℓ-adic places, that is to say that every class in $\mathcal{D} \ell_{F} / \mathcal{P} \ell_{F}$ comes from a ℓ-divisor $\mathfrak{d}=\sum_{\mathfrak{p} \nmid \ell} \alpha_{\mathfrak{p}} \mathfrak{p}$.

The canonical map from \mathcal{R}_{F} to $\mathcal{D} \ell_{F}$ maps $a \in \mathcal{R}_{F}$ to $\widetilde{\operatorname{div}}_{F}(a)=\sum_{\mathfrak{p}} \widetilde{v}_{\mathfrak{p}}(a) \mathfrak{p}$. Now for each finite place $\mathfrak{p} \nmid \ell$, the
quotient $\widetilde{e}_{\mathfrak{p}} / e_{\mathfrak{p}}=f_{\mathfrak{p}} / \widetilde{f}_{\mathfrak{p}}$ of the classical and logarithmical indexes associated with \mathfrak{p} is a ℓ-adic unit (Proposition 3.2), say $\lambda_{\mathfrak{p}}$ (which is 1 for almost all \mathfrak{p}), and one has the identity,

$$
\widetilde{v}_{\mathfrak{p}}=\lambda_{\mathfrak{p}} v_{\mathfrak{p}}
$$

between the logarithmic and the classical valuations. So every ℓ-divisor \mathfrak{d} comes from a ℓ-ideal \mathfrak{a} by the formula

$$
\mathfrak{a}=\prod_{\mathfrak{p} \nmid \ell} \mathfrak{p}^{\alpha_{\mathfrak{p}}} \mapsto \mathfrak{d}_{F}(\mathfrak{a})=\sum_{\mathfrak{p} \not \ell \ell} \lambda_{\mathfrak{p}} \alpha_{\mathfrak{p}} \mathfrak{p}
$$

This gives the following ideal theoretic description of logarithmic classes.

Definition and Proposition 2.1. Let

$$
\mathcal{I} d_{F}=\left\{\mathfrak{a}=\prod_{\mathfrak{p} \nmid \ell} \mathfrak{p}^{\alpha_{\mathfrak{p}}}\right\}
$$

be the group of ℓ-ideals,

$$
\widetilde{\mathcal{I}}_{F}=\left\{\mathfrak{a} \in \mathcal{I} d_{F} \mid \operatorname{deg}_{F} \mathfrak{d}_{F}(\mathfrak{a})=0\right\}
$$

be the subgroup of ℓ-ideals of degree 0, and

$$
{\widetilde{\mathcal{P}} r_{F}}=\left\{\prod_{\mathfrak{p} \nmid \ell} \mathfrak{p}^{v_{\mathfrak{p}}(a)}\left|\widetilde{v}_{\mathfrak{p}}(a)=0 \forall \mathfrak{p}\right| \ell\right\}
$$

the subgroup of principal ℓ-ideals generated by principal idèles a having logarithmic valuations 0 at every ℓ-adic place. Then one has

$$
\widetilde{\mathcal{C} \ell}_{F} \simeq \widetilde{\mathcal{I}}_{F} / \widetilde{\mathcal{P} r}_{F}
$$

Proof: As explained above, the surjectivity follows from the weak approximation theorem. So let us consider the kernel of the canonical map $\phi_{F}: \widetilde{\mathcal{I} d_{F}} \mapsto{\widetilde{\mathcal{C}} \ell_{F}}^{\text {. Clearly, }}$ we have $\operatorname{ker} \phi_{F}=\left\{\mathfrak{a} \in \widetilde{\mathcal{I}} d_{F} \mid \exists a \in \mathcal{R}_{F} \quad \mathfrak{d}_{F}(\mathfrak{a})=\right.$ $\left.\widetilde{\operatorname{div}}_{F}(a)\right\}$. The condition $\mathfrak{d}_{F}(\mathfrak{a})=\widetilde{\operatorname{div}}_{F}(a)$ with $\mathfrak{a} \in \widetilde{\mathcal{I}}_{F}$ implies $\widetilde{v}_{\mathfrak{p}}(a)=0 \forall \mathfrak{p} \mid \ell$; and thus $(a) \in{\widetilde{\mathcal{P}} r_{F}}$ as expected.

The generalized Gross conjecture (for the field F and the prime ℓ) asserts that the logarithmic class group $\widetilde{\mathcal{C} \ell}{ }_{F}$ is finite (cf. [Jaulent 94]). This conjecture, which is a consequence of the p-adic Schanuel conjecture was only proved in the abelian case and a few others (cf. [Federer and Gross 81, Jaulent 02b]). Nevertheless, since ${\widetilde{\mathcal{C}} \ell_{F}}$ is a \mathbb{Z}_{ℓ}-module of finite type (by the ℓ-adic class field theory), the Gross conjecture just claims the existence of an integer m such that ℓ^{m} kills the logarithmic class group. In practice it is rather easy to compute such an exponent
m (when the classical invariants of the number field are known); this gives rise to a more suitable description of $\widetilde{\mathcal{C} \ell}{ }_{F}$ in order to carry out numerical computations.

Proposition 2.2. Assume the integer m to be large enough such that the logarithmic class group $\widetilde{\mathcal{C} \ell}{ }_{F}$ is annihilated by ℓ^{m}. Thus introduce the group

$$
\begin{aligned}
\widetilde{\mathcal{I}} d_{F}^{\left(\ell^{m}\right)} & =\left\{\mathfrak{a} \in \mathcal{I} d_{F} \mid \operatorname{deg}_{F} \mathfrak{d}_{F}(\mathfrak{a}) \in \ell^{m} \operatorname{deg}_{F} \mathcal{D} \ell_{F}\right\} \\
& =\widetilde{\mathcal{I}} d_{F} \mathcal{I} d_{F}^{\ell^{m}}
\end{aligned}
$$

Thus, denoting $\widetilde{\mathcal{P} r_{F}^{\left(\ell^{m}\right)}}={\widetilde{\mathcal{P}} r_{F}}^{\mathcal{I}_{\mathcal{I}} \ell_{F}^{m}}$, one has: ${\widetilde{\mathcal{C}} \ell_{F}}_{\simeq}$ $\widetilde{\mathcal{I}} d_{F}^{\left(\ell^{m}\right)} / \widetilde{\mathcal{P} r_{F}}{ }^{\left(\ell^{m}\right)}$.

