ON THE m th ROOTS OF A COMPLEX MATRIX*

PANAYIOTIS J. PSARRAKOS ${ }^{\dagger}$

Abstract

If an $n \times n$ complex matrix A is nonsingular, then for every integer $m>1, A$ has an m th root B, i.e., $B^{m}=A$. In this paper, we present a new simple proof for the Jordan canonical form of the root B. Moreover, a necessary and sufficient condition for the existence of m th roots of a singular complex matrix A is obtained. This condition is in terms of the dimensions of the null spaces of the powers $A^{k}(k=0,1,2, \ldots)$.

Key words. Ascent sequence, eigenvalue, eigenvector, Jordan matrix, matrix root.
AMS subject classifications. 15A18, 15A21, 15A22, 47A56

1. Introduction and preliminaries. Let \mathcal{M}_{n} be the algebra of all $n \times n$ complex matrices and let $A \in \mathcal{M}_{n}$. For an integer $m>1$, a matrix $B \in \mathcal{M}_{n}$ is called an m th root of A if $B^{m}=A$. If the matrix A is nonsingular, then it always has an m th root B. This root is not unique and its Jordan structure is related to the Jordan structure of A [2, pp. 231-234]. In particular, $\left(\lambda-\mu_{0}\right)^{k}$ is an elementary divisor of B if and only if $\left(\lambda-\mu_{0}^{m}\right)^{k}$ is an elementary divisor of A. If A is a singular complex matrix, then it may have no m th roots. For example, there is no matrix B such that $B^{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. As a consequence, the problem of characterizing the singular matrices, which have m th roots, is of interest [1], [2].

Consider the (associated) matrix polynomial $P(\lambda)=I_{n} \lambda^{m}-A$, where I_{n} is the identity matrix of order n and λ is a complex variable. A matrix $B \in \mathcal{M}_{n}$ is an m th root of A if and only if $P(B)=B^{m}-A=0$. As a consequence, the problem of computation of m th roots of A is strongly connected with the spectral analysis of $P(\lambda)$. The suggested references for matrix polynomials are [3] and [7].

A set of vectors $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$, which satisfies the equations

$$
\begin{aligned}
P\left(\omega_{0}\right) x_{0} & =0 \\
P\left(\omega_{0}\right) x_{1}+\frac{1}{1!} P^{(1)}\left(\omega_{0}\right) x_{0} & =0 \\
\vdots & \vdots \\
P\left(\omega_{0}\right) x_{k}+\frac{1}{1!} P^{(1)}\left(\omega_{0}\right) x_{k-1}+\cdots+\frac{1}{k!} P^{(k)}\left(\omega_{0}\right) x_{0} & =0,
\end{aligned}
$$

where the indices on $P(\lambda)$ denote derivatives with respect to the variable λ, is called a Jordan chain of length $k+1$ of $P(\lambda)$ corresponding to the eigenvalue $\omega_{0} \in \mathbb{C}$ and the eigenvector $x_{0} \in \mathbb{C}^{n}$. The vectors in a Jordan chain are not uniquely defined and for $m>1$, they need not be linearly independent [3], [6]. If we set $m=1$, then the

[^0]Jordan structure of the linear pencil $I_{n} \lambda-A$ coincides with the Jordan structure of A, and the vectors of each Jordan chain are chosen to be linearly independent [2], [6]. Moreover, there exist a matrix

$$
\begin{equation*}
J_{A}=\oplus_{j=1}^{\xi}\left(I_{k_{j}} \omega_{j}+N_{k_{j}}\right) \quad\left(k_{1}+k_{2}+\ldots+k_{\xi}=n\right), \tag{1.1}
\end{equation*}
$$

where N_{k} is the nilpotent matrix of order k having ones on the super diagonal and zeros elsewhere, and an $n \times n$ nonsingular matrix

$$
X_{A}=\left[\begin{array}{llllllllll}
x_{1,1} & \ldots & x_{1, k_{1}} & x_{2,1} & \ldots & x_{2, k_{2}} & \ldots & x_{\xi, 1} & \ldots & x_{\xi, k_{\xi}} \tag{1.2}
\end{array}\right]
$$

where for every $j=1,2, \ldots, \xi,\left\{x_{j, 1}, x_{j, 2}, \ldots, x_{j, k_{j}}\right\}$ is a Jordan chain of A corresponding to $\omega_{j} \in \sigma(A)$, such that (see [2], [4], [6])

$$
A=X_{A} J_{A} X_{A}^{-1}
$$

The matrix J_{A} is called the Jordan matrix of A, and it is unique up to permutations of the diagonal Jordan blocks $I_{k_{j}} \omega_{j}+N_{k_{j}}(j=1,2, \ldots, \xi)$ [2], [4].

