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NON-TRIVIAL SOLUTIONS TO CERTAIN MATRIX EQUATIONS∗

AIHUA LI† AND DUANE RANDALL†

Abstract. The existence of non-trivial solutions X to matrix equations of the form
F (X, A1, A2, · · · ,As) = G(X, A1, A2, · · · ,As) over the real numbers is investigated. Here F and G
denote monomials in the (n × n)-matrix X = (xij) of variables together with (n × n)-matrices
A1,A2, · · · ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees
in X. An example with s = 1 is given by F (X,A) = X2AX and G(X, A) = AXA where
deg(F ) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X
exists satisfying the matrix equation F (X,A1, A2, · · · ,As) = G(X, A1, A2, · · · ,As) in (n2 − 1)
components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point
Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations
F (X, A1, A2, · · · ,As) = G(X, A1,A2, · · · ,As) whenever deg(F ) > deg(G) ≥ 1, A1, A2, · · · ,As

are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed.
Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial
solutions.
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1. Matrix equations involving special monomials. Given monomials
F (X,A1,A2, · · · ,As) and G(X,A1,A2, · · · ,As) in the (n × n)-matrix X = (xij)
of variables with n ≥ 2 and with total degrees deg(F ) > deg(G) ≥ 1 in X, we
investigate the existence of non-trivial solutions X to the matrix equation

F (X,A1,A2, · · · ,As) = G(X,A1,A2, · · · ,As).(1.1)

For example, X2AX = AXA is such an equation. We note that in this equation,
F (X,A) = X2AX and G(X,A) = AXA both contain products AX and XA. We
first record a sufficient condition for non-trivial solutions to the equation (1.1).

Proposition 1.1. Suppose that the monomials F (X,A1,A2, · · · ,As) and
G(X, A1, A2, · · · ,As) both contain the product AiX or both contain XAi, for some
i with 1 ≤ i ≤ s. Whenever Ai is a singular matrix, the matrix equation (1.1) admits
non-trivial solutions X.

Proof. Let X be any non-zero (n × n)-matrix whose columns belong to the null
space of Ai whenever both F and G contain AiX . Similarly, let X be any non-zero
matrix whose rows belong to the null space of AT

i in case both F and G contain
XAi.

Our principal result affirms the existence of non-trivial solutions X to matrix
equations F (X,A1,A2, · · · ,As) = G(X,A1,A2, · · · ,As) whenever A1,A2, · · · ,As

belong to the special orthogonal group SO(n) for any integer n ≥ 2. We first construct
explicit non-trivial solutions for such matrix equations with s = 1.
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Proposition 1.2. Every matrix equation F (X,A) = G(X,A) for monomials
F and G with different total odd degrees in X admits a non-trivial solution X of the
form Ap/q whenever A belongs to SO(n) for n ≥ 2.

Proof. We may assume that deg(F ) > deg(G) ≥ 1. We seek a solution X = Ap/q

to the matrix equation F (X,A) · (G(X,A))−1 = In. The classical Spectral Theorem
for SO(n) in [3] affirms that A = C−1BC for matrices B and C in SO(n) where

B consists of blocks of non-trivial rotations R(θi) =
[
cos θi − sin θi

sin θi cos θi

]
along the

diagonal together with an identity submatrix Il. A solutionX commuting with powers
ofA reduces the matrix equation F (X,A)·(G(X,A))−1 = In toXdeg(F )−deg(G) = Ap

for some integer p. Setting q = deg(F )− deg(G), we obtain X = Ap/q = C−1Bp/qC
where Bp/q consists of blocks of rotations R(pθi/q) along the diagonal together with
Il.

We now establish the existence of non-trivial solutions to many matrix equa-
tions via the Lefschetz Fixed Point Theorem. For example, the matrix equation
X2A1A2

2XA3
2A

2
1 = A3

1A2A2
1XA3

2 admits rotation matrices as solutions whenever
A1 and A2 belong to SO(n) for any n ≥ 2.

Theorem 1.3. There is a solution X in SO(n) to any matrix equation
F (X,A1,A2, · · · ,As) = G(X,A1,A2, · · · ,As), i.e., equation (1.1), with
deg(F ) > deg(G) ≥ 1 and n ≥ 2 whenever the (n × n)-matrices Ai belong to SO(n)
for 1 ≤ i ≤ s.