Proof: The hypothesis gives $\widetilde{\mathcal{I} d}{ }_{F}^{\ell^{m}} \subset \widetilde{\mathcal{P} r_{F}}$ and by a straightforward calculation we have

$$
\begin{aligned}
& \simeq \widetilde{\mathcal{I}} d_{F} / \widetilde{\mathcal{P} r_{F}} \widetilde{\mathcal{I} d_{F}}{ }^{\ell^{m}} \\
& =\widetilde{\mathcal{I} d_{F}} /{\widetilde{\mathcal{P}} r_{F}}_{\sim} \widetilde{\mathcal{C} \ell}_{F} \text {. }
\end{aligned}
$$

Remark 2.3. A lower bound for m which will be required for a sufficient precision of the p-adic calculations will be given after Lemma 3.9.

3. THE ALGORITHMS

Throughout this section a finite abelian group G is presented by a column vector $g \in G^{m}$, whose entries form a system of generators for G, and by a matrix of relations $M \in \mathbb{Z}^{n \times m}$ of rank m, such that $v^{T} g=0$ for $v \in \mathbb{Z}^{m}$ if and only if v^{T} is an integral linear combination of the rows of M. We note that for every $a \in G$ there is a $v \in \mathbb{Z}^{m}$ satisfying $a=v^{T} g$. If g_{1}, \ldots, g_{m} is a basis of G, M is usually a diagonal matrix. Algorithms for calculations with finite abelian groups can be found in [Cohen 00]. If G is a multiplicative abelian group, then $v^{T} g$ is an abbreviation for $g_{1}^{v_{1}} \cdots g_{m}^{v_{m}}$.

One of the steps in the computation of the logarithmic class group is the computation of the ideal class group of a number field. Algorithms for this can be found in [Cohen 93, Hess 96, Pohst and Zassenhaus 89]. One tool used in these algorithms is the \mathfrak{s}-units, which we will also use directly in our algorithm.

Definition 3.1. (\mathfrak{s}-units.) Let \mathfrak{s} be an ideal of a number field F. We call the group

$$
\left\{\alpha \in F^{\times} \mid v_{\mathfrak{p}}(\alpha)=0 \text { for all } \mathfrak{p} \nmid \mathfrak{s}\right\}
$$

the \mathfrak{s}-units of F.

For this section let F be a fixed number field. We denote the ideal class group of F by $\mathcal{C} \ell=\mathcal{C} \ell_{F}$. We also write $\widetilde{\mathcal{C} \ell}$ for $\widetilde{\mathcal{C} \ell}{ }_{F}, \widetilde{\mathcal{D} \ell}$ for $\widetilde{\mathcal{D} \ell}{ }_{F}$, and so on.

3.1 Computing $\operatorname{deg}_{F}(\mathfrak{p})$ and $\widetilde{\boldsymbol{v}}_{\mathfrak{p}}(\cdot)$

We describe how invariants of the logarithmic objects can be computed. Some of the tools presented here also are applied directly in the computation of the logarithmic class group.

Definition and Proposition 3.2. Let p be a prime number. Let F be a number field. Let \mathfrak{p} be a prime ideal of F over p. For $a \in \mathbb{Q}_{p}^{\times} \cong p^{\mathbb{Z}} \times \mathbb{F}_{p}^{\times} \times\left(1+2 p \mathbb{Z}_{p}\right)$ denote by $\langle a\rangle$ the projection of a to $\left(1+2 p \mathbb{Z}_{p}\right)$. Let $F_{\mathfrak{p}}$ be the completion of F with respect to \mathfrak{p}. For $\alpha \in F$ define

$$
h_{\mathfrak{p}}(\alpha):=\frac{\log _{p}\left\langle\mathrm{~N}_{F_{\mathfrak{p}} / \mathbb{Q}_{p}}(\alpha)\right\rangle}{\left[F_{\mathfrak{p}}: \mathbb{Q}_{p}\right] \cdot \operatorname{deg}_{p} p} .
$$

The p-part of the logarithmic ramification index $\widetilde{e}_{\mathfrak{p}}$ is $\left[h_{\mathfrak{p}}\left(F_{\mathfrak{p}}^{\times}\right): \mathbb{Z}_{p}\right]$. For all primes q with $q \neq p$ the q-part of $\widetilde{e}_{\mathfrak{p}}$ is the q-part of the ramification index $e_{\mathfrak{p}}$ of \mathfrak{p}.

For a proof see [Jaulent 94].
In Section 2.2 we have seen that the degree $\operatorname{deg}_{F}(\mathfrak{p})$ of a place \mathfrak{p} can be computed as $\operatorname{deg}_{F}(\mathfrak{p})=\widetilde{f}_{\mathfrak{p}} \operatorname{deg}_{\ell} p$. From Section 2.3 we know that $\widetilde{e}_{\mathfrak{p}} \widetilde{f}_{\mathfrak{p}}=e_{\mathfrak{p}} f_{\mathfrak{p}}$. We have

$$
\widetilde{v}_{\mathfrak{p}}(x)=-\frac{\log _{\ell}\left(\mathrm{N}_{F_{\mathfrak{p}} / \mathbb{Q}_{p}}(x)\right)}{\operatorname{deg}_{F}(\mathfrak{p})}
$$

Thus we can concentrate on the computation of $\widetilde{e}_{\mathfrak{p}}$ for which we need the completion $F_{\mathfrak{p}}$ of F at \mathfrak{p} and generators of the unit group $F_{\mathfrak{p}}^{\times}$.

The Round Four Algorithm was originally conceived as an algorithm for computing integral bases of number fields. It can be applied in three different ways in the computation of logarithmic classgroups. Firstly, it is used for factoring ideals over number fields; secondly, it returns generating polynomials of completions of number fields; and thirdly, it can be used for determining integral bases of maximal orders.

Let $\Phi(x)$ be a monic, squarefree polynomial over \mathbb{Z}_{p}. The algorithm for factoring polynomials over local fields as described in [Pauli 01] returns:

- a factorization $\Phi(x)=\Phi_{1}(x) \cdots \cdot \Phi_{s}(x)$ of $\Phi(x)$ into irreducible factors $\Phi_{i}(x)(1 \leq i \leq s)$ over \mathbb{Z}_{p},
- the inertia degrees e_{i} and ramification indexes f_{i} of the extensions of \mathbb{Q}_{p} given by the $\Phi_{i}(x)(1 \leq i \leq s)$, and
- two element certificates $\left(\Gamma_{i}(x), \Pi_{i}(x)\right)$ with $\Gamma_{i}(x), \Pi_{i}(x) \in F[x]$ such that $v_{i}\left(\Pi_{i}\left(\alpha_{i}\right)\right)=1 / e_{i}$ and $\left[\mathbb{F}_{p}\left(\overline{\Gamma_{i}\left(\alpha_{i}\right)}\right): \mathbb{F}_{p}\right]=f_{i}$ where α_{i} is a root of $\Phi_{i}(x)$ in $F[x] /\left(\Phi_{i}(x)\right)$, and v_{i} is an extension of the exponential valuation v_{p} of \mathbb{Q}_{p} to $\mathbb{Q}_{p}[x] /\left(\Phi_{i}(x)\right)$ with $\left.v_{i}\right|_{\mathbb{Q}_{p}}=v_{p}$.

