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ON THE mth ROOTS OF A COMPLEX MATRIX∗

PANAYIOTIS J. PSARRAKOS†

Abstract. If an n × n complex matrix A is nonsingular, then for every integer m > 1, A has
an mth root B, i.e., Bm = A. In this paper, we present a new simple proof for the Jordan canonical
form of the root B. Moreover, a necessary and sufficient condition for the existence of mth roots of
a singular complex matrix A is obtained. This condition is in terms of the dimensions of the null
spaces of the powers Ak (k = 0, 1, 2, . . .).
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1. Introduction and preliminaries. Let Mn be the algebra of all n × n
complex matrices and let A ∈ Mn. For an integer m > 1, a matrix B ∈ Mn is
called an mth root of A if Bm = A. If the matrix A is nonsingular, then it always
has an mth root B. This root is not unique and its Jordan structure is related to
the Jordan structure of A [2, pp. 231-234]. In particular, (λ− µ0)k is an elementary
divisor of B if and only if (λ− µm

0 )k is an elementary divisor of A. If A is a singular
complex matrix, then it may have no mth roots. For example, there is no matrix

B such that B2 =
[

0 1
0 0

]
. As a consequence, the problem of characterizing the

singular matrices, which have mth roots, is of interest [1], [2].
Consider the (associated) matrix polynomial P (λ) = Inλ

m −A, where In is the
identity matrix of order n and λ is a complex variable. A matrix B ∈ Mn is an
mth root of A if and only if P (B) = Bm − A = 0. As a consequence, the problem
of computation of mth roots of A is strongly connected with the spectral analysis of
P (λ). The suggested references for matrix polynomials are [3] and [7].

A set of vectors {x0, x1, . . . , xk}, which satisfies the equations

P (ω0)x0 = 0

P (ω0)x1 +
1
1!
P (1)(ω0)x0 = 0

...
...

...

P (ω0)xk +
1
1!
P (1)(ω0)xk−1 + · · · +

1
k!
P (k)(ω0)x0 = 0,

where the indices on P (λ) denote derivatives with respect to the variable λ, is called
a Jordan chain of length k+ 1 of P (λ) corresponding to the eigenvalue ω0 ∈ C and
the eigenvector x0 ∈ C

n. The vectors in a Jordan chain are not uniquely defined and
for m > 1, they need not be linearly independent [3], [6]. If we set m = 1, then the
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Jordan structure of the linear pencil Inλ−A coincides with the Jordan structure of
A, and the vectors of each Jordan chain are chosen to be linearly independent [2], [6].
Moreover, there exist a matrix

JA = ⊕ξ
j=1

(
Ikjωj + Nkj

)
(k1 + k2 + . . . + kξ = n),(1.1)

where Nk is the nilpotent matrix of order k having ones on the super diagonal and
zeros elsewhere, and an n× n nonsingular matrix

XA =
[
x1,1 . . . x1,k1 x2,1 . . . x2,k2 . . . xξ,1 . . . xξ,kξ

]
,(1.2)

where for every j = 1, 2, . . . , ξ, {xj,1, xj,2, . . . , xj,kj} is a Jordan chain of A corre-
sponding to ωj ∈ σ(A), such that (see [2], [4], [6])

A = XA JA X−1
A .

The matrix JA is called the Jordan matrix of A, and it is unique up to permutations
of the diagonal Jordan blocks Ikjωj + Nkj (j = 1, 2, . . . , ξ) [2], [4].

The set of all eigenvalues of P (λ), that is, σ(P ) = {µ ∈ C : detP (µ) = 0},
is called the spectrum of P (λ). Denoting by σ(A) = σ(Inλ − A) the spectrum
of the matrix A, it is clear that σ(P ) = {µ ∈ C : µm ∈ σ(A)}. If JA is the
Jordan matrix of A in (1.1), then it will be convenient to define the J-spectrum of A,
σJ (A) = {ω1, ω2, . . . , ωξ}, where the eigenvalues of A follow exactly the order of their
appearance in JA (obviously, repetitions are allowed). For example, the J-spectrum

of the matrix M =
[

0 1
0 0

]
⊕ [

0
] ⊕

[
1 1
0 1

]
is σJ (M) = { 0, 0, 1}.

