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CONSTRUCTIONS OF TRACE ZERO SYMMETRIC STOCHASTIC
MATRICES FOR THE INVERSE EIGENVALUE PROBLEM∗

ROBERT REAMS†

Abstract. In the special case of where the spectrum σ = {λ1, λ2, λ3, 0, 0, . . . , 0} has at most
three nonzero eigenvalues λ1, λ2, λ3 with λ1 ≥ 0 ≥ λ2 ≥ λ3, and λ1 + λ2 + λ3 = 0, the inverse
eigenvalue problem for symmetric stochastic n × n matrices is solved. Constructions are provided
for the appropriate matrices where they are readily available. It is shown that when n is odd it is
not possible to realize the spectrum σ with an n × n symmetric stochastic matrix when λ3 �= 0 and

3
2n−3

> λ2
λ3

≥ 0, and it is shown that this bound is best possible.
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1. Introduction. Let e1, . . . , en denote the standard basis in Rn, so ei denotes
the vector with a 1 in the ith position and zeroes elsewhere. We will denote by e
the vector of all ones, i.e. e = [1, 1, . . . , 1]T ∈ Rn. A matrix A ∈ Rn×n is said to
be stochastic when all of its entries are nonnegative and all its row sums are equal
to 1, i.e. A has right eigenvector e corresponding to the eigenvalue 1. We will be
concerned with symmetric stochastic matrices, so that these matrices are in fact
doubly stochastic. Also, the eigenvalues will necessarily be real. If A ∈ Rn×n is
nonnegative, has eigenvalue λ1 > 0 corresponding to the right eigenvector e then 1

λ1
A

is stochastic, and for convenience we will state our results in the form, for example,
of a matrix A having eigenvector e corresponding to 1 + ε, where the spectrum σ =
{1 + ε,−1,−ε, 0, 0, . . . , 0}, with 0 ≤ ε ≤ 1. We will say that σ = {λ1, . . . , λn} ⊂ R

is realized as the spectrum of a matrix A in the event that the n × n matrix A has
eigenvalues λ1, . . . , λn.

The nonnegative inverse eigenvalue problem is to find necessary and sufficient
conditions that the elements of the set σ = {λ1, . . . , λn} ⊂ C are the eigenvalues of a
matrix with nonnegative entries. This problem is currently unsolved except in special
cases [1], [7], [8], [9], [10]. The restriction of this problem to symmetric nonnegative
matrices for which the eigenvalues λ1, . . . , λn satisfy λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn is
solved in [3], where it is shown that the only necessary and sufficient condition is
that

∑n
i=1 λi ≥ 0. Distance matrices are necessarily symmetric, nonnegative, have

trace zero, and must have λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn, although these are not sufficient
conditions to be a distance matrix. We conjectured in [6], after solving numerous
special cases including n = 2, 3, 4, 5, 6, that the only necessary and sufficient conditions
for the existence of a distance matrix with a given σ is that λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn

and
∑n

i=1 λi = 0. Distance matrices with eigenvector e were previously studied in [5],
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although not in the context of these matrices eigenvalues. Bounds on the eigenvalues
of symmetric stochastic matrices are given in [2] and [4], although they do not provide
a restriction on the eigenvalues for the matrices under consideration here.

In Section 2 we provide an explicit construction of an n×n symmetric stochastic
matrix which realizes the spectrum {2,−1,−1, 0, 0, . . . , 0}, followed by showing that it
is not possible to realize the spectrum {1,−1, 0, 0, . . . , 0} with a symmetric stochastic
matrix when n is odd, although it is possible to realize this spectrum when n is even.
In Section 3 we provide explicit constructions of symmetric stochastic matrices to
realize {1 + ε,−1,−ε, 0, 0, . . . , 0}, for 1 ≥ ε ≥ 0, when n is even. We then show
that it is not possible to realize this spectrum with a symmetric stochastic matrix
when 3

2n−3 > ε ≥ 0, and n is odd. Although we can realize this spectrum with a
symmetric stochastic matrix when 1 ≥ ε ≥ 3

2n−3 , and n is odd. In the latter case we
do not provide an explicit construction, instead making use of the Intermediate Value
Theorem in several variables.

2. Freedom and restrictions on spectra. Lemma 2.1 will be used to establish
that the matrix under consideration is nonnegative.

Lemma 2.1. Let A = (aij) ∈ Rn×n be a symmetric matrix with eigenvalues
λ1, . . . , λn which satisfy λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn. Suppose that A has eigenvector e
corresponding to λ1, and that A has all diagonal entries equal to zero. Then A is a
nonnegative matrix.