The set of all eigenvalues of $P(\lambda)$, that is, $\sigma(P)=\{\mu \in \mathbb{C}: \operatorname{det} P(\mu)=0\}$, is called the spectrum of $P(\lambda)$. Denoting by $\sigma(A)=\sigma\left(I_{n} \lambda-A\right)$ the spectrum of the matrix A, it is clear that $\sigma(P)=\left\{\mu \in \mathbb{C}: \mu^{m} \in \sigma(A)\right\}$. If J_{A} is the Jordan matrix of A in (1.1), then it will be convenient to define the J-spectrum of A, $\sigma_{J}(A)=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{\xi}\right\}$, where the eigenvalues of A follow exactly the order of their appearance in J_{A} (obviously, repetitions are allowed). For example, the J-spectrum of the matrix $M=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \oplus[0] \oplus\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is $\sigma_{J}(M)=\{0,0,1\}$.

In this article, we study the Jordan structure of the m th roots $(m>1)$ of a complex matrix. In Section 2, we consider a nonsingular matrix and present a new constructive proof for the Jordan canonical form of its m th roots. This proof is simple and based on spectral analysis of matrix polynomials [2], [3], [7]. Furthermore, it yields directly the Jordan chains of the m th roots. We also generalize a known uniqueness statement [5]. In Section 3, using a methodology of Cross and Lancaster [1], we obtain a necessary and sufficient condition for the existence of m th roots of a singular matrix.
2. The nonsingular case. Consider a nonsingular matrix $A \in \mathcal{M}_{n}$ and an integer $m>1$. If A is diagonalizable and $S \in \mathcal{M}_{n}$ is a nonsingular matrix such that

$$
A=S \operatorname{diag}\left\{r_{1} e^{\mathrm{i} \phi_{1}}, r_{2} e^{\mathrm{i} \phi_{2}}, \ldots, r_{n} e^{\mathrm{i} \phi_{n}}\right\} S^{-1}
$$

where $r_{j}>0, \phi_{j} \in[0,2 \pi)(j=1,2, \ldots, n)$, then for every n-tuple $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, $s_{j} \in\{1,2, \ldots, m\}(j=1,2, \ldots, n)$, the matrix

$$
B=S \operatorname{diag}\left\{r_{1}^{\frac{1}{m}} e^{\mathrm{i} \frac{\phi_{1}+2\left(s_{1}-1\right) \pi}{m}}, r_{2}^{\frac{1}{m}} e^{\mathrm{i} \frac{\phi_{2}+2\left(s_{2}-1\right) \pi}{m}}, \ldots, r_{n}^{\frac{1}{m}} e^{\mathrm{i} \frac{\phi_{n}+2\left(s_{n}-1\right) \pi}{m}}\right\} S^{-1}
$$

is an m th root of A. Hence, the investigation of the m th roots of a nonsingular (and not diagonalizable) matrix A via the Jordan canonical form of A arises in a natural way [2]. The following lemma is necessary and of independent interest.

Lemma 2.1. Let $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ be a Jordan chain of $A \in \mathcal{M}_{n}$ (with linearly independent terms) corresponding to a nonzero eigenvalue $\omega_{0}=r_{0} e^{\mathrm{i} \phi_{0}} \in \sigma(A)\left(r_{0}>\right.$ $0, \phi_{0} \in[0,2 \pi)$), and let $P(\lambda)=I_{n} \lambda^{m}-A$. Then for every eigenvalue

$$
r_{0}^{\frac{1}{m}} e^{\mathrm{i} \frac{\phi_{0}+2(t-1) \pi}{m}} \in \sigma(P) ; \quad t=1,2, \ldots, m
$$

the matrix polynomial $P(\lambda)$ has a Jordan chain of the form

$$
\begin{align*}
y_{0} & =x_{0} \\
y_{1} & =a_{1,1} x_{1} \\
y_{2} & =a_{2,1} x_{1}+a_{2,2} x_{2} \tag{2.1}\\
\vdots & \vdots \\
y_{k} & =a_{k, 1} x_{1}+a_{k, 2} x_{2}+\cdots+a_{k, k} x_{k},
\end{align*}
$$

where the coefficients $a_{i, j}(1 \leq j \leq i \leq k)$ depend on the integer t and for every $i=1,2, \ldots, k, a_{i, i}=\left(m r_{0}^{\frac{m-1}{m}} e^{\mathrm{i}(m-1) \frac{\phi_{0}+2(t-1) \pi}{m}}\right)^{i} \neq 0$. Moreover, the vectors $y_{0}, y_{1}, \ldots, y_{k}$ are linearly independent.