Proof. Solutions X in SO(n) to the matrix equation (1.1) are precisely the fixed
points of the continuous function H : SO(n) −→ SO(n) defined by H(X) = X ·
F (X,A1,A2, · · · ,As) · [G(X,A1,A2, · · · ,As)]−1. The existence of fixed points for
the map H follows from its non-zero Lefschetz number L(H). We affirm that L(H) =
(deg(G)− deg(F ))m where n = 2m or n = 2m+ 1.

Brown in [1, p.49], calculated the Lefschetz number L(ρk) for the kth power
map ρk : G −→ G defined by ρk(g) = gk on any compact connected topological
group G which is an ANR (absolute neighborhood retract). He proved that L(ρk) =
(1 − k)λ where λ denotes the number of generators for the primitively generated
exterior algebra H∗(G ;Q). For G = SO(n), λ = m where n = 2m or n = 2m+1; see
[4, p.956]. It suffices to show that H is homotopic to ρk : SO(n) −→ SO(n) where
k = deg(F )− deg(G) + 1.

For each i with 1 ≤ i ≤ s, let gi : [0, 1] −→ SO(n) denote any path in SO(n)
from Ai = gi(0) to the identity matrix In = gi(1). Replacing each matrix Ai by the
function gi in H : SO(n) −→ SO(n) produces a homotopy Ht : SO(n) −→ SO(n) for
0 ≤ t ≤ 1 with H0 = H and H1 = ρk. Thus L(H) = (1−k)m = (deg(G)−deg(F ))m �=
0 so H has a fixed point.

We now establish the existence of non-trivial solutions X to all matrix equations
of the form (1.1) in any (n2 − 1) components whenever F and G have different odd
degrees in X for any s ≥ 1 and n ≥ 1. For example, given any (n × n)-matrix
A, there is a non-zero matrix X such that X2AX = AXA in at least (n2 − 1)-
components. This is a best possible result, since we shall construct matrices A for
which X2AX = AXA admits only the trivial solution. We use the Borsuk-Ulam
Theorem following the paper of Lam [2] to prove the following.
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Theorem 1.4. Given any monomials F (X,A1,A2, · · · ,As) and G(X,A1,A2,
· · · ,As) in the (n×n)-matrix X = (xij) together with arbitrary matrices A1,A2, · · · ,
As in Mn(R) for n ≥ 2 such that deg(F ) and deg(G) are different odd integers, the
matrix equation (1.1) admits a non-trivial solution X in (n2 − 1) components.

Proof. Set each component of the matrix F (X,A1,A2, · · · ,As) − G(X,A1,A2,
· · · ,As) equal to zero, except for one fixed component. We obtain n2 − 1 polynomial
equations in the n2 variables xij . Now each component of F (X,A1,A2, · · · ,As) and
G(X,A1,A2, · · · ,As) is a homogeneous polynomial whose degree is given by deg(F )
or deg(G) respectively. Consequently, every monomial in the (n2 − 1) polynomial
equations has an odd degree, either deg(F ) or deg(G). Suppose that the system
of n2 − 1 polynomial equations in the n2 variables had no non-zero solution. As
X ranges over the unit sphere Sn2−1 in R

n2
, normalization of the non-zero vectors

F (X,A1,A2, · · · ,As) − G(X,A1,A2, · · · ,As) ∈ R
n2−1 produces a continuous func-

tion P : Sn2−1 −→ Sn2−2. Since deg(F ) and deg(G) are distinct odd integers, P
commutes with the antipodal maps on the spheres. But the classical Borsuk-Ulam
Theorem [5, p.266] affirms that no such function P can exist.

2. The special matrix equation X2AX − AXA = 0. Given any non-zero
(n × n)-matrix A, consider the matrix equation

X2AX−AXA = 0 .(2.1)

In this section we discuss solution types of the equation (2.1). We list a few obvious
facts about solutions.

Lemma 2.1.
1. If X ∈ Mn(R) is a solution to (2.1), then −X is a solution too;
2. If |A| < 0, then (2.1) has no nonsingular solutions.
3. If A = B2 for some B ∈ Mn(R), then X = B is a non-trivial solution.
4. If Am = In and m is odd, then X = A

m+1
2 is a non-trivial solution.