The factorization algorithm in [Ford et al. 02] returns the certificates combined in one polynomial for each irreducible factor. The data returned by these algorithms can be applied in several ways.

- An integral basis of the extension of \mathbb{Q}_{p} generated by a root α_{i} of $\Phi_{i}(x)$ is given by the elements $\Gamma_{i}\left(\alpha_{i}\right)^{h} \Pi_{i}\left(\alpha_{i}\right)^{j}$ with $0 \leq h \leq f_{i}$ and $0 \leq j \leq e_{i}$. The local integral bases can be combined to a global integral basis for the extension of \mathbb{Q} generated by $\Phi(x)$.
- For the computation of $\widetilde{v}_{\mathfrak{p}}$ we need to compute the norm of an element in the completions of F. The completions of F are given by the irreducible factors of the generating polynomial of F over \mathbb{Q}.

Lemma 3.3. (Ideal Factorization.) $\operatorname{Let} \Phi(x) \in \mathbb{Z}_{p}[x]$ be irreducible over \mathbb{Q}. Let $\Phi_{1}(x), \ldots, \Phi_{s}(x) \in \mathbb{Z}_{p}[x]$ be the irreducible factors of $\Phi(x)$ with two element certificates $\left(\Gamma_{i}(x), \Pi_{i}(x)\right)$. Denote by e_{i} the ramification indexes of the extensions of \mathbb{Q}_{p} given by the $\Phi_{i}(x)(1 \leq i \leq$ $s)$. The Chinese Remainder Theorem gives polynomials $\Theta_{1}(x), \ldots, \Theta_{s}(x) \in \mathbb{Q}_{p}[x]$ with

$$
\begin{aligned}
\Theta_{i}(x) & \equiv \Pi_{i}(x) \bmod \Phi_{i}(x) \\
\Theta_{i}(x) & \equiv 1 \bmod \prod_{j \neq i} \Phi_{j}(x)
\end{aligned}
$$

Let $L:=\mathbb{Q}(\alpha)$ where α is a root of $\Phi(x)$ in \mathbb{C}. Then

$$
(p)=\left(p, \Theta_{1}(\alpha)\right)^{e_{1}} \cdots \cdots\left(p, \Theta_{s}(\alpha)\right)^{e_{s}}
$$

is a factorization of (p) into prime ideals.
In order to compute $\left[h_{\mathfrak{p}}\left(F_{\mathfrak{p}}^{\times}\right): \mathbb{Z}_{p}\right]$ it is sufficient to compute the image of a set of generators of $F_{\mathfrak{p}}{ }^{\times}$. Algorithms for this task were recently developed with respect to the computation of ray class groups of number fields
and function fields [Cohen 00, Hess et al. 03], also see [Hasse 80, Chapter 15].

Proposition 3.4. $F_{\mathfrak{p}}{ }^{\times} \cong \pi^{\mathbb{Z}} \times\left(\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}\right)^{\times} \times(1+\mathfrak{p})$.
Let \mathfrak{p} be the prime ideal over the prime number p in $\mathcal{O}_{\mathfrak{p}}$. Let $e_{\mathfrak{p}}$ be the ramification index and $f_{\mathfrak{p}}$ the inertia degree of \mathfrak{p}. We define the set of fundamental levels

$$
\mathcal{F}_{e}:=\left\{\nu \left\lvert\, 0<\nu<\frac{p e_{p}}{p-1}\right., p \nmid \nu\right\}
$$

and let $\varepsilon \in \mathcal{O}_{\mathfrak{p}}^{\times}$such that $p=-\pi^{e} \varepsilon$. Furthermore we define the map

$$
h_{2}: a+\mathfrak{p} \longmapsto a^{p}-\varepsilon a+\mathfrak{p}
$$

Theorem 3.5. (Basis of $(1+\mathfrak{p})$.$) \quad Let \omega_{1}, \ldots, \omega_{f} \in \mathcal{O}_{\mathfrak{p}}$ be a fixed set of representatives of a \mathbb{F}_{p}-basis of $\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}$. If $(p-1)$ does not divide e or h_{2} is an isomorphism, then the elements

$$
1+\omega_{i} \pi^{\nu} \text { where } \nu \in \mathcal{F}_{e}, 1 \leq i \leq f
$$

are a basis of the group of principal units $1+\mathfrak{p}$.
Theorem 3.6. (Generators of $(1+\mathfrak{p})$.) Assume that $(p-1) \mid e$ and h_{2} is not an isomorphism. Choose e_{0} and μ_{0} such that p does not divide e_{0} and such that $e=$ $p^{\mu_{0}-1}(p-1) e_{0}$. Let $\omega_{1}, \ldots, \omega_{f} \in \mathcal{O}_{\mathfrak{p}}$ be a fixed set of representatives of a \mathbb{F}_{p}-basis of $\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}$ subject to $\omega_{1}^{p^{\mu_{0}}}-$ $\varepsilon \omega_{1}^{p^{\mu_{0}-1}} \equiv 0 \bmod \mathfrak{p}$. Choose $\omega_{*} \in \mathcal{O}_{\mathfrak{p}}$ such that $x^{p}-\varepsilon x \equiv$ $\omega_{*} \bmod \mathfrak{p}$ has no solution. Then the group of principal units $1+\mathfrak{p}$ is generated by

$$
1+\omega_{*} \pi^{p^{\mu_{0}} e_{0}} \text { and } 1+\omega_{i} \pi^{\nu} \text { where } \nu \in \mathcal{F}_{e}, 1 \leq i \leq f
$$

3.2 Computing a Bound for the Exponent of $\widetilde{\mathcal{C} \ell}$

Let F be a number field and ℓ a prime number. Let $\widetilde{\mathcal{C} \ell}=\widetilde{\mathcal{C} \ell}{ }_{F} \cong \widetilde{\mathcal{I} d} / \widetilde{\mathcal{P} r}$ be the ℓ-group of logarithmic divisor classes. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be the ℓ-adic places of F.