Proof. Since $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ is a Jordan chain of the matrix A corresponding to the eigenvalue $\omega_{0} \neq 0$, we have

$$
\left(A-I_{n} \omega_{0}\right) x_{0}=0
$$

and

$$
\left(A-I_{n} \omega_{0}\right) x_{i}=x_{i-1} ; \quad i=1,2, \ldots, k .
$$

Let μ_{0} be an eigenvalue of $P(\lambda)$ such that $\mu_{0}^{m}=\omega_{0}$. By the equation

$$
\left(I_{n} \omega_{0}-A\right) x_{0}=\left(I_{n} \mu_{0}^{m}-A\right) x_{0}=0
$$

it is obvious that $y_{0}=x_{0}$ is an eigenvector of $P(\lambda)$ corresponding to $\mu_{0} \in \sigma(P)$. Assume now that there exists a vector $y_{1} \in \mathbb{C}^{n}$ such that

$$
P\left(\mu_{0}\right) y_{1}+\frac{P^{(1)}\left(\mu_{0}\right)}{1!} y_{0}=0
$$

Then

$$
\left(I_{n} \mu_{0}^{m}-A\right) y_{1}=-m \mu_{0}^{m-1} y_{0}
$$

or equivalently,

$$
\left(I_{n} \omega_{0}-A\right) y_{1}=m \mu_{0}^{m-1}\left(I_{n} \omega_{0}-A\right) x_{1} .
$$

Hence, we can choose $y_{1}=a_{1,1} x_{1}$, where $a_{1,1}=m \mu^{m-1} \neq 0$. Similarly, if we consider the equation

$$
P\left(\mu_{0}\right) y_{2}+\frac{P^{(1)}\left(\mu_{0}\right)}{1!} y_{1}+\frac{P^{(2)}\left(\mu_{0}\right)}{2!} y_{0}=0
$$

then it follows

$$
\left(I_{n} \mu_{0}^{m}-A\right) y_{2}=-m \mu_{0}^{m-1} y_{1}-\frac{m(m-1)}{2} \mu_{0}^{m-2} y_{0}
$$

or equivalently,

$$
\left(I_{n} \omega_{0}-A\right) y_{2}=\left(I_{n} \omega_{0}-A\right)\left(\left(m \mu_{0}^{m-1}\right)^{2} x_{2}+\frac{m(m-1)}{2} \mu_{0}^{m-2} x_{1}\right)
$$

Thus, we can choose $y_{2}=a_{2,1} x_{1}+a_{2,2} x_{2}$, where $a_{2,1}=\frac{m(m-1)}{2} \mu_{0}^{m-2}$ and $a_{2,2}=$ $\left(m \mu^{m-1}\right)^{2} \neq 0$. Repeating the same steps implies that the matrix polynomial $P(\lambda)$ has a Jordan chain $\left\{y_{0}, y_{1}, \ldots, y_{k}\right\}$ as in (2.1).

Define the $n \times(k+1)$ matrices

$$
X_{0}=\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{k}
\end{array}\right] \quad \text { and } \quad Y_{0}=\left[\begin{array}{llll}
y_{0} & y_{1} & \cdots & y_{k}
\end{array}\right]
$$

Since the vectors $x_{0}, x_{1}, \ldots, x_{k} \in \mathbb{C}^{n}$ are linearly independent, $\operatorname{rank}\left(X_{0}\right)=k+1$. Moreover, $Y_{0}=X_{0} T_{0}$, where the $(k+1) \times(k+1)$ upper triangular matrix

$$
T_{0}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & a_{1,1} & a_{2,1} & \cdots & a_{k, 1} \\
0 & 0 & a_{2,2} & \cdots & a_{k, 2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{k, k}
\end{array}\right]
$$

is nonsingular. As a consequence, $\operatorname{rank}\left(Y_{0}\right)=k+1$, and the proof is complete.
The Jordan chain $\left\{y_{0}, y_{1}, \ldots, y_{k}\right\}$ of $P(\lambda)$ in the above lemma, is said to be associated to the Jordan chain $\left\{x_{0}, x_{1}, \ldots x_{k}\right\}$ of A, and clearly depends on the choice of $t \in\{1,2, \ldots, m\}$. Consider now the nonsingular matrix $X_{A} \in \mathcal{M}_{n}$ in (1.2), and for any $\left(s_{1}, s_{2}, \ldots, s_{\xi}\right), s_{j} \in\{1,2, \ldots, m\}(j=1,2, \ldots, \xi)$, define the matrix

