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ON THE mth ROOTS OF A COMPLEX MATRIX*

PANAYIOTIS J. PSARRAKOST

Abstract. If an n X n complex matrix A is nonsingular, then for every integer m > 1, A has
an mth root B, i.e., B™ = A. In this paper, we present a new simple proof for the Jordan canonical
form of the root B. Moreover, a necessary and sufficient condition for the existence of mth roots of
a singular complex matrix A is obtained. This condition is in terms of the dimensions of the null
spaces of the powers A* (k=0,1,2,...).
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1. Introduction and preliminaries. Let M, be the algebra of all n x n
complex matrices and let A € M,,. For an integer m > 1, a matrix B € M,, is
called an mth root of A if B™ = A. If the matrix A is nonsingular, then it always
has an mth root B. This root is not unique and its Jordan structure is related to
the Jordan structure of A [2, pp. 231-234]. In particular, (A — po)¥ is an elementary
divisor of B if and only if (A — p*)* is an elementary divisor of A. If A is a singular
complex matrix, then it may have no mth roots. For example, there is no matrix

0 1
2 _
B such that B = {0 0

singular matrices, which have mth roots, is of interest [1], [2].

Consider the (associated) matriz polynomial P(\) = I,A\™ — A, where I, is the
identity matrix of order n and A is a complex variable. A matrix B € M, is an
mth root of A if and only if P(B) = B™ — A = 0. As a consequence, the problem
of computation of mth roots of A is strongly connected with the spectral analysis of
P(X). The suggested references for matrix polynomials are [3] and [7].

A set of vectors {xo,x1,...,zr}, which satisfies the equations

As a consequence, the problem of characterizing the

P(wo):co =0
1
P(wo):c1 + FP(I)(WQ)QCO =0

: : o :
P(wo)zi, + FP<1>(wo)ack,1 +o EP(k)(wo)xo =0,

where the indices on P()\) denote derivatives with respect to the variable A, is called
a Jordan chain of length k41 of P(\) corresponding to the eigenvalue wy € C and
the eigenvector xo € C". The vectors in a Jordan chain are not uniquely defined and
for m > 1, they need not be linearly independent [3], [6]. If we set m = 1, then the
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Jordan structure of the linear pencil I, — A coincides with the Jordan structure of
A, and the vectors of each Jordan chain are chosen to be linearly independent [2], [6].
Moreover, there exist a matrix

(1.1) Ja = @§:1 (ijwj+Nkj) (k1 + ke +...4+ ke =n),

where Ny, is the nilpotent matrix of order k£ having ones on the super diagonal and
zeros elsewhere, and an n X n nonsingular matrix

(12) XA = [ 1,1 .- Tlky 2,1 cee T2k BRI 735 T xg,ks } s

where for every j = 1,2,...,§, {xj1,2j2,...,%;%;} is a Jordan chain of A corre-
sponding to w; € o(A), such that (see [2], [4], [6])

A= XaJaX "

The matrix J4 is called the Jordan matriz of A, and it is unique up to permutations
of the diagonal Jordan blocks Ij,w; + Ny, (j =1,2,...,¢) [2], [4].

The set of all eigenvalues of P(\), that is, o(P) = {u € C : detP(u) = 0},
is called the spectrum of P(\). Denoting by o(A) = o(l, A — A) the spectrum
of the matrix A, it is clear that o(P) = {u € C : p™ € o(A)}. If Ju is the
Jordan matrix of A in (1.1), then it will be convenient to define the J-spectrum of A,
07(A) = {w1,ws, ..., we}, where the eigenvalues of A follow exactly the order of their
appearance in J4 (obviously, repetitions are allowed). For example, the J-spectrum
of the matrix M = { 8 (1) } &3] [ 0 ] D [ (1) i } is oy(M)=1{0,0,1}.

In this article, we study the Jordan structure of the mth roots (m > 1) of a
complex matrix. In Section 2, we consider a nonsingular matrix and present a new
constructive proof for the Jordan canonical form of its mth roots. This proof is
simple and based on spectral analysis of matrix polynomials [2], [3], [7]. Furthermore,
it yields directly the Jordan chains of the mth roots. We also generalize a known
uniqueness statement [5]. In Section 3, using a methodology of Cross and Lancaster
[1], we obtain a necessary and sufficient condition for the existence of mth roots of a
singular matrix.