In this article, we study the Jordan structure of the mth roots (m > 1) of a
complex matrix. In Section 2, we consider a nonsingular matrix and present a new
constructive proof for the Jordan canonical form of its mth roots. This proof is
simple and based on spectral analysis of matrix polynomials [2], [3], [7]. Furthermore,
it yields directly the Jordan chains of the mth roots. We also generalize a known
uniqueness statement [5]. In Section 3, using a methodology of Cross and Lancaster
[1], we obtain a necessary and sufficient condition for the existence of mth roots of a
singular matrix.

2. The nonsingular case. Consider a nonsingular matrix A ∈ Mn and an
integer m > 1. If A is diagonalizable and S ∈ Mn is a nonsingular matrix such that

A = S diag{r1eiφ1 , r2e
iφ2 , . . . , rne

iφn}S−1,

where rj > 0 , φj ∈ [0, 2π) (j = 1, 2, . . . , n), then for every n-tuple (s1, s2, . . . , sn),
sj ∈ {1, 2, . . . ,m} (j = 1, 2, . . . , n), the matrix

B = S diag{r 1
m
1 ei

φ1+2(s1−1)π
m , r

1
m
2 ei

φ2+2(s2−1)π
m , . . . , r

1
m
n ei

φn+2(sn−1)π
m }S−1

is an mth root of A. Hence, the investigation of the mth roots of a nonsingular (and
not diagonalizable) matrix A via the Jordan canonical form of A arises in a natural
way [2]. The following lemma is necessary and of independent interest.
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Lemma 2.1. Let {x0, x1, . . . , xk} be a Jordan chain of A ∈ Mn (with linearly
independent terms) corresponding to a nonzero eigenvalue ω0 = r0e

i φ0 ∈ σ(A) (r0 >
0, φ0 ∈ [0, 2π)), and let P (λ) = Inλ

m −A. Then for every eigenvalue

r
1
m
0 ei

φ0+2(t−1)π
m ∈ σ(P ) ; t = 1, 2, . . . ,m,

the matrix polynomial P (λ) has a Jordan chain of the form

y0 = x0

y1 = a1,1x1

y2 = a2,1x1 + a2,2x2(2.1)
...

...
...

yk = ak,1x1 + ak,2x2 + · · · + ak,kxk,

where the coefficients ai,j (1 ≤ j ≤ i ≤ k) depend on the integer t and for ev-

ery i = 1, 2, . . . , k, ai,i = (mr
m−1

m
0 ei(m−1)

φ0+2(t−1)π
m )i 
= 0. Moreover, the vectors

y0, y1, . . . , yk are linearly independent.
Proof. Since {x0, x1, . . . , xk} is a Jordan chain of the matrix A corresponding to

the eigenvalue ω0 
= 0, we have

(A− Inω0)x0 = 0

and

(A− Inω0)xi = xi−1 ; i = 1, 2, . . . , k.

Let µ0 be an eigenvalue of P (λ) such that µm
0 = ω0. By the equation

(Inω0 −A)x0 = (Inµm
0 −A)x0 = 0,

it is obvious that y0 = x0 is an eigenvector of P (λ) corresponding to µ0 ∈ σ(P ).
Assume now that there exists a vector y1 ∈ C

n such that

P (µ0)y1 +
P (1)(µ0)

1!
y0 = 0.

Then

(Inµm
0 −A)y1 = −mµm−1

0 y0,

or equivalently,

(Inω0 −A)y1 = mµm−1
0 (Inω0 −A)x1.

Hence, we can choose y1 = a1,1x1, where a1,1 = mµm−1 
= 0. Similarly, if we consider
the equation

P (µ0)y2 +
P (1)(µ0)

1!
y1 +

P (2)(µ0)
2!

y0 = 0,
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then it follows

(Inµm
0 −A)y2 = −mµm−1

0 y1 − m(m− 1)
2

µm−2
0 y0,

or equivalently,

(Inω0 −A)y2 = (Inω0 −A)
(

(mµm−1
0 )2x2 +

m(m− 1)
2

µm−2
0 x1

)
.