$$
Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)=\left[\begin{array}{llllllll}
y_{1,1} & \ldots & y_{1, k_{1}} & y_{2,1} & \ldots & y_{\xi, 1} & \ldots & y_{\xi, k_{\xi}}
\end{array}\right],
$$

where for every $j=1,2, \ldots, \xi$, the set $\left\{y_{j, 1}, y_{j, 2}, \ldots, y_{j, k_{j}}\right\}$ is the associated Jordan chain of $P(\lambda)$ corresponding to the Jordan chain $\left\{x_{j, 1}, x_{j, 2}, \ldots, x_{j, k_{j}}\right\}$ of A and the integer s_{j}.

Corollary 2.2. For every $\left(s_{1}, s_{2}, \ldots, s_{\xi}\right), s_{j} \in\{1,2, \ldots, m\}(j=1,2, \ldots, \xi)$, the associated matrix $Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)$ is nonsingular.

Proof. By Lemma 2.1, there exist upper triangular matrices $T_{1}, T_{2}, \ldots, T_{\xi}$, which depend on the choice of the ξ-tuple $\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)$ and have nonzero diagonal elements, such that

$$
Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)=X_{A}\left(\oplus_{j=1}^{\xi} T_{j}\right)
$$

Since X_{A} is also nonsingular the proof is complete.

Theorem 2.3. Let $A \in \mathcal{M}_{n}$ be a nonsingular complex matrix with Jordan matrix $J_{A}=\oplus_{j=1}^{\xi}\left(I_{k_{j}} \omega_{j}+N_{k_{j}}\right)$ as in (1.1) and J-spectrum

$$
\sigma_{J}(A)=\left\{\omega_{1}=r_{1} e^{\mathrm{i} \phi_{1}}, \omega_{2}=r_{2} e^{\mathrm{i} \phi_{2}}, \ldots, \omega_{\xi}=r_{\xi} e^{\mathrm{i} \phi_{\xi}}\right\} .
$$

Consider an integer $m>1$, the nonsingular matrix $X_{A} \in \mathcal{M}_{n}$ in (1.2) such that $A=X_{A} J_{A} X_{A}^{-1}$, a ξ-tuple $\left(s_{1}, s_{2}, \ldots, s_{\xi}\right), s_{j} \in\{1,2, \ldots, m\}(j=1,2, \ldots, \xi)$ and the associated matrix $Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)$. Then the matrix

$$
\begin{equation*}
B=Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)\left(\oplus_{j=1}^{\xi}\left(I_{k_{j}} r_{j}^{\frac{1}{m}} e^{\mathrm{i} \frac{\phi_{j}+2\left(s_{j}-1\right) \pi}{m}}+N_{k_{j}}\right)\right) Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)^{-1} \tag{2.2}
\end{equation*}
$$

is an mth root of A.
Proof. Since the associated matrix $Y_{A}\left(s_{1}, s_{2}, \ldots, s_{\xi}\right)$ is nonsingular, by Corollary 7.11 in [3], the linear pencil $I_{n} \lambda-B$ is a right divisor of $P(\lambda)=I_{n} \lambda^{m}-A$, i.e., there exists an $n \times n$ matrix polynomial $Q(\lambda)$ of degree $m-1$ such that

$$
P(\lambda)=Q(\lambda)\left(I_{n} \lambda-B\right)
$$

Consequently, by [2, pp. 81-82] (see also Lemma 22.9 in [7]), $P(B)=B^{m}-A=0$, and hence B is an m th root of the matrix A.

At this point, we remark that the associated matrix $Y_{A}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ can be computed directly by the method described in the proof of Lemma 2.1. Moreover, it is clear that a nonsingular matrix may have m th roots with common eigenvalues. Motivated by [5], we obtain a spectral condition that implies the uniqueness of an m th root.