We describe an algorithm which returns an upper bound ℓ^{m} of the exponent of $\widetilde{\mathcal{C} \ell}$ (see Proposition 2.2). We denote by

- $\widetilde{\mathcal{C} \ell}(\ell)$ the ℓ group of logarithmic divisor classes of degree zero:

$$
\widetilde{\mathcal{C} \ell}(\ell):=\left\{[\mathfrak{a}] \in \widetilde{\mathcal{C} \ell} \left\lvert\, \begin{array}{l}
\mathfrak{a}=\sum_{i=1}^{s} a_{i} \mathfrak{p}_{i} \text { with } \\
\operatorname{deg}_{F}(\mathfrak{a})=0
\end{array}\right.\right\}
$$

- $\mathcal{C} \ell^{\prime}$ the ℓ-group of the ℓ-ideal classes, i.e., the ℓ-part of $\mathcal{C} \ell /\left\langle\left[\mathfrak{p}_{1}\right], \ldots,\left[\mathfrak{p}_{s}\right]\right\rangle$.

Remark 3.7. If $(\ell)=\mathfrak{p}^{e}$ where \mathfrak{p} is a prime ideal of \mathcal{O}_{K} then the group $\mathcal{C} \ell(\ell)$ is trivial.

Lemma 3.8. [Diaz y Diaz and Soriano 99] Let

$$
\theta: \widetilde{\mathcal{C} \ell} \longrightarrow \mathcal{C} \ell^{\prime}, \sum_{\mathfrak{p}} m_{\mathfrak{p}} \mathfrak{p} \longmapsto \prod_{\mathfrak{p} \nmid \ell} \mathfrak{p}^{\left(1 / \lambda_{\mathfrak{p}}\right) m_{\mathfrak{p}}}
$$

The sequence

$$
0 \longrightarrow \widetilde{\mathcal{C} \ell}(\ell) \longrightarrow \widetilde{\mathcal{C} \ell} \xrightarrow{\theta} \mathcal{C} \ell^{\prime} \longrightarrow \operatorname{Coker} \theta \longrightarrow 0
$$

is exact.

Proof: Recall that, if $\mathfrak{p} \nmid \ell, \widetilde{v}_{\mathfrak{p}}=\lambda_{\mathfrak{p}} v_{\mathfrak{p}}$. Denote by $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the ℓ-adic places of F. Let

$$
\begin{aligned}
\widetilde{\mathfrak{a}} & =\sum_{\mathfrak{q}} a_{\mathfrak{q}} \mathfrak{q} \\
& =\widetilde{\operatorname{div}}(\alpha) \\
& =\sum_{\mathfrak{p}} \widetilde{v}_{\mathfrak{p}}(\alpha) \mathfrak{p} \\
& =\sum_{\mathfrak{p} \nmid \ell} \lambda_{\mathfrak{p}} v_{\mathfrak{p}}(\alpha) \mathfrak{p}+\sum_{i=1}^{s} \widetilde{v}_{\mathfrak{p}_{i}}(\alpha) \mathfrak{p}_{i}
\end{aligned}
$$

be a principal logarithmic divisor. A representative of the image of $\widetilde{\mathfrak{a}}$ under θ in terms of ideals is of the form

$$
\mathfrak{a}=\prod_{q \nmid(\ell)} \mathfrak{q}^{v_{\mathfrak{q}}(\alpha)}=\left(\alpha \mathcal{O}_{K}\right) \times \prod_{i=1}^{s} \mathfrak{p}_{i}^{-v_{p_{i}}(\alpha)}
$$

This shows that the homomorphism θ is well defined. It follows immediately that $\operatorname{Ker} \theta=\widetilde{\mathcal{C} \ell}(\ell)$.

Lemma 3.9. Set $\ell^{m^{\prime}}=\exp \mathcal{C} \ell^{\prime}$ and $\ell^{\widetilde{m}}=\exp \widetilde{\mathcal{C} \ell}(\ell)$. Then

$$
\ell^{m^{\prime}+\widetilde{m}} \mathfrak{a} \equiv 0 \bmod \widetilde{\mathcal{P} \ell} \text { for all } \mathfrak{a} \in \widetilde{\mathcal{D} \ell}
$$

Proof: It follows from the exact sequence in Lemma 3.8 that for all $\mathfrak{a} \in \widetilde{\mathcal{D} \ell}$ the congruence $\ell^{m^{\prime}} \theta(\mathfrak{a}) \equiv 1$ holds in $\mathcal{C} \ell^{\prime}$. Thus $\ell^{m^{\prime}} \mathfrak{a} \in \operatorname{Ker} \theta=\widetilde{\mathcal{C} \ell}(\ell)$ and $\ell^{m^{\prime}+\widetilde{m}} \mathfrak{a} \equiv 0 \bmod \widetilde{\mathcal{P} \ell}$.

Lemma 3.9 suggests setting the precision for the computation of $\widetilde{\mathcal{C} \ell}$ to $m:=m^{\prime}+\widetilde{m} \ell$-adic digits. If the ideal class group $\mathcal{C} \ell$ is known we can easily compute m^{\prime}. In order to find \widetilde{m} we compute a matrix of relations for $\widetilde{\mathcal{C} \ell}(\ell)$.

Lemma 3.10. (Generators and Relations of $\widetilde{\mathcal{C} \ell}(\ell)$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be the ℓ-adic places of F. Assume that $s>1$. Reorder the \mathfrak{p}_{i} such that $v_{\ell}\left(\operatorname{deg}\left(\mathfrak{p}_{1}\right)\right)=$
$\min _{1 \leq i \leq s} v_{\ell}\left(\operatorname{deg}\left(\mathfrak{p}_{i}\right)\right)$. Let $\gamma_{1}, \ldots, \gamma_{r}$ be a basis of the ℓ units of F. Then the group $\mathcal{C} \ell(\ell)$ is given by the generators $\left[\mathfrak{g}_{i}\right]:=\left[\mathfrak{p}_{i}-\frac{\operatorname{deg}\left(\mathfrak{p}_{i}\right)}{\operatorname{deg}\left(\mathfrak{p}_{1}\right)} \mathfrak{p}_{1}\right](i=2, \ldots, s)$ with relations $\sum_{i=2}^{s} \widetilde{v}_{\mathfrak{p}_{i}}\left(\gamma_{j}\right)\left[\mathfrak{g}_{i}\right]=[0]$.