2. The nonsingular case. Consider a nonsingular matrix A € M, and an
integer m > 1. If A is diagonalizable and S € M,, is a nonsingular matrix such that

A = Sdiag{rie', re'?2 ... relfn} ST

where r; >0, ¢; € [0,27) (j =1,2,...,n), then for every n-tuple (s1,s2,...,8n),
sje{l,2,...,m} (j =1,2,...,n), the matrix

m m

1
B = Sdiag{ri"e m , T e N

je1+206s1-Dr 1 igy+2(s—D)m L 5 ont2(sp—1)n 151
is an mth root of A. Hence, the investigation of the mth roots of a nonsingular (and
not diagonalizable) matrix A via the Jordan canonical form of A arises in a natural
way [2]. The following lemma is necessary and of independent interest.
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LEMMA 2.1. Let {zg,21,...,2k} be a Jordan chain of A € M,, (with linearly

independent terms) corresponding to a nonzero eigenvalue wy = roel o € o(A) (ro >
0, ¢o €[0,27)), and let P(\) = I,A"™ — A. Then for every eigenvalue

1 s pp+2t—D)w
rget T m eo(P); t=1,2,...,m,

the matriz polynomial P(X\) has a Jordan chain of the form

Yo = Xo
Y1 = a1
(2.1) Y2 = 02,11 + A2 2%2

Yk = Qf,1T1 + Qg 2T2 + -+ + Ok, k Tk,

where the coefficients a;; (1 < j < i < k) depend on the integer t and for ev-

. m—1 i(mfl) PoF2(t—1)w p
ery i =1,2,...,k, a;; = (mry™ e ™ )" # 0. Moreover, the vectors
Y0, Y1, - - -, Yk are linearly independent.

Proof. Since {xg,x1,...,xr} is a Jordan chain of the matrix A corresponding to

the eigenvalue wgy # 0, we have
(A— Lwo)xg =0
and
(A—Lwo)x; = xi-1 5 1=12,... k.
Let po be an eigenvalue of P(\) such that pd* = wg. By the equation
(Inwo — A)xg = (Inpg' — A)zg = 0,

it is obvious that yy = =z is an eigenvector of P(\) corresponding to ug € o(P).
Assume now that there exists a vector y; € C" such that

p)
P(puo)y: + % yo = 0.

Then
(Inpg' — Ay = —mpug'~yo,
or equivalently,
(Lywo — A)yr = mugl_l(fnwo —A)xy.

Hence, we can choose y; = a;,121, where a; 1 = mu™ ! #£ 0. Similarly, if we consider
the equation

P (o) P3 ()
T

P(uo)y2 + yo = 0,
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then it follows
_ m(m—1) ,,_
(Inpig' = Ao = — g™y — ———— 5" v,

or equivalently,

(Ihwo — A)ya = (Tnwo — A) ((muom_l)Q:cg + — s uom_2x1> )

1 _
Thus, we can choose ys = a21%1 + az272, where as; = % o 2 and agy =

(7nM”_1)2 # 0. Repeating the same steps implies that the matrix polynomial P()\)
has a Jordan chain {yo,y1,...,yr} asin (2.1).
Define the n x (k4 1) matrices

Xo=[® = - x| and Yo=[y m - %]

Since the vectors zg,x1,...,2, € C" are linearly independent, rank(Xp) = k + 1.
Moreover, Yy = X Ty, where the (k4 1) x (k+ 1) upper triangular matrix

1 0 0 0

0 a1 as1 -+ ag1
TO — 0 0 @22 cre Qg2

0 0 0 o Ok

is nonsingular. As a consequence, rank(Yp) = k + 1, and the proof is complete. O
The Jordan chain {yo,y1,...,yx} of P(A) in the above lemma, is said to be
associated to the Jordan chain {zg,z1,...2} of A, and clearly depends on the
choice of ¢ € {1,2,...,m}. Consider now the nonsingular matrix X4 € M,, in (1.2),
and for any (s1,s2,...,5¢), 85 € {1,2,...,m} (j=1,2,...,§), define the matrix

Ya(s1,82,-...8¢) = [ Y11 - YLk Y21 oo Yel - Yeke |

where for every j =1,2,...,&, the set {y;1,¥j2,...,¥jk,} is the associated Jordan
chain of P()) corresponding to the Jordan chain {z;1,2j2,...,2%;} of A and the
integer s;.