Theorem 2.4. Suppose $A \in \mathcal{M}_{n}$ is a nonsingular complex matrix and its spectrum $\sigma(A)$ lies in a cone

$$
\mathcal{K}_{0}=\left\{z \in \mathbb{C}: \theta_{1} \leq \operatorname{Arg} z \leq \theta_{2}, 0<\theta_{2}-\theta_{1} \leq \vartheta_{0}<2 \pi\right\} .
$$

Then for every $k=1,2, \ldots, m$, A has a unique m th root B_{k} such that

$$
\sigma\left(B_{k}\right) \subset\left\{z \in \mathbb{C}: \frac{\theta_{1}+2(k-1) \pi}{m} \leq \operatorname{Arg} z \leq \frac{\theta_{2}+2(k-1) \pi}{m}\right\}
$$

In particular, for every $k=2,3, \ldots, m, B_{k}=e^{\mathrm{i} \frac{2(k-1) \pi}{m}} B_{1}$.
Proof. Observe that the spectrum of $P(\lambda), \sigma(P)=\left\{\mu \in \mathbb{C}: \mu^{m} \in \sigma(A)\right\}$, lies in the union

$$
\bigcup_{k=1}^{m}\left\{z \in \mathbb{C}: \frac{\theta_{1}+2(k-1) \pi}{m} \leq \operatorname{Arg} z \leq \frac{\theta_{2}+2(k-1) \pi}{m}\right\}
$$

and for every $k=1,2, \ldots, m$, denote

$$
\begin{aligned}
\Sigma_{k} & =\sigma(P) \cap\left\{z \in \mathbb{C}: \frac{\theta_{1}+2(k-1) \pi}{m} \leq \operatorname{Arg} z \leq \frac{\theta_{2}+2(k-1) \pi}{m}\right\} \\
& =\left\{r^{\frac{1}{m}} e^{\mathrm{i} \frac{\phi+2(k-1) \pi}{m}}: r e^{\mathrm{i} \phi} \in \sigma(A), r>0, \phi \in\left[\theta_{1}, \theta_{2}\right]\right\}
\end{aligned}
$$

Then by Theorem 2.3 , for every $k=1,2, \ldots, m$, the matrix A has an m th root B_{k} such that $\sigma\left(B_{k}\right)=\Sigma_{k}$. Since the sets $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{m}$ are mutually disjoint, Lemma 22.8 in [7] completes the proof. C

It is worth noting that if $J_{A}=\oplus_{j=1}^{\xi}\left(I_{k_{j}} \omega_{j}+N_{k_{j}}\right)$ is the Jordan matrix of A in (1.1), and $\sigma_{J}(A)=\left\{\omega_{1}=r_{1} e^{\mathrm{i} \phi_{1}}, \omega_{2}=r_{2} e^{\mathrm{i} \phi_{2}}, \ldots, \omega_{\xi}=r_{\xi} e^{\mathrm{i} \phi_{\xi}}\right\}$ is the J-spectrum of A, then for every $k=1,2, \ldots, m$, the m th root B_{k} in the above theorem is given by (2.2) for $s_{1}=s_{2}=\cdots=s_{\xi}=k$. Furthermore, if we allow $\theta_{1} \longrightarrow-\pi^{+}$and $\theta_{2} \longrightarrow \pi^{-}$, then for $m=2$, we have the following corollary.

Corollary 2.5. (Theorem 5 in [5]) Let $A \in \mathcal{M}_{n}$ be a complex matrix with $\sigma(A) \cap(-\infty, 0]=\emptyset$. Then A has a unique square root B such that $\sigma(B) \subset\{z \in \mathbb{C}$: $\operatorname{Re} z>0\}$.

Example 2.6. Consider a 5×5 complex matrix $A=X_{A} J_{A} X_{A}^{-1}$, where $X_{A} \in$ \mathcal{M}_{5} is nonsingular and

$$
J_{A}=\left[\begin{array}{ccccc}
\mathrm{i} & 1 & 0 & 0 & 0 \\
0 & \mathrm{i} & 1 & 0 & 0 \\
0 & 0 & \mathrm{i} & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Suppose $m=3$ and for a pair $\left(s_{1}, s_{2}\right), s_{j} \in\{1,2,3\}(j=1,2)$, denote

$$
\alpha=e^{\mathrm{i} \frac{\mathrm{~T} / 2+2\left(s_{1}-1\right) \pi}{3}} \text { and } \beta=e^{\mathrm{i} \frac{\mathrm{i}\left(s_{2}-1\right) \pi}{3}} .
$$

Then the associated matrix of X_{A}, corresponding to $\left(s_{1}, s_{2}\right)$, is

$$
Y_{A}\left(s_{1}, s_{2}\right)=X_{A}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 \alpha^{2} & 3 \alpha \\
0 & 0 & 9 \alpha^{4}
\end{array}\right] \oplus\left[\begin{array}{cc}
1 & 0 \\
0 & 3 \beta^{2}
\end{array}\right]\right)
$$