Proof: We consider a logarithmic divisor $\mathfrak{a}=\sum_{i=1}^{s} a_{i} \mathfrak{p}_{i}$ of degree zero over F that is constructed from the ℓ adic places. By the choice of \mathfrak{p}_{1} and as $\operatorname{deg}(\mathfrak{a})=$ $\operatorname{deg}\left(\sum_{i=1}^{s} a_{i} \mathfrak{p}_{i}\right)=\sum_{i=1}^{s} a_{i} \operatorname{deg}\left(\mathfrak{p}_{i}\right)=0$ the coefficient a_{1} is given by the other $s-1$ coefficients. Thus the $\left[\mathfrak{g}_{i}\right]$ generate $\widetilde{\mathcal{C} \ell}(\ell)$.

The relations between the classes of $\widetilde{\mathcal{C} \ell}(\ell)$ are of the form $\sum_{i=2}^{s} b_{i}\left[\mathfrak{g}_{i}\right]=[0]$. That is, there exists $\beta \in \mathcal{R}_{F}$ such that

$$
\sum_{i=2}^{s} b_{i} \mathfrak{g}_{i}=\sum_{j=1}^{s} a_{j} \mathfrak{p}_{j}=\widetilde{\operatorname{div}}(\beta)
$$

with $v_{\mathfrak{q}}(\beta)=0$ for all $\mathfrak{q} \nmid(\ell)$. Thus β is an element of the group of ℓ-units $\left\{\alpha \in \mathcal{R}_{F} \mid v_{\mathfrak{q}}(\alpha)=0\right\}$ of \mathcal{R}_{F}. Hence we obtain the relations given above.

A version of this lemma for the case that F is Galois can be found in [Diaz y Diaz and Soriano 99].

Algorithm 3.11. (Precision.)

Input: a number field F and a prime number ℓ, the ℓ-adic places $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ of F, and a basis $\gamma_{1}, \ldots, \gamma_{r}$ of the ℓ-units of F.
Output: an upper bound for the exponent of $\widetilde{\mathcal{C} \ell}$.
Set $\ell^{m^{\prime}} \leftarrow \exp \mathcal{C} \ell^{\prime}$, set $m \leftarrow \max \left\{m^{\prime}, 4\right\}$.
If $s=1$ then return $\ell^{m^{\prime}}$.
[Remark 3.7]
Repeat

$$
\text { Set } m \leftarrow m+2
$$

Set
[Lemma 3.10]

$$
A \leftarrow\left(\begin{array}{ccc}
\widetilde{v}_{\mathfrak{p}_{2}}\left(\gamma_{1}\right) & \ldots & \widetilde{v}_{\mathfrak{p}_{s}}\left(\gamma_{1}\right) \\
\vdots & \ddots & \vdots \\
\widetilde{v}_{\mathfrak{p}_{2}}\left(\gamma_{r}\right) & \ldots & \widetilde{v}_{\mathfrak{p}_{s}}\left(\gamma_{r}\right)
\end{array}\right) \bmod \ell^{m}
$$

Let H be the Hermite normal form of A modulo ℓ^{m}.
$\operatorname{Until} \operatorname{rank}(H)=s-1$.
Let $S=\left(S_{i, j}\right)_{i, j}$ be the Smith normal form of A modulo ℓ^{m}.
Set $\widetilde{m} \leftarrow \max _{1 \leq i \leq s-1}\left(v_{\ell}\left(S_{i, i}\right)\right)$, return $\ell^{m^{\prime}+\widetilde{m}}$.

Remark 3.12. In general, Algorithm 3.11 does not terminate if Gross's conjecture is false.

3.3 Computing $\widetilde{\mathcal{C} \ell}$

We use the ideal theoretic description from Section 2.3 for the computation of $\widetilde{\mathcal{C} \ell} \cong \widetilde{\mathcal{I} d} / \widetilde{\mathcal{P} r}$. In the previous section we have seen how we can compute a bound for the exponent of $\widetilde{\mathcal{C l} \ell}$. It is clear that this bound also gives a lower bound for the precision in our calculations.

Theorem 3.13. (Generators of $\widetilde{\mathcal{C} \ell}$.) Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{t}$ be a basis of the ideal classgroup of F with $\operatorname{gcd}\left(\mathfrak{a}_{i}, \ell\right)=1$ for all $1 \leq i \leq t$. Denote by $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the ℓ-adic places of F. Let $\alpha_{1}, \ldots, \alpha_{s}$ be elements of \mathcal{R}_{F} with $\widetilde{v}_{\mathfrak{p}_{i}}\left(\alpha_{j}\right)=\delta_{i, j}$ $(i, j=1, \ldots, s)$ and $\operatorname{gcd}\left(\left(\alpha_{i}\right), \ell\right)=1$ for all $1 \leq i \leq s$. Set $\mathfrak{a}_{t+i}:=\left(\alpha_{i}\right)$ for $1 \leq i \leq s$. For an ideal \mathfrak{a} of F denote by $\overline{\mathfrak{a}}$ the projection of \mathfrak{a} from $\bigoplus_{\mathfrak{p}} \mathfrak{p}^{\mathbb{Z}_{\ell}}$ to $\bigoplus_{\mathfrak{p}+(\ell)} \mathfrak{p}^{\mathbb{Z}_{\ell}}$. We distinguish two cases:
(i) If $\operatorname{deg}_{\ell}\left(\mathfrak{a}_{i}\right)=0$ for all $1 \leq i \leq t+s$ then set $\mathfrak{b}_{i}:=\mathfrak{a}_{i}$. The group $\widetilde{\mathcal{C} \ell}_{F}$ is generated by $\overline{\mathfrak{b}}_{1}, \ldots, \overline{\mathfrak{b}}_{t+s}$.
(ii) Otherwise let $1 \leq j \leq t+s$ such that $v_{\ell}\left(\operatorname{deg}_{\ell}\left(\mathfrak{a}_{j}\right)\right)=$ $\min _{1 \leq i \leq t+s} v_{\ell}\left(\operatorname{deg}_{\ell}\left(\mathfrak{a}_{i}\right)\right)$. Set $\mathfrak{b}_{i}:=\mathfrak{a}_{i} / \mathfrak{a}_{j}^{d}$ with $d \equiv$ $\frac{\operatorname{deg}_{\ell}\left(\overline{\mathfrak{a}}_{i}\right)}{\operatorname{deg}_{\ell}\left(\mathfrak{a}_{j}\right)} \bmod \ell^{m}$ where $\ell^{m}>\exp (\widetilde{\mathcal{C} \ell})$. The group $\widetilde{\mathcal{C} \ell}_{F}$ is generated by $\overline{\mathfrak{b}}_{1}, \ldots, \overline{\mathfrak{b}}_{j-1}, \overline{\mathfrak{b}}_{j+1}, \ldots, \overline{\mathfrak{b}}_{t+s}$.