Thus, we can choose y2 = a2,1x1 + a2,2x2, where a2,1 = m(m−1)
2 µm−2

0 and a2,2 =(
mµm−1

)2 
= 0. Repeating the same steps implies that the matrix polynomial P (λ)
has a Jordan chain {y0, y1, . . . , yk} as in (2.1).

Define the n× (k + 1) matrices

X0 =
[
x0 x1 · · · xk

]
and Y0 =

[
y0 y1 · · · yk

]
.

Since the vectors x0, x1, . . . , xk ∈ C
n are linearly independent, rank(X0) = k + 1.

Moreover, Y0 = X0 T0, where the (k + 1) × (k + 1) upper triangular matrix

T0 =




1 0 0 · · · 0
0 a1,1 a2,1 · · · ak,1

0 0 a2,2 · · · ak,2

...
...

...
. . .

...
0 0 0 · · · ak,k




is nonsingular. As a consequence, rank(Y0) = k + 1, and the proof is complete.
The Jordan chain {y0, y1, . . . , yk} of P (λ) in the above lemma, is said to be

associated to the Jordan chain {x0, x1, . . . xk} of A, and clearly depends on the
choice of t ∈ {1, 2, . . . ,m}. Consider now the nonsingular matrix XA ∈ Mn in (1.2),
and for any (s1, s2, . . . , sξ), sj ∈ {1, 2, . . . ,m} (j = 1, 2, . . . , ξ), define the matrix

YA(s1, s2, . . . , sξ) =
[
y1,1 . . . y1,k1 y2,1 . . . yξ,1 . . . yξ,kξ

]
,

where for every j = 1, 2, . . . , ξ, the set {yj,1, yj,2, . . . , yj,kj} is the associated Jordan
chain of P (λ) corresponding to the Jordan chain {xj,1, xj,2, . . . , xj,kj} of A and the
integer sj .

Corollary 2.2. For every (s1, s2, . . . , sξ), sj ∈ {1, 2, . . . ,m} (j = 1, 2, . . . , ξ),
the associated matrix YA(s1, s2, . . . , sξ) is nonsingular.

Proof. By Lemma 2.1, there exist upper triangular matrices T1, T2, . . . , Tξ, which
depend on the choice of the ξ-tuple (s1, s2, . . . , sξ) and have nonzero diagonal ele-
ments, such that

YA(s1, s2, . . . , sξ) = XA

(
⊕ξ

j=1Tj

)
.

Since XA is also nonsingular the proof is complete.
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Theorem 2.3. Let A ∈ Mn be a nonsingular complex matrix with Jordan
matrix JA = ⊕ξ

j=1

(
Ikjωj + Nkj

)
as in (1.1) and J-spectrum

σJ (A) = {ω1 = r1e
iφ1 , ω2 = r2e

iφ2 , . . . , ωξ = rξe
iφξ}.

Consider an integer m > 1, the nonsingular matrix XA ∈ Mn in (1.2) such that
A = XAJAX

−1
A , a ξ-tuple (s1, s2, . . . , sξ), sj ∈ {1, 2, . . . ,m} (j = 1, 2, . . . , ξ) and

the associated matrix YA(s1, s2, . . . , sξ). Then the matrix

B = YA(s1, s2, . . . , sξ)
(
⊕ξ

j=1

(
Ikj r

1
m

j ei
φj+2(sj−1)π

m + Nkj

))
YA(s1, s2, . . . , sξ)−1

(2.2)
is an mth root of A.

Proof. Since the associated matrix YA(s1, s2, . . . , sξ) is nonsingular, by Corollary
7.11 in [3], the linear pencil Inλ−B is a right divisor of P (λ) = Inλ

m−A, i.e., there
exists an n× n matrix polynomial Q(λ) of degree m− 1 such that

P (λ) = Q(λ) (Inλ−B).