Proof. Write A = λ1
eeT

n + λ2u2u
T
2 + · · · + λnunuT

n , where u2, . . . , un are unit
eigenvectors corresponding to λ2, . . . , λn, respectively. Then −2aij = (ei−ej)T A(ei−
ej) = λ2((ei − ej)T u2)2 + · · ·+ λn((ei − ej)T un)2 ≤ 0, for all i, j, 1 ≤ i, j ≤ n.

Our next two theorems give some foretaste of what is and isn’t possible with
the inverse eigenvalue problem for symmetric nonnegative matrices. Note first that a
3 × 3 symmetric nonnegative matrix with eigenvector e and of trace zero must be a
nonnegative scalar multiple of A = eeT − I, which has spectrum σ = {2,−1,−1}.

Theorem 2.2. Let σ = {2,−1,−1, 0, 0, . . . , 0}. Then σ can be realized as the
spectrum of a symmetric nonnegative matrix A ∈ Rn×n with eigenvector e correspond-
ing to 2, for n ≥ 3.

Proof. Let u = [u1, . . . , un]T , v = [v1, . . . , vn]T ∈ Rn be given by uj =
√

2
ncos θj ,

vj =
√

2
n sin θj , where θj = 2π

n j, for 1 ≤ j ≤ n. Then A = 2 eeT
n − uuT − vvT is

symmetric and has zero diagonal entries by construction. Since the roots of xn − 1
are e

2πi
n j , 1 ≤ j ≤ n, then (coefficient of xn−1) = 0 =

∑n
j=1 −e

2πi
n j and (coefficient

of xn−2) = 0 =
∑n

j,k=1,j �=k e
2πi
n je

2πi
n k = (

∑n
j=1 e

2πi
n j)2 − ∑n

j=1 e
2πi
n 2j . It follows that∑n

j=1 cos θj =
∑n

j=1 sin θj =
∑n

j=1 sin 2θj = 0, which tells us that uT e = vT e =
uT v = 0, respectively. It also follows that

∑n
j=1 cos 2θj = 0, so that

∑n
j=1 cos2 θj −∑n

j=1 sin2 θj = 0. We also know that
∑n

j=1 cos2 θj +
∑n

j=1 sin2 θj = n, so we can
conclude that

∑n
j=1 cos

2 θj =
∑n

j=1 sin2 θj = n
2 . This tells us that u and v are unit

vectors. Thus A has spectrum σ and is nonnegative from Lemma 2.1.
Theorem 2.3. Let λ1 > 0 and σ = {λ1,−λ1, 0, . . . , 0}. Then σ cannot be

realized as the spectrum of an n × n symmetric nonnegative matrix with eigenvector
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e corresponding to λ1, when n is odd.
Proof. Suppose A is a matrix of the given form that realizes σ. Write A =

λ1
eeT

n − λ1uuT , where u = [u1, . . . , un]T ∈ Rn, ||u|| = 1 and uT e = 0. A has
trace zero and is nonnegative by hypothesis so all diagonal entries are zero, and thus
0 = λ1

n − λ1u
2
i , for 1 ≤ i ≤ n. But then ui = ±1√

n
and 0 =

∑n
i=1 ui =

∑n
i=1

±1√
n
, which

is not possible when n is odd.
Remark 2.4. The same σ of Theorem 2.3 can be realized by an n×n symmetric

nonnegative matrix with eigenvector e corresponding to λ1 when n is even, by taking
in the proof the unit vector u = 1√

n
[1, 1, . . . , 1,−1,−1, . . . ,−1]T ∈ Rn.

3. At most three nonzero eigenvalues. The idea in Remark 2.4 can be ex-
tended to the case where n is a multiple of 4 for the case of at most three nonzero
eigenvalues.

Theorem 3.1. Let σ = {1 + ε,−1,−ε, 0, 0, . . . , 0}, where 1 ≥ ε ≥ 0. Then
σ can be realized by a symmetric nonnegative matrix A ∈ R

n×n with eigenvector e
corresponding to 1 + ε, when n = 4m for some m.

Proof. Let u, v ∈ Rn be given by
u = 1√

n
[1, 1, . . . , 1, 1, 1, . . . , 1,−1,−1, . . . ,−1,−1,−1, . . . ,−1]T ,

v = 1√
n
[1, 1, . . . , 1,−1,−1, . . . ,−1, 1, 1, . . . , 1,−1,−1, . . . ,−1]T .

Then e√
n
, u and v are orthonormal. Let A = (1+ε)

n eeT − uuT − εvvT , and note
that all the diagonal entries of A are zero.

However, the way we deal with the remaining cases for n even is somewhat more
complicated.

Theorem 3.2. Let σ = {1 + ε,−1,−ε, 0, 0, . . . , 0}, where 1 ≥ ε ≥ 0. Then
σ can be realized by a symmetric nonnegative matrix A ∈ Rn×n with eigenvector e
corresponding to 