5. If A3 = 0, then X = kA is a solution to (2.1) for all k ∈ R.
6. Suppose P is a nonsingular matrix and B = PAP−1. Then a matrix X satisfies the
equation X2AX−AXA = 0 if and only if Y = PXP−1 satisfies Y2BY−BYB = 0.

By Lemma 2.1(6.), when the matrix A is diagonalizable, the equation (2.1) can
be reduced to the diagonal case. We first characterize all solutions for scalar matrices
A.

Theorem 2.2. Let A = aIn ∈ Mn(R), where n > 1 and a �= 0. Then the
equation (2.1) has non-trivial solutions. Furthermore, the solution set (over the real
numbers) consists of matrices in Mn(R) of the form

X = Q−1




λ1

λ2

. . .
λn


Q,

where Q is a nonsingular matrix with complex entries and λi = 0,
√

a, or −√
a for

i = 1, 2, . . . , n. In particular, nonsingular solutions are those with λ1λ2 · · ·λn not
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equal to zero. In summary,
1. If an > 0 with n > 2, then (2.1) has both singular solutions and nonsingular
solutions;
2. If an < 0 and n > 2, then (2.1) has only singular solutions;
3. In case of a < 0 and n = 2, there are nonsingular solutions, but no non-trivial
singular solutions to (2.1).

Proof. Suppose X is a solution to (2.1). Then

X2AX−AXA = aX3 − a2X = 0 ⇐⇒ X3 = aX.

Every matrixX satisfyingX3 = aX is diagonalizable over the complex numbers. Sup-
pose X is similar to a diagonal matrix D = diag(λi), then X3 = aX ⇐⇒ D3 = aD.
This implies λ2

i = a or λi = 0 for i = 1, 2, . . . , n. Thus all the solutions to (2.1)
are the real matrices similar to these diagonal matrices. Claim 1. is obvious by
choosing appropriate (real) λi’s. For 2., |A| < 0. By Lemma 2.1(2.), equation (2.1)
has no nonsingular solutions. The existence of singular solutions over the real num-

bers is based on the fact that every 2 × 2 diagonal matrix of the form
[

λ 0
0 −λ

]
,

where λ is a non-real complex number, can be realized by a complex nonsingu-

lar matrix Q. Assume λ =
√−a · i, one can check that Q =

[
1 −i
1 i

]
gives

Q−1

[ √−a · i 0
0 −√−a · i

]
Q =

[
0

√−a
−√−a 0

]
∈ M2(R). Since n > 2, we al-

ways can choose at least one diagonal block of D to be
[ √−a · i 0

0 −√−a · i
]
and

extend it to a singular solution by choosing at least one zero diagonal element. In

case of a < 0 and n = 2, nonsingular solutions are similar to
[

0
√−a

−√−a 0

]
. We

show by contradiction that in this case (2.1) has no non-trivial singular solutions.

Assume 0 �= X =
[

x1 x2

x3 x4

]
is a non-trivial solution to (2.1) and |X| = 0. Then X2

= (x1 + x4)X =⇒ (x1 + x4)2X = aX =⇒ a = (x1 + x4)2 ≥ 0, a contradiction.
By Lemma 2.1(6.), if A is diagonalizable, we only need to consider the solvability

of the equation (2.1) for the similar diagonal matrix. Now let us treat diagonal
matrices.

Theorem 2.3. Suppose A is a non-zero diagonal matrix which has at least one
positive entry. Then the equation X2AX−AXA = 0 has non-trivial solutions.

Proof. Let A = diag(λi). Without loss of generality, let λ1 > 0. Then the
diagonal matrix X = diag(αi) will give non-trivial solutions, where α1 =

√
λ1 and for

i > 1, αi = 0 or
√

λi if λi > 0. When λi ≥ 0 for all i, we obtain non-trivial solutions
X = diag(

√
λi).

Corollary 2.4. For n > 1, the equation (2.1) has non-trivial solutions for all
n × n positive definite and all positive semidefinite matrices A.