One can verify that the matrix

$$
\begin{aligned}
B & =Y_{A}\left(s_{1}, s_{2}\right)\left[\begin{array}{ccccc}
\alpha & 1 & 0 & 0 & 0 \\
0 & \alpha & 1 & 0 & 0 \\
0 & 0 & \alpha & 0 & 0 \\
0 & 0 & 0 & \beta & 1 \\
0 & 0 & 0 & 0 & \beta
\end{array}\right] Y_{A}\left(s_{1}, s_{2}\right)^{-1} \\
& =X_{A}\left[\begin{array}{ccccc}
\alpha & \frac{1}{3} \alpha^{-2} & -\frac{1}{9} \alpha^{-5} & 0 & 0 \\
0 & \alpha & \frac{1}{3} \alpha^{-2} & 0 & 0 \\
0 & 0 & \alpha & 0 & 0 \\
0 & 0 & 0 & \beta & \frac{1}{3} \beta^{-2} \\
0 & 0 & 0 & 0 & \beta
\end{array}\right] X_{A}^{-1}
\end{aligned}
$$

is a 3 rd root of A (see also the equation (58) in [2, p. 232]). Moreover, if we choose $s_{1}=s_{2}=1$, then

$$
Y_{A}(1,1)=X_{A}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 e^{\mathrm{i} \frac{\pi}{3}} & 3 e^{\mathrm{i} \frac{\pi}{6}} \\
0 & 0 & 9 e^{\mathrm{i} \frac{2 \pi}{3}}
\end{array}\right] \oplus\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\right)
$$

and the matrix

$$
\begin{aligned}
B_{1} & =Y_{A}(1,1)\left[\begin{array}{ccccc}
e^{\mathrm{i} \frac{\pi}{6}} & 1 & 0 & 0 & 0 \\
0 & e^{\mathrm{i} \frac{\pi}{6}} & 1 & 0 & 0 \\
0 & 0 & e^{\mathrm{i} \frac{\pi}{6}} & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] Y_{A}(1,1)^{-1} \\
& =X_{A}\left[\begin{array}{ccccc}
e^{\mathrm{i} \frac{\pi}{6}} & \frac{1}{3} e^{-\mathrm{i} \frac{\pi}{3}} & -\frac{1}{9} e^{-\mathrm{i} \frac{5 \pi}{6}} & 0 & 0 \\
0 & e^{\mathrm{i} \frac{\pi}{6}} & \frac{1}{3} e^{-\mathrm{i} \frac{\pi}{3}} & 0 & 0 \\
0 & 0 & e^{\mathrm{i} \frac{\pi}{6}} & 0 & 0 \\
0 & 0 & 0 & 1 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 1
\end{array}\right] X_{A}^{-1}
\end{aligned}
$$

is the unique 3rd root of A with $\sigma\left(B_{1}\right) \subset\{z \in \mathbb{C}: 0 \leq \operatorname{Arg} z \leq \pi / 6\}$.
3. The singular case. Let $A \in \mathcal{M}_{n}$ be a singular matrix, and let $J_{A}=$ $\oplus_{j=1}^{\xi}\left(I_{k_{j}} \omega_{j}+N_{k_{j}}\right)$ be its Jordan matrix in (1.1). For the remainder and without loss of generality, we assume that $\omega_{j}=0$ for $j=1,2, \ldots, \psi(1 \leq \psi \leq \xi)$, with $\omega_{j} \neq 0$ otherwise, and $k_{1} \geq k_{2} \geq \cdots \geq k_{\psi}$ [1], [2]. We also denote by

$$
J_{0}=\oplus_{j=1}^{\psi}\left(I_{k_{j}} \omega_{j}+N_{k_{j}}\right)=\oplus_{j=1}^{\psi} N_{k_{j}}
$$

the diagonal block of J_{A} corresponding to the zero eigenvalue. Then by [2, pp. 234239], we have the following lemma.

Lemma 3.1. The matrix $A \in \mathcal{M}_{n}$ has an mth root if and only if J_{0} has an mth root.

The ascent sequence of A is said to be the sequence

$$
d_{i}=\operatorname{dim} \operatorname{Null} A^{i}-\operatorname{dim} \operatorname{Null} A^{i-1} ; \quad i=1,2, \ldots
$$