Consequently, by [2, pp. 81-82] (see also Lemma 22.9 in [7]), P (B) = Bm − A = 0,
and hence B is an mth root of the matrix A.

At this point, we remark that the associated matrix YA(s1, s2, . . . , sn) can be
computed directly by the method described in the proof of Lemma 2.1. Moreover,
it is clear that a nonsingular matrix may have mth roots with common eigenvalues.
Motivated by [5], we obtain a spectral condition that implies the uniqueness of an
mth root.

Theorem 2.4. Suppose A ∈ Mn is a nonsingular complex matrix and its
spectrum σ(A) lies in a cone

K0 = {z ∈ C : θ1 ≤ Arg z ≤ θ2, 0 < θ2 − θ1 ≤ ϑ0 < 2π}.
Then for every k = 1, 2, . . . ,m, A has a unique mth root Bk such that

σ(Bk) ⊂
{
z ∈ C :

θ1 + 2(k − 1)π
m

≤ Arg z ≤ θ2 + 2(k − 1)π
m

}
.

In particular, for every k = 2, 3, . . . ,m, Bk = ei
2(k−1)π

m B1.
Proof. Observe that the spectrum of P (λ), σ(P ) = {µ ∈ C : µm ∈ σ(A)}, lies

in the union
m⋃

k=1

{
z ∈ C :

θ1 + 2(k − 1)π
m

≤ Arg z ≤ θ2 + 2(k − 1)π
m

}
,

and for every k = 1, 2, . . . ,m, denote

Σk = σ(P ) ∩
{
z ∈ C :

θ1 + 2(k − 1)π
m

≤ Arg z ≤ θ2 + 2(k − 1)π
m

}

= { r 1
m ei

φ+2(k−1)π
m : reiφ ∈ σ(A), r > 0, φ ∈ [θ1, θ2]}.

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 32-41, April 2002

http://math.technion.ac.il/iic/ela



ELA

On the mth Roots of a Complex Matrix 37

Then by Theorem 2.3, for every k = 1, 2, . . . ,m, the matrix A has an mth root Bk

such that σ(Bk) = Σk. Since the sets Σ1,Σ2, . . . ,Σm are mutually disjoint, Lemma
22.8 in [7] completes the proof.

It is worth noting that if JA = ⊕ξ
j=1

(
Ikjωj + Nkj

)
is the Jordan matrix of A in

(1.1), and σJ (A) = {ω1 = r1e
iφ1 , ω2 = r2e

iφ2 , . . . , ωξ = rξe
iφξ} is the J-spectrum

of A, then for every k = 1, 2, . . . ,m, the mth root Bk in the above theorem is given
by (2.2) for s1 = s2 = · · · = sξ = k. Furthermore, if we allow θ1 −→ −π+ and
θ2 −→ π−, then for m = 2, we have the following corollary.

Corollary 2.5. (Theorem 5 in [5]) Let A ∈ Mn be a complex matrix with
σ(A) ∩ (−∞, 0] = ∅. Then A has a unique square root B such that σ(B) ⊂ {z ∈ C :
Re z > 0}.

Example 2.6. Consider a 5 × 5 complex matrix A = XAJAX
−1
A , where XA ∈

M5 is nonsingular and

JA =




i 1 0 0 0
0 i 1 0 0
0 0 i 0 0
0 0 0 1 1
0 0 0 0 1


 .

Suppose m = 3 and for a pair (s1, s2), sj ∈ {1, 2, 3} (j = 1, 2), denote

α = ei
π/2+2(s1−1)π

3 and β = ei
2(s2−1)π

3 .

Then the associated matrix of XA, corresponding to (s1, s2), is

YA(s1, s2) = XA





 1 0 0

0 3α2 3α
0 0 9α4


 ⊕

[
1 0
0 3β2

]
 .