Proof: Let $\mathfrak{a} \in \widetilde{\mathcal{I} d}$. There exist $\gamma \in \mathcal{R}_{F}$ and $a_{1}, \ldots, a_{t} \in$ \mathbb{Z}_{ℓ} such that $\mathfrak{a}=\prod_{i=1}^{t} \mathfrak{a}_{i}^{a_{i}} \cdot(\gamma)$. Set $g_{i}:=\widetilde{v}_{\mathfrak{p}_{i}}(\gamma)$ for $1 \leq i \leq s$. Now

$$
\mathfrak{a}=\prod_{i=1}^{s} \mathfrak{a}_{i}^{a_{i}} \cdot\left((\gamma) \cdot \prod_{j=1}^{s}\left(\alpha_{i}\right)^{-g_{i}}\right) \cdot\left(\prod_{j=1}^{s}\left(\alpha_{i}\right)^{g_{i}}\right)
$$

By the definition of $\mathcal{I} d$ (Definition and Proposition 2.1) we have

$$
\mathfrak{a}=\overline{\mathfrak{a}}=\prod_{i=1}^{t} \overline{\mathfrak{a}}_{i}^{a_{i}} \cdot\left(\overline{(\gamma) \cdot \prod_{j=1}^{s}\left(\alpha_{j}\right)^{-g_{j}}}\right) \cdot\left(\prod_{j=1}^{s} \overline{\left(\alpha_{j}\right)^{g_{j}}}\right) .
$$

As $\widetilde{v}_{\mathfrak{p}_{i}}\left((\gamma) \cdot \prod_{j=1}^{s}\left(\alpha_{j}\right)^{-g_{j}}\right)=0$ for $i=1, \ldots, s$ we obtain

$$
\mathfrak{a} \equiv \prod_{i=1}^{t} \mathfrak{a}_{i}^{a_{i}} \cdot\left(\prod_{j=1}^{s}{\overline{\left(\alpha_{j}\right)}}^{g_{j}}\right) \bmod \widetilde{\mathcal{P} r}
$$

Thus all elements of $\widetilde{\mathcal{C} \ell}$ can be represented by $\overline{\mathfrak{a}}_{1}, \ldots, \overline{\mathfrak{a}}_{t}, \overline{\mathfrak{a}}_{t+1}=\overline{\left(\alpha_{1}\right)}, \ldots, \overline{\mathfrak{a}}_{t+s}=\overline{\left(\alpha_{s}\right)}$. For the two cases we obtain:
(i) It follows immediately that $\overline{\mathfrak{b}}_{1}, \ldots, \overline{\mathfrak{b}}_{t+s}$ are generators of $\widetilde{\mathcal{C} \ell}$.
(ii) If we have $\overline{\mathfrak{a}} \equiv \overline{\mathfrak{a}}_{1}^{a_{1}} \cdots \cdots \overline{\mathfrak{a}}_{t+s}^{a_{t+s}} \bmod \widetilde{\mathcal{P} r}$ for an ideal $\mathfrak{a} \in \widetilde{\mathcal{I} d}$ then $0=\operatorname{deg}(\overline{\mathfrak{a}})=\sum_{i=1}^{t+s} a_{i} \operatorname{deg}_{\ell}\left(\overline{\mathfrak{a}}_{i}\right)$. Thus $-a_{j}=\sum_{i \neq j}^{s} a_{i} \operatorname{deg}_{\ell}\left(\overline{\mathfrak{a}}_{i}\right) / \operatorname{deg}_{\ell}\left(\overline{\mathfrak{a}}_{j}\right)$. Hence, $\overline{\mathfrak{b}}_{1}, \ldots, \overline{\mathfrak{b}}_{j-1}, \overline{\mathfrak{b}}_{j+1}, \ldots, \overline{\mathfrak{b}}_{t+s}$ are generators of $\widetilde{\mathcal{C} \ell}$.

We continue to use the notation from Theorem 3.13.
Set $\mathcal{C} \ell^{\prime}:=\mathcal{C} \ell /\left\langle\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\rangle$.
Remark 3.14. The definition of $\mathcal{C} \ell^{\prime}$ in this section and the previous section, where we considered the ℓ-part of $\mathcal{C} \ell /\left\langle\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\rangle$, differ. The definition we chose here makes the description of the algorithm easier. In the algorithm we make sure that only the ℓ-part of the group appears in the result by computing the ℓ-adic Hermite normal form of the relation matrix.

The relations between the generators $\overline{\mathfrak{a}}_{1}, \ldots, \overline{\mathfrak{a}}_{t}$ of the group $\mathcal{C} \ell^{\prime}$ are of the form $\prod_{i=1}^{t} \overline{\mathfrak{a}}_{i}^{a_{i}}=\overline{(\alpha)}$ with $\alpha \in \mathcal{R}_{F}$. There exist integers c_{1}, \ldots, c_{n} such that $\overline{(\alpha)} \equiv \prod_{i=1}^{s}{\overline{\left(\alpha_{i}\right)}}^{c_{i}} \bmod \widetilde{\mathcal{P} r}$. This yields the relation $\prod_{i=1}^{t} \overline{\mathfrak{a}}_{i}^{a_{i}} \equiv \prod_{i=1}^{s}{\overline{\left(\alpha_{i}\right)}}^{c_{i}} \bmod \widetilde{\mathcal{P r} r}$ in $\widetilde{\mathcal{C} \ell}$. We can derive all relations involving the generators $\overline{\mathfrak{a}}_{i}+\widetilde{\mathcal{P r} r}$ from their relations as generators of the group $\mathcal{C} \ell^{\prime}$ in this way.