By [1], we have the following properties:
(P1) The ascent sequences of A and J_{0} are equal.
(P2) For every $i=1,2, \ldots, d_{i}$ is the number of the diagonal blocks of J_{0} of order at least i. Thus, if $d_{0}=\sum_{j=1}^{\psi} k_{j}$ is the order of J_{0}, then $d_{0} \geq d_{1} \geq d_{2} \geq \cdots \geq$ $d_{k_{1}} \geq 0$ and $d_{k_{1}+1}=d_{k_{1}+2}=\cdots=0$.
Theorem 3.2. The complex matrix $A \in M_{n}$ has an mth root if and only if for every integer $\nu \geq 0$, the ascent sequence of A has no more than one element between $m \nu$ and $m(\nu+1)$.
(Note that the result is obvious when the matrix A is nonsingular.)
Proof. By Lemma 3.1 and Property (P1), it is enough to prove the result for J_{0}. First assume that J_{0} has an m th root Z, and that there exist a nonnegative integer ν and two terms of the ascent sequence of J_{0}, say d_{t} and d_{t+1}, such that

$$
m \nu<d_{t+1} \leq d_{t}<m(\nu+1)
$$

For every $i=1,2, \ldots, k_{1}$, Null $Z^{m i}=\operatorname{Null} J_{0}^{i}$, and consequently, if c_{1}, c_{2}, \ldots is the ascent sequence of Z, then

$$
\sum_{j=1}^{m i} c_{j}=\sum_{j=1}^{i} d_{j}
$$

Thus, we have

$$
d_{t}=c_{m t}+c_{m t-1}+\cdots+c_{m t-(m-1)}
$$

and

$$
d_{t+1}=c_{m(t+1)}+c_{m(t+1)-1}+\cdots+c_{m t+1}
$$

where

$$
c_{m t-(m-1)} \geq \cdots \geq c_{m t} \geq c_{m t+1} \geq \cdots \geq c_{m(t+1)}
$$

If $c_{m t} \geq \nu+1$, then $d_{t} \geq m c_{m t} \geq m(\nu+1)$, a contradiction. On the other hand, if $c_{m t} \leq \nu$, then $d_{t+1} \leq m c_{m t} \leq m \nu$, which is also a contradiction. Hence, we conclude that if the matrix A has an m th root, then for every integer $\nu \geq 0$, the ascent sequence of A has no more than one element between $m \nu$ and $m(\nu+1)$.

Conversely, we indicate a constructive proof for the existence of an m th root of J_{0} given that between two successive nonnegative multiplies of m there is at most one term of the ascent sequence of J_{0}. Denote $n_{i}=\sum_{j=1}^{i} k_{j}$ for $i=1,2, \ldots, \psi$, and let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n_{\psi}}\right\}$ be the standard basis of $\mathbb{C}^{n_{\psi}}$. By [1], for the vectors $x_{i}=\mathrm{e}_{n_{i}}(i=$ $1,2, \ldots, \psi)$, we can write the standard basis of $\mathbb{C}^{n_{\psi}}$ in the following scheme:

$$
\begin{array}{ccccccc}
J_{0}^{k_{1}-1} x_{1} & J_{0}^{k_{1}-2} x_{1} & J_{0}^{k_{1}-3} x_{1} & J_{0}^{k_{1}-4} x_{1} & \cdots & J_{0} x_{1} & x_{1} \tag{3.1}\\
J_{0}^{k_{2}-1} x_{2} & J_{0}^{k_{2}-2} x_{2} & J_{0}^{k_{2}-3} x_{2} & \cdots & \cdots & x_{2} & \\
J_{0}^{k_{3}-1} x_{3} & J_{0}^{k_{3}-2} x_{3} & \cdots & \cdots & x_{3} & & \\
\vdots & \vdots & & \vdots & & & \\
J_{0}^{k_{\psi}-1} x_{\psi} & J_{0}^{k_{\psi}-2} x_{\psi} & \cdots & x_{\psi} . & & &
\end{array}
$$

In this scheme, there are ψ rows of vectors, such that the j th row contains k_{j} vectors $(j=1,2, \ldots, \psi)$. Recall that $k_{1} \geq k_{2} \geq \cdots \geq k_{\psi}$, and hence the rows are of nonincreasing length. Moreover, the above scheme has k_{1} columns and by Property (P2), for $t=1,2, \ldots, k_{1}$, the length of the t th column is equal to the t th term of the ascent sequence of J_{0}, d_{t}.

With respect to the above scheme (and the order of its elements), we define a linear transformation \mathcal{F} on $\mathbb{C}^{n_{\psi}}$ by

$$
(j-1, t) \text { th element } \quad \text { if } j \neq 1(\bmod m)
$$

$$
\begin{array}{ccl}
(j, t) \text { th element } & \begin{array}{c}
\nearrow \\
\searrow
\end{array}(j+m-1, t-1) \text { th element } & \text { if } j=1(\bmod m) \text { and } t \neq 1, \\
0 & \text { if } j=1(\bmod m) \text { and } t=1 .
\end{array}
$$

Separating the rows of the scheme in m-tuples, one can see that our assumption that for every nonnegative integer ν, the ascent sequence has no more than one element between $m \nu$ and $m(\nu+1)$ ensures the existence of \mathcal{F}. If B is the $n_{\psi} \times n_{\psi}$ matrix whose j th column is $\mathcal{F}\left(\mathrm{e}_{j}\right)$, then $B^{m}=J_{0}$ and the proof is complete. $\mathrm{\square}$

Since between two successive even integers there is exactly one odd integer, for $m=2$, Theorem 3.2 yields the main result of [1].