One can verify that the matrix

B = YA(s1, s2)




α 1 0 0 0
0 α 1 0 0
0 0 α 0 0
0 0 0 β 1
0 0 0 0 β


YA(s1, s2)−1

= XA




α 1
3α

−2 − 1
9α

−5 0 0
0 α 1

3α
−2 0 0

0 0 α 0 0
0 0 0 β 1

3β
−2

0 0 0 0 β


X−1

A

is a 3rd root of A (see also the equation (58) in [2, p. 232]). Moreover, if we choose
s1 = s2 = 1, then

YA(1, 1) = XA





 1 0 0

0 3ei
π
3 3ei

π
6

0 0 9ei
2π
3


 ⊕

[
1 0
0 3

]
 ,
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and the matrix

B1 = YA(1, 1)




ei
π
6 1 0 0 0

0 ei
π
6 1 0 0

0 0 ei
π
6 0 0

0 0 0 1 1
0 0 0 0 1



YA(1, 1)−1

= XA




ei
π
6 1

3e
−i π

3 − 1
9e

−i 5π
6 0 0

0 ei
π
6 1

3e
−i π

3 0 0
0 0 ei

π
6 0 0

0 0 0 1 1
3

0 0 0 0 1



X−1

A

is the unique 3rd root of A with σ(B1) ⊂ {z ∈ C : 0 ≤ Arg z ≤ π/6}.

3. The singular case. Let A ∈ Mn be a singular matrix, and let JA =
⊕ξ

j=1

(
Ikjωj + Nkj

)
be its Jordan matrix in (1.1). For the remainder and without

loss of generality, we assume that ωj = 0 for j = 1, 2, . . . , ψ (1 ≤ ψ ≤ ξ), with
ωj 
= 0 otherwise, and k1 ≥ k2 ≥ · · · ≥ kψ [1], [2]. We also denote by

J0 = ⊕ψ
j=1

(
Ikjωj + Nkj

)
= ⊕ψ

j=1Nkj

the diagonal block of JA corresponding to the zero eigenvalue. Then by [2, pp. 234-
239], we have the following lemma.

Lemma 3.1. The matrix A ∈ Mn has an mth root if and only if J0 has an mth
root.

The ascent sequence of A is said to be the sequence

di = dim NullAi − dim NullAi−1 ; i = 1, 2, . . .

By [1], we have the following properties:
(P1) The ascent sequences of A and J0 are equal.
(P2) For every i = 1, 2, . . ., di is the number of the diagonal blocks of J0 of order at

least i. Thus, if d0 =
∑ψ

j=1 kj is the order of J0, then d0 ≥ d1 ≥ d2 ≥ · · · ≥
dk1 ≥ 0 and dk1+1 = dk1+2 = · · · = 0.

Theorem 3.2. The complex matrix A ∈ Mn has an mth root if and only if for
every integer ν ≥ 0, the ascent sequence of A has no more than one element between
mν and m (ν + 1).

(Note that the result is obvious when the matrix A is nonsingular.)
Proof. By Lemma 3.1 and Property (P1), it is enough to prove the result for J0.

First assume that J0 has an mth root Z, and that there exist a nonnegative integer
ν and two terms of the ascent sequence of J0, say dt and dt+1, such that

mν < dt+1 ≤ dt < m (ν + 1).
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For every i = 1, 2, . . . , k1, NullZmi = Null J i
0, and consequently, if c1, c2, . . . is the

ascent sequence of Z, then

mi∑
j=1

cj =
i∑

j=1

dj .

Thus, we have

dt = cmt + cmt−1 + · · · + cmt−(m−1)

and

dt+1 = cm(t+1) + cm(t+1)−1 + · · · + cmt+1,

where

cmt−(m−1) ≥ · · · ≥ cmt ≥ cmt+1 ≥ · · · ≥ cm(t+1).

If cmt ≥ ν + 1, then dt ≥ mcmt ≥ m (ν + 1), a contradiction. On the other hand,
if cmt ≤ ν, then dt+1 ≤ mcmt ≤ mν, which is also a contradiction. Hence, we
conclude that if the matrix A has an mth root, then for every integer ν ≥ 0, the
ascent sequence of A has no more than one element between mν and m (ν + 1).