We end this section with the following proposition.
Proposition 2.5. Suppose A ∈ Mn(R) is similar to a block matrix, i.e., there

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 282-289, October 2002

http://math.technion.ac.il/iic/ela



ELA

286 Aihua Li and Duane Randall

exists a nonsingular matrix P such that

PAP−1 =




A1

A2

. . .
Am


 ,

where each Ai is a square matrix. Suppose Yi satisfies Y2
iAiYi −AiYiAi = 0, for

i = 1, 2, · · · , m. Then the matrix X = P−1BP is a solution to X2AX −AXA = 0,
where B is a block matrix with blocks Bi = Yi or 0. Thus, if at least one of the
solutions Yi’s is not zero, we can extend it to non-trivial solutions for the equation
X2AX = AXA.

Theorem 2.6. Let A be a real n × n matrix with distinct negative eigenvalues.
Then the equation X2AX = AXA admits only the trivial solution.

Proof. Suppose first that X is an invertible solution. Then we have

A−1X2A = XAX−1.

Thus the eigenvalues of X2 are the same as those of A. Since the eigenvalues of A
are negative and distinct, the eigenvalues of X are all pure imaginary and of distinct
modulus. This is impossible.

If X is a singular solution, let v be a null vector of X and observe that 0 =
AXAv = XAv. Thus the null space of X is A-invariant. Then there exists an
invertible matrix B such that

X = B
[
Y 0
C 0

]
B−1 and A = B

[
P 0
D E

]
B−1.

By Lemma 2.1(6.),

[
Y 0
C 0

]2 [
P 0
D E

][
Y 0
C 0

]
=

[
P 0
D E

] [
Y 0
C 0

][
P 0
D E

]
.

This yields Y2PY = PYP and by induction Y = 0. (See Theorem 3.3 for the 2× 2
case.) This means that

[
0 0
C 0

]2

= 0 =
[

0 0
ECP 0

]
,

which gives ECP = 0. Since E and P are invertible, C = 0, so X is the trivial
solution.

3. The special case n = 2. In this section, we focus on the equation (2.1) for
2× 2 matrices. Denote

A =
[

a1 a2

a3 a4

]
and X =

[
x1 x2

x3 x4

]
.
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We first consider the existence of non-trivial solutions to (2.1) when A is an
orthogonal matrix. When A is orthogonal with |A| = 1, the existence of a non-trivial
(orthogonal) solution X = A1/2 is given in Proposition 1.2.

Proposition 3.1. Let A be an orthogonal matrix in M2(R) with |A| = −1. A
non-trivial singular solution to (2.1) is given by X = 1

2

[
1 + a1 a2

a2 1− a1

]
.

Proof. When |A| = −1, A is a symmetric matrix with two distinct eigenval-

ues 1 and −1. Thus A is diagonalizable to the matrix
[
1 0
0 −1

]
. By Lemma

2.1(6.) and Theorem 2.3, (2.1) has a non-trivial solution. A matrix of the form

X = P
[
1 0
0 0

]
P−1 is a non-trivial singular solution to (2.1) when P satisfies

P−1AP =
[
1 0
0 −1

]
. The solution X = 1

2

[
1 + a1 a2

a2 1− a1

]
is obtained by find-

ing such a matrix P made of two linearly independent eigenvectors of A via linear
algebra (refer to the proof of Theorem 2.2).

Now we discuss more general cases. In the next theorem, we show constructively
that the equation (2.1) has non-trivial solutions for a large group of two by two
matrices A (over the real numbers).

Theorem 3.2. Consider 0 �= A ∈ M2(R). The equation (2.1) has non-trivial
solutions in the following cases:
1. A has two distinct real eigenvalues, not both negative.
2. A is a scalar matrix.
3. A is a non-scalar matrix with a repeated non-negative eigenvalue.

Proof. By Lemma 2.1 and Theorem 2.3, the first is true. The second claim is
from Theorem 2.2. For the third, without loss of generality, we may assume

A =
[

a1 0
a3 a1

]
,

where 0 ≤ a1 and a3 �= 0. If a1 = 0, the matrix X =
[

0 0
x3 0

]
gives a non-trivial

solution to (2.1) for any real number x3 �= 0. If a1 �= 0, the lower triangular matrix

X =
[ √

a1 0
a3/(2

√
a1)

√
a1

]
gives a non-trivial solution to (2.1).

We note that by Proposition 2.5, we can extend solutions to (2.1) for the 2 × 2
case to solutions for (n × n)-matrices. Finally, we construct non-zero matrices A for
which X2AX = AXA admits only the trivial solution.