Corollary 3.3. (Theorem 2 in [1]) The matrix $A \in \mathcal{M}_{n}$ has a square root if and only if no two terms of its ascent sequence are the same odd integer.

The ascent sequence of the $k \times k$ nilpotent matrix N_{k} is $1,1, \ldots, 1,0, \ldots$ with its first k terms equal to 1 . Thus, for every integer $m>1$, it has k terms (i.e., the k ones) between 0 and m. Hence, it is verified that there is no matrix $M \in \mathcal{M}_{n}$ such that $M^{m}=N_{k}$ (see also [2]).

Corollary 3.4. Let $d_{1}, d_{2}, d_{3}, \ldots$ be the ascent sequence of a singular complex matrix $A \in \mathcal{M}_{n}$.
(i) If $d_{2}=0$ (i.e., $J_{0}=0$), then for every integer $m>1$, A has an $m t h$ root.
(ii) If $d_{2}>0$, then for every integer $m>d_{1}$, A has no mth roots.

Our methodology is illustrated in the following example.
Example 3.5. Consider the Jordan matrix

$$
J_{0}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \oplus\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \oplus\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

and let $m=3$. The ascent sequence of J_{0} is $3,3,1,0, \ldots$, and if $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{7}\right\}$ is the standard basis of \mathbb{C}^{7}, then the scheme in (3.1) is

$$
\begin{array}{lll}
J_{0}^{2} x_{1}=\mathrm{e}_{1} & J_{0} x_{1}=\mathrm{e}_{2} \quad x_{1}=\mathrm{e}_{3} \\
J_{0} x_{2}=\mathrm{e}_{4} & x_{2}=\mathrm{e}_{5} \\
J_{0} x_{3}=\mathrm{e}_{6} & x_{3}=\mathrm{e}_{7} .
\end{array}
$$

As in the proof of Theorem 3.2, we define the linear transformation \mathcal{F} on \mathbb{C}^{7} by

$$
\begin{gathered}
\mathcal{F}\left(\mathrm{e}_{1}\right)=0, \quad \mathcal{F}\left(\mathrm{e}_{2}\right)=\mathrm{e}_{6}, \quad \mathcal{F}\left(\mathrm{e}_{3}\right)=\mathrm{e}_{7}, \quad \mathcal{F}\left(\mathrm{e}_{4}\right)=\mathrm{e}_{1}, \\
\mathcal{F}\left(\mathrm{e}_{5}\right)=\mathrm{e}_{2}, \quad \mathcal{F}\left(\mathrm{e}_{6}\right)=\mathrm{e}_{4} \quad \text { and } \quad \mathcal{F}\left(\mathrm{e}_{7}\right)=\mathrm{e}_{5} .
\end{gathered}
$$

One can see that the 7×7 matrix

$$
B=\left[\begin{array}{lllllll}
0 & e_{6} & e_{7} & e_{1} & e_{2} & e_{4} & e_{5}
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is a 3 rd root of J_{0}. Finally, observe that for every integer $m>1$ different than 3 , the matrix J_{0} has no m th roots.

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 32-41, April 2002

ELA

On the m th Roots of a Complex Matrix

REFERENCES

[1] G.W. Cross and P. Lancaster. Square roots of complex matrices. Linear and Multilinear Algebra, 1:289-293, 1974.
[2] F.R. Gantmacher. The Theory of Matrices, Vol. I. Chelsea Publishing Company, New York, 1959.
[3] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York, 1982.
[4] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[5] C.R. Johnson, K. Okubo, and R. Reams. Uniqueness of matrix square roots and an application. Linear Algebra and Its Applications, 323:51-60, 2001.
[6] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Orlando, 1985.
[7] A.S. Markus. Introduction to the Spectral Theory of Polynomial Operator Pencils. Amer. Math. Society, Providence, Translations of Math. Monographs, Vol. 71, 1988.

[^0]: *Received by the editors on 19 February 2002. Accepted for publication on 9 April 2002. Handling Editor: Peter Lancaster.
 ${ }^{\dagger}$ Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece (ppsarr@math.ntua.gr).