Conversely, we indicate a constructive proof for the existence of an mth root of
J0 given that between two successive nonnegative multiplies of m there is at most one
term of the ascent sequence of J0. Denote ni =

∑i
j=1 kj for i = 1, 2, . . . , ψ, and let

{e1, e2, . . . , enψ
} be the standard basis of C

nψ . By [1], for the vectors xi = eni (i =
1, 2, . . . , ψ), we can write the standard basis of C

nψ in the following scheme:

Jk1−1
0 x1 Jk1−2

0 x1 Jk1−3
0 x1 Jk1−4

0 x1 · · · J0x1 x1

Jk2−1
0 x2 Jk2−2

0 x2 Jk2−3
0 x2 · · · · · · x2

Jk3−1
0 x3 Jk3−2

0 x3 · · · · · · x3

...
...

...
J

kψ−1
0 xψ J

kψ−2
0 xψ · · · xψ .

(3.1)

In this scheme, there are ψ rows of vectors, such that the jth row contains kj vectors
(j = 1, 2, . . . , ψ). Recall that k1 ≥ k2 ≥ · · · ≥ kψ , and hence the rows are of non-
increasing length. Moreover, the above scheme has k1 columns and by Property (P2),
for t = 1, 2, . . . , k1, the length of the tth column is equal to the tth term of the ascent
sequence of J0, dt.

With respect to the above scheme (and the order of its elements), we define a
linear transformation F on C

nψ by

(j − 1, t)th element if j 
= 1 (modm),
↗

(j, t)th element → (j + m− 1, t− 1)th element if j = 1 (modm) and t 
= 1,
↘

0 if j = 1 (modm) and t = 1.
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Separating the rows of the scheme in m-tuples, one can see that our assumption that
for every nonnegative integer ν, the ascent sequence has no more than one element
between mν and m (ν + 1) ensures the existence of F . If B is the nψ × nψ matrix
whose jth column is F(ej), then Bm = J0 and the proof is complete.

Since between two successive even integers there is exactly one odd integer, for
m = 2, Theorem 3.2 yields the main result of [1].

Corollary 3.3. (Theorem 2 in [1]) The matrix A ∈ Mn has a square root if
and only if no two terms of its ascent sequence are the same odd integer.

The ascent sequence of the k × k nilpotent matrix Nk is 1, 1, . . . , 1, 0, . . . with
its first k terms equal to 1. Thus, for every integer m > 1, it has k terms (i.e., the k
ones) between 0 and m. Hence, it is verified that there is no matrix M ∈ Mn such
that Mm = Nk (see also [2]).

Corollary 3.4. Let d1, d2, d3, . . . be the ascent sequence of a singular complex
matrix A ∈ Mn.
(i) If d2 = 0 (i.e., J0 = 0), then for every integer m > 1, A has an mth root.
(ii) If d2 > 0, then for every integer m > d1, A has no mth roots.

Our methodology is illustrated in the following example.
Example 3.5. Consider the Jordan matrix

J0 =


 0 1 0

0 0 1
0 0 0


 ⊕

[
0 1
0 0

]
⊕

[
0 1
0 0

]
,

and let m = 3. The ascent sequence of J0 is 3, 3, 1, 0, . . . , and if {e1, e2, . . . , e7} is
the standard basis of C

7, then the scheme in (3.1) is

J2
0x1 = e1 J0x1 = e2 x1 = e3

J0x2 = e4 x2 = e5

J0x3 = e6 x3 = e7.

As in the proof of Theorem 3.2, we define the linear transformation F on C
7 by

F(e1) = 0, F(e2) = e6, F(e3) = e7, F(e4) = e1,

F(e5) = e2, F(e6) = e4 and F(e7) = e5.

One can see that the 7 × 7 matrix

B =
[

0 e6 e7 e1 e2 e4 e5

]
=




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0




is a 3rd root of J0. Finally, observe that for every integer m > 1 different than 3,
the matrix J0 has no mth roots.
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