Theorem 3.3. The equation X2AX = AXA admits only the trivial solution for
any A ∈ M2(R) having two distinct negative eigenvalues or having a single negative
eigenvalue of geometric multiplicity 1.

Proof. For the first case, it is sufficient to assume A =
[ −λ1 0

0 −λ2

]
, where

λ1 > λ2 > 0. Suppose X =
[

x1 x2

x3 x4

]
is a solution. Then |X| = 0 or ±√

λ1λ2 since
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A is nonsingular. By comparing the non-diagonal entries of X2AX and AXA, we
obtain the following two equations{

x2(λ1x
2
1 + λ1x2x3 + λ2x1x4 + λ2x

2
4 + λ1λ2) = 0

x3(λ1x
2
1 + λ1x1x4 + λ2x2x3 + λ2x

2
4 + λ1λ2) = 0.(3.1)

First we assume 0 �= |X| = √
λ1λ2. Then x2x3 = x1x4 −

√
λ1λ2. Thus (3.1) becomes{

x2(λ1x
2
1 + (λ1 + λ2)x1x4 + λ2x

2
4 + λ1λ2 − λ1

√
λ1λ2) = 0

x3(λ1x
2
1 + (λ1 + λ2)x1x4 + λ2x

2
4 + λ1λ2 − λ2

√
λ1λ2) = 0.

(3.2)

If x2x3 �= 0, then equations in (3.2) imply λ1

√
λ1λ2 = λ2

√
λ1λ2 =⇒ λ1 = λ2, a

contradiction. If x2x3 = 0, we compare the (1,1) entries of X2AX and AXA to
obtain −λ1x

3
1 = λ2

1x1 =⇒ x1 = 0 =⇒ |X| = 0, a contradiction again. Therefore
|X| �= √

λ1λ2. The same argument shows that |X| �= −√
λ1λ2.

Now consider the case |X| = 0, i.e., x1x4 = x2x3. By matrix multiplication, we
have

X2AX = −(x1 + x4)(λ1x1 + λ2x4)
[

x1 x2

x3 x4

]
=

[
λ2

1x1 λ1λ2x2

λ1λ2x3 λ2
2x4

]
= AXA.

If x2 �= 0 or x3 �= 0, then (x1 + x4)(λ1x1 + λ2x4) = −λ1λ2 by comparing the non-
diagonal entries. Apply this to the diagonal entries, we obtain λ1λ2x1 = −λ2

1x1 and
λ1λ2x4 = −λ2

2x4 =⇒ x1 = x4 = 0. Thus X2AX = 0 =⇒ AXA = 0 =⇒ X = 0,
since A is invertible. This gives only a trivial solution to (2.1). At last, consider
the case of x2 = 0 = x3. Since x1x4 = x2x3, x1 or x4 = 0. If x1 = 0, compare
the (2,2)-entry of X2AX and AXA, we have λ2x

3
4 = −λ2

2x4 =⇒ x4 = 0. Similarly,
x4 = 0 =⇒ x1 = 0. Therefore x1 = x2 = x3 = x4 = 0 and X is a trivial solution.

Now assume A has a single negative eigenvalue of geometric multiplicity 1. Let

A =
[

a1 0
a3 a1

]
where a1 < 0 and a3 �= 0. Assume 0 �=

[
x1 x2

x3 x4

]
is a solution

to (2.1). We first claim that x2 �= 0. If not, the diagonal entries of X2AX −AXA
are a1x1(x2

1 − a1) and a1x4(x2
4 − a1). Since a1 is negative, it forces x1 = x4 = 0 and

then x3 = 0. Now assume X is a singular solution. Then the second row of X is k
times the first row for some real number k �= 0. By equating the second row minus k
times the first row of both X2AX and AXA, we obtain a contradiction. When X is a
nonsingular solution, |X| = a1 or −a1. Since x2 �= 0, x3 = x1x4±a1

x2
. Then by equating

the components of X2AX and AXA, we obtain the following two equations:{
(x1 + x4)x2(a1x1 ± a3x2 + a1x4) = 0

(x1 + x4)(a1x1x4 ± a3x2x4 ± a2
1 + a1x

2
4) = 0.

This implies x1 + x4 = 0. Then the (1, 1)-component of X2AX −AXA is ±a1x2a3

which can not be zero, a contradiction.
In conclusion, the equation (2.1) has no non-trivial solutions.
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