COROLLARY 2.2. For every (si,$2,...,8¢), s; € {1,2,....,m} (j =1,2,...,§),
the associated matriz Ya(s1,s2,...,S¢) is nonsingular.

Proof. By Lemma 2.1, there exist upper triangular matrices 14, T3, ..., Tz, which
depend on the choice of the ¢-tuple (si1,s2,...,5¢) and have nonzero diagonal ele-

ments, such that
Ya(s1,82,...,8) = Xa (@EZITJ) .

Since X 4 is also nonsingular the proof is complete. O
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THEOREM 2.3. Let A € M, be a nonsingular complex matriz with Jordan
matriz J4 = @§:1 (In,w; + Ni,) as in (1.1) and J-spectrum

oj(A) = {w = rlei¢1,w2 = T2€i¢2, cewe = rgei¢5}.

Consider an integer m > 1, the nonsingular matric X, € M,, in (1.2) such that
A= XAJAXXI, a &-tuple (s1,82,...,8¢), s; € {1,2,....,m} (j =1,2,...,¢) and
the associated matriz Ya(s1, sz, ... ,8¢). Then the matriz

L séjt2(s; D
B = YA(Sl, 82, .., Sg) (@?_1 (ijTjT" 61+ + Nkj)) YA(SI; 89y . ny Sg)—l
(2.2)
is an mth root of A.
Proof. Since the associated matrix Y4(s1, s2,...,S¢) is nonsingular, by Corollary
7.11 in [3], the linear pencil I,A— B is a right divisor of P(\) = I, \™ — A, i.e., there
exists an n X n matrix polynomial Q(\) of degree m — 1 such that

P(\) = Q) (LA~ B).

Consequently, by [2, pp. 81-82] (see also Lemma 22.9 in [7]), P(B) = B™ — A =0,
and hence B is an mth root of the matrix A. O

At this point, we remark that the associated matrix Ya(s1,s2,...,s,) can be
computed directly by the method described in the proof of Lemma 2.1. Moreover,
it is clear that a nonsingular matrix may have mth roots with common eigenvalues.
Motivated by [5], we obtain a spectral condition that implies the uniqueness of an
mth root.

THEOREM 2.4. Suppose A € M, is a nonsingular complex matriz and its
spectrum o(A) lies in a cone

ICO:{ze@:@lgArgzgﬁg,0<92—91§190<27r}.

Then for every k=1,2,...,m, A has a unique mth root By such that

01+ 2(k—1 O +2(k—1
o(By) C {ZGC;MSA%ZSM},
m m
In particular, for every k=2,3,...,m, By = A 1

Proof. Observe that the spectrum of P(\), o(P) = {up € C: u™ € 0(A)}, lies
in the union

" 2(k — 1 2(k — 1
U{Zeowqmgw}’

e m m
and for every k =1,2,...,m, denote
0L +2(k-1 0+ 2(k—1
Ek:g(P)m{ZeC;ygArngW}

1 jet2(k-Dm

={rme = m : 7“ei‘l5€<7(14)7 r>0, ¢ € [6h,0:]}.
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Then by Theorem 2.3, for every k = 1,2,...,m, the matrix A has an mth root By
such that o(By) = . Since the sets X1, Yo, ..., %, are mutually disjoint, Lemma
22.8 in [7] completes the proof. O

It is worth noting that if J4 = @§=1 (ij wj + Nkj) is the Jordan matrix of A in
(1.1), and 0y(A) = {w1 = 1€, wy = re!?2, ... we = ree!®e} is the J-spectrum
of A, then for every k =1,2,...,m, the mth root By in the above theorem is given
by (2.2) for s = s3 = --- = s¢ = k. Furthermore, if we allow #; — —7t and
0y — 7, then for m = 2, we have the following corollary.