The other relations between the generators of $\widetilde{\mathcal{C} \ell}$ are obtained as follows. A relation between the generators $\bar{\alpha}_{i}$ is of the form $\prod_{i=1}^{s}{\overline{\left(\alpha_{i}\right)}}^{v_{i}} \equiv(1) \bmod \widetilde{\mathcal{P r}}$ or equivalently $\prod_{i=1}^{s}\left(\alpha_{i}\right)^{v_{i}} \cdot \prod_{i=1}^{s} \mathfrak{p}_{i}^{w_{i}}=(\alpha)$ for some $\alpha \in \mathcal{R}_{F}$. The last equality is fulfilled if and only if $\prod_{i=1}^{s} \mathfrak{p}_{i}^{w_{i}}$ is principal, i.e., if $\prod_{i=1}^{s} \mathfrak{p}_{i}^{w_{i}}$ is an (ℓ)-unit. Assume that $\prod_{i=1}^{s} \mathfrak{p}_{i}^{w_{i}}=(\gamma)$ for some $\gamma \in \mathcal{R}_{F}$. As $\widetilde{v}_{\mathfrak{p}_{j}}(\alpha)=0$ for all $\overline{(\alpha)} \in \widetilde{\mathcal{P} r}$ and $\mathfrak{p}_{j} \mid(\ell)$ the equation $\widetilde{v}_{\mathfrak{p}_{j}}\left(\prod_{i=1}^{s} \alpha_{i}^{v_{i}} \cdot \gamma\right)=0$ must hold. By the definition of β_{i} we obtain $v_{i}=-\widetilde{v}_{\mathfrak{p}_{i}}(\gamma)$ for $1 \leq i \leq s$.

Corollary 3.15. (Relations of $\widetilde{\mathcal{C} \ell}$.) Let

$$
\left(\left(\overline{\mathfrak{a}}_{1}, \ldots, \overline{\mathfrak{a}}_{t}\right),\left(a_{i, j}\right)_{i, j \in\{1, \ldots, t\}}\right)
$$

be a basis and a relation matrix of $\mathcal{C} \ell^{\prime}:=\mathcal{C} \ell /\left\langle\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\rangle$. Let $\mathfrak{a}_{t+1}=\left(\alpha_{1}\right), \ldots, \mathfrak{a}_{t+s}=\left(\alpha_{s}\right)$ be as above. For each $1 \leq k \leq t$ we find $c_{k, 2}, \ldots, c_{k, s}$ such that $\prod_{i=1}^{t} \overline{\mathfrak{b}}_{i}^{a_{k, i}}=$ $\prod_{i=2}^{s}{\overline{\left(\alpha_{i}\right)}}^{c_{k, i}}$. Let $\gamma_{1}, \ldots, \gamma_{r}$ be a basis of the (ℓ)-units of \mathcal{R}_{F}. Set $v_{i, j}:=\widetilde{v}_{\mathfrak{p}_{j}}\left(\gamma_{i}\right)(1 \leq i \leq r, 2 \leq j \leq s)$. Set

$$
M:=\left(\begin{array}{cccccc}
b_{1,1} & \ldots & b_{1, t} & -c_{1,2} & \ldots & -c_{1, s} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
b_{t, 1} & \ldots & b_{t, t} & -c_{t, 2} & \ldots & -c_{t, s} \\
0 & \ldots & 0 & v_{1,2} & \ldots & v_{1, s} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & v_{r, 2} & \ldots & v_{r, s}
\end{array}\right)
$$

For the two cases we obtain:
(i) $\left(\left(\overline{\mathfrak{b}}_{1}, \ldots \overline{\mathfrak{b}}_{t+s}\right), M\right)$ are generators and relations of $\widetilde{\mathcal{C} \ell}$.
(ii) Let j be chosen as in Theorem 3.13. Denote by N the matrix obtained by removing the j th column from

TABLE 1.

M. Then $\left(\left(\overline{\mathfrak{b}}_{1}, \ldots, \overline{\mathfrak{b}}_{j-1}, \overline{\mathfrak{b}}_{j+1}, \ldots, \overline{\mathfrak{b}}_{t+s}\right), N\right)$ are generators and relations of $\mathcal{C} \ell$.

Now we only need to find the elements $\alpha_{1}, \ldots, \alpha_{s}$ with $\widetilde{v}_{\mathfrak{p}_{i}}\left(\alpha_{j}\right)=\delta_{i, j}$. Let $\eta_{i, 1}, \ldots, \eta_{i, r_{i}}$ be a system of generators of $\mathcal{O}_{\mathfrak{p}}^{\times}$for $1 \leq i \leq s$. Let

$$
M:=\left(\begin{array}{ccc}
\widetilde{v}_{\mathfrak{p}_{1}}\left(\eta_{1,1}\right) & \ldots & v_{\mathfrak{p}_{s}}\left(\eta_{1,1}\right) \\
\vdots & \ddots & \vdots \\
\widetilde{v}_{\mathfrak{p}_{1}}\left(\eta_{1, r_{1}}\right) & \ldots & v_{\mathfrak{p}_{s}}\left(\eta_{1, r_{1}}\right) \\
\vdots & \vdots & \vdots \\
\widetilde{v}_{\mathfrak{p}_{1}}\left(\eta_{s, 1}\right) & \ldots & v_{\mathfrak{p}_{s}}\left(\eta_{s, 1}\right) \\
\vdots & \ddots & \vdots \\
\widetilde{v}_{\mathfrak{p}_{1}}\left(\eta_{s, r_{s}}\right) & \ldots & v_{\mathfrak{p}_{s}}\left(\eta_{s, r_{s}}\right)
\end{array}\right)
$$

Let $S=L M R$ be the ℓ-adic Smith normal form of M with transformation matrices L and R. Application of the left transformation matrix L to the generators $\eta_{1,1}, \ldots, \eta_{s, r_{s}}$ yields elements $\alpha_{1}, \ldots, \alpha_{s}$ with the desired properties.

Algorithm 3.16. (Logarithmic Classgroup.)

Input: \quad a number field F and a prime number ℓ.
Output: generators g and and a relation matrix H for $\widetilde{C l}_{F}$.

Determine a bound ℓ^{m} for the exponent of $\widetilde{C l}_{F}$ and use it as the precision for the rest of the algorithm.
[Algorithm 3.11]
Compute generators $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{t}$ of $\mathcal{C} \ell^{\prime}=\mathcal{C} \ell /\left\langle\mathfrak{p}_{1}, \ldots\right.$, $\left.\mathfrak{p}_{s}\right\rangle$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ are the ideals of F over ℓ.

Determine $\mathfrak{a}_{t+1}=\left(\alpha_{1}\right), \ldots, \mathfrak{a}_{t+s}=\left(\alpha_{s}\right)$ with $\widetilde{v}_{\mathfrak{p}_{i}}\left(\alpha_{j}\right)=\delta_{i, j}$.

Compute generators $g:=\left(\overline{\mathfrak{b}}_{1}, \ldots, \overline{\mathfrak{b}}_{t+s}\right)^{T}$ with $\operatorname{deg}\left(\mathfrak{b}_{i}\right)=0$ from $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{t+s} . \quad$ [Theorem 3.13]

Compute a relation matrix M between the generators g.
[Corollary 3.15]
In case (ii) remove the j th column from M and the j th generator from g.

Compute the ℓ-adic Hermite normal form H of M.
Return (g, H).

4. EXAMPLES

All methods presented here have been implemented in the computer algebra system Magma [Canon et al. 03].

We recomputed the logarithmic class groups from [Diaz y Diaz and Soriano 99, Section 6] with our new algorithm. Our results differ in one example. For the field $F=\mathbb{Q}(i, \sqrt{1173})$ and $\ell=2$ we obtain $\widetilde{\mathcal{C} \ell}{ }_{F} \cong C_{2} \times C_{2} \times C_{2}$ instead of $\widetilde{\mathcal{C} \ell_{F}} \cong C_{2} \times C_{2} \times C_{2} \times C_{2}$. As F contains the 4 th roots of unity, the 2 -rank of the wild kernel of F is 3 .

Table 1 contains examples of logarithmic ℓ-class groups $\widetilde{\mathcal{C} \ell}$ of selected number fields F together with their class groups $\mathcal{C} \ell$, Galois groups Gal, and the factorization of the ideals $(\ell) . \chi_{\alpha}(x)$ denotes the minimal polynomial of α and i denotes a root of $x^{2}+1$. The class groups are presented as a list of the orders of their cyclic factors, $\mathcal{C} \ell^{\prime}=\mathcal{C} \ell /\left\langle\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\rangle$, and ℓ^{m} is the bound for the exponent of $\widetilde{\mathcal{C} \ell}$ as obtained by Algorithm 3.11.

The logarithmic 2-class group of $\mathbb{Q}(i, \sqrt{78})$ is an example of the fact that the cokernel of θ in the exact sequence in Lemma 3.8 is not trivial in general. Indeed one can show [Dubois and Soriano-Gafiuk 04] that for $F=\mathbb{Q}(i, \sqrt{d})$ with $d \neq 2$ and d squarefree

$$
\operatorname{Coker}(\theta) \cong \begin{cases}C_{2} & \text { if } d \equiv \pm 2 \bmod 16 \\ C_{1} & \text { otherwise }\end{cases}
$$

REFERENCES

[Canon et al. 03] J. J. Canon et al. "The Computer Algebra System Magma." Available from World Wide Web (http://magma.maths.usyd.edu.au/magma/), 2003.
[Cohen 93] H. Cohen. A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, 1993.
[Cohen 00] H. Cohen. Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000.
[Diaz y Diaz and Soriano 99] F. Diaz y Diaz and F. Soriano. "Approche algorithmique du groupe des classes logarithmiques." J. Number Theory 76 (1999), 1-15.
[Dubois and Soriano-Gafiuk 04] I. Dubois and F. SorianoGafiuk. "Un nouveau reǵulateur de type Gross." Abh. Math. Sem. Univ. Hamburg 74 (2004), 1-11.
[Federer and Gross 81] L. J. Federer and B. H. Gross (with an appendix by W. Sinnot). "Regulators and Iwasawa Modules." Invent. Math. 62 (1981), 443-457.
[Ford et al. 02] D. Ford, S. Pauli, and X. -F. Roblot. "A Fast Algorithm for Polynomial Factorization Over \mathbb{Q}_{p}." J. Théor. Nombres Bordeaux 14 (2002), 151-170.
[Gras 03] G. Gras. Class Field Theory, Springer Monographs in Mathematics. New York: Springer-Verlag, 2003.
[Hasse 80] H. Hasse. Number Theory. Berlin: Springer Verlag, 1980.
[Hess 96] F. Hess. "Zur Klassengruppenberechnung in algebraischen Zahlkörpern." Available from World Wide Web (http://www.math.TU-Berlin.DE/~kant/ publications/diplom/hess.ps.gz), 1996.
[Hess et al. 03] F. Hess, S. Pauli, and M. E. Pohst. "Computing the Multiplicative Group of Residue Class Rings." Mathematics of Computation 72 (2003), 1531-1548.
[Jaulent 94] J. -F. Jaulent. "Classes logarithmiques des corps de nombres." J. Théor. Nombres Bordeaux 6 (1994), 301325.
[Jaulent 98] J. -F. Jaulent. "Théorie ℓ-adique du corps de classes." J. Théor. Nombres Bordeaux 10 (1998), 355397.
[Jaulent 00] J. -F. Jaulent. "Classes logarithmiques signées des corps de nombres." J. Théor. Nombres Bordeaux 12 (2000), 455-474.
[Jaulent 02a] J. -F. Jaulent. "Corrigendum à classes logarithmiques signées des corps de nombres." J. Théor. Nombres Bordeaux 14 (2002), 1-5.
[Jaulent 02b] J. -F. Jaulent. "Classes logarithmiques des corps totalement réels." Acta Arithmetica 103 (2002), 1-7.
[Jaulent and Soriano 01] J. -F. Jaulent and F. Soriano. "Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques." Math. Z. 238 (2001), 335-354.
[Jaulent and Soriano-Gafiuk 04] J. -F. Jaulent and F. Soriano-Gafiuk. "2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-Théorie." J. Number Theory 108 (2004), 187-208.
[Pauli 01] S. Pauli. "Factoring Polynomials over Local Fields." J. Symb. Comp. 32 (2001), 533-547.
[Pohst and Zassenhaus 89] M. E. Pohst and H. Zassenhaus. Algorithmic Algebraic Number Theory. Cambridge, UK: Cambridge University Press, 1989.
[Soriano 00] F. Soriano. "Sur le noyau hilbertien d'un corps de nombres." C. R. Acad. Sci., Série I 330 (2000), 863866.

Francisco Diaz y Diaz, Université Bordeaux I, Laboratoire A2X, 351 Cours de la Libération, 33405 Talence Cedex, France (diaz@math.u-bordeaux.fr)

Jean-François Jaulent, Université Bordeaux I, Institut des Mathématiques de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France (jaulent@math.u-bordeaux.fr)

Florence Soriano-Gafiuk, Université de Metz, Département de Mathématiques, Ile du Saulcy, 57045 Metz, France (soriano@poncelet.univ-metz.fr)

Sebastian Pauli, Technische Universität Berlin, Institut für Mathematik - MA 8-1, Straße des 17. Juni 136, 10623 Berlin, Germany (pauli@math.tu-berlin.de)

Michael E. Pohst, Technische Universität Berlin, Institut für Mathematik - MA 8-1, Straße des 17. Juni 136, 10623 Berlin, Germany (pohst@math.tu-berlin.de)

Received December 23, 2003; accepted August 18, 2004.