COROLLARY 2.5. (Theorem 5 in [5]) Let A € M,, be a complex matriz with
o(A) N (=00,0] = 0. Then A has a unique square root B such that o(B) C {z € C:
Rez > 0}.

EXAMPLE 2.6. Consider a 5 X 5 complex matrix A = XAJAXXI, where X4 €
M is nonsingular and

i 1 0 00
0 i 1 0 O
Ja = 00 i 0 O
0 0 0 1 1
00 0 0 1
Suppose m = 3 and for a pair (s1,s2), s; € {1,2,3} (j =1,2), denote
o — eiﬂ/2+2(;171)7r and G = 612(52;1”.

Then the associated matrix of X4, corresponding to (si,s2), is

1 0 0 1 0
Ya(s1,82) = Xa 0 3% 3a |& { 0 38 }
0 0 9at

One can verify that the matrix

a 1 0 0 0
00 a1 00
B=Ys(s1,82)| 0 0 a 0 O YA(51,52)_1
000 B 1
000 0 p
« %a‘Q —%a‘5 0 0
0 a a2 0 0
=X4|0 0 @ 0o o0 |x;!
0 0 0 B 3872
0 0 0 0 B

is a 3rd root of A (see also the equation (58) in [2, p. 232]). Moreover, if we choose
s1 = s3 =1, then

Ya(1,1) = Xa 0 3¢l 3e_i% @[(1) g} )
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and the matrix

s 1 0 0 0
0 €% 1 00
Bi=Ya(L1)| 0 0 €F o0 0 |YaL1)™
O 0 0 11
O 0 0 01
el %e 13 f%e’l% 0 0
0 F lels o 0
=Xa| 0 0 A5 0 0 | Xa
0 0 0 14
0 0 0 0 1

is the unique 3rd root of A with o(B1) C {z € C:0 < Argz < x/6}.

3. The singular case. Let A € M, be a singular matrix, and let J4 =
@§:1 (Ir;w; + Ni,;) be its Jordan matrix in (1.1). For the remainder and without
loss of generality, we assume that w; = 0 for j = 1,2,...,¢ (1 < ¢ < ), with
wj # 0 otherwise, and ki > ko > --- > ky [1], [2]. We also denote by

Jo = @?:1 (ijwj +Nkj) = @?:1]\[7%

the diagonal block of J4 corresponding to the zero eigenvalue. Then by [2, pp. 234-
239], we have the following lemma.

LEMMA 3.1. The matric A € M,, has an mth root if and only if Jo has an mth
T00%.

The ascent sequence of A is said to be the sequence
d; = dimNull A° —dimNull 4! ;  i=1,2,...

By [1], we have the following properties:

(P1) The ascent sequences of A and Jy are equal.

(P2) For every i =1,2,..., d; is the number of the diagonal blocks of Jy of order at
least 7. Thus, if dy = Z;b:l k; is the order of Jp, then dy > dy >dy > --- >
di, >0 and dg, 41 =dp,42=---=0.

THEOREM 3.2. The complex matriz A € M,, has an mth root if and only if for
every integer v > 0, the ascent sequence of A has no more than one element between
mv and m(v+1).

(Note that the result is obvious when the matrix A is nonsingular.)

Proof. By Lemma 3.1 and Property (P1), it is enough to prove the result for Jp.
First assume that Jy has an mth root Z, and that there exist a nonnegative integer
v and two terms of the ascent sequence of Jy, say d; and d;41, such that

mv < dip1 < dip < m(v+1).
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For every i = 1,2,... k1, Null Z™ = Null J§, and consequently, if c1,ca,... is the
ascent sequence of Z, then

me 7
doe =) d;
j=1 j=1
Thus, we have
di = Cmt + Cmt—1 + F Ct—(m—1)
and

dit1 = Cmge41) T Cm+1)—1 T + Cmea1,

where

Cmt—(m—1) 2 *** 2 Cmt 2 Cmi+1 2 *°° 2 Cm(t41)-

If ¢t > v+ 1, then di > mepme > m (v + 1), a contradiction. On the other hand,
if ¢t < v, then dip1 < meym: < my, which is also a contradiction. Hence, we
conclude that if the matrix A has an mth root, then for every integer v > 0, the
ascent sequence of A has no more than one element between mv and m (v + 1).
Conversely, we indicate a constructive proof for the existence of an mth root of

Jo given that between two successive nonnegative multiplies of m there is at most one

term of the ascent sequence of Jy. Denote n; = Z;Zl kj for i =1,2,...,%, and let
{e1,e2,...,en,} be the standard basis of C™. By [1], for the vectors z; = e,, (i =
1,2,...,%), we can write the standard basis of C™* in the following scheme:
ng_llj ng—le J§1_3l‘1 ng_41'1 Jol‘l T
J§271x2 Jé€272$2 J§2*3x2 - ceo X9
(3.1) Jo*Tlas JgTPms 13
Jéwilww J§w72$w s Lafy -

In this scheme, there are 1 rows of vectors, such that the jth row contains k; vectors
(7 =1,2,...,9). Recall that ki > kg > --- > ky, and hence the rows are of non-
increasing length. Moreover, the above scheme has k7 columns and by Property (P2),
for t =1,2,..., k1, the length of the tth column is equal to the tth term of the ascent
sequence of Jy, d;.

With respect to the above scheme (and the order of its elements), we define a
linear transformation F on C"* by

(7 — 1,t)th element if j # 1 (modm),
/
(4, t)th element — (j4+m —1,¢t— 1)th element if j =1 (modm) and ¢ # 1,
\

0 if j=1(modm) and ¢t = 1.
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Separating the rows of the scheme in m-tuples, one can see that our assumption that
for every nonnegative integer v, the ascent sequence has no more than one element
between mv and m (v + 1) ensures the existence of 7. If B is the ny X ny matrix
whose jth column is F(e;), then B™ = Jy and the proof is complete. O

Since between two successive even integers there is exactly one odd integer, for
m = 2, Theorem 3.2 yields the main result of [1].

COROLLARY 3.3. (Theorem 2 in [1]) The matriz A € M,, has a square root if
and only if no two terms of its ascent sequence are the same odd integer.

The ascent sequence of the k x k nilpotent matrix N is 1,1,...,1,0,... with
its first k terms equal to 1. Thus, for every integer m > 1, it has k terms (i.e., the k
ones) between 0 and m. Hence, it is verified that there is no matrix M € M, such
that M™ = Nj (see also [2]).

COROLLARY 3.4. Let dy,ds,ds,... be the ascent sequence of a singular complex
matric A € M.
(i) If d2 =0 (i.e., Jo=0), then for every integer m > 1, A has an mth root.
(ii) If d2 > 0, then for every integer m > di, A has no mth roots.

Our methodology is illustrated in the following example.

ExaMpPLE 3.5. Consider the Jordan matrix

0 1 0
J=10 01 @{83]@{83],
0 0 0
and let m = 3. The ascent sequence of Jy is 3,3,1,0,..., and if {e1,eq,...,e7} is

the standard basis of C”, then the scheme in (3.1) is

2
Jiri =e1 Jox1 =e2 x1 =e3
J0$2 = €4 9o = €5
J0$3 = € Tr3 — e7.

As in the proof of Theorem 3.2, we define the linear transformation F on C’ by

F(e1) =0, F(ea) =eq, Flez)=er, Fleq)=e1,

Fles) =e2, Fleg) =es and F(er) =es.

One can see that the 7 x 7 matrix

0001 00O
00001 00
0000 O0OO0UO
B:[O eg €7 €1 €y ey4 65]: 00 0 0 0 1 0
000 0 O0O0 1
01 00 0 0O
|00 1.0 0 0 0|

is a 3rd root of Jy. Finally, observe that for every integer m > 1 different than 3,
the matrix Jy has no mth roots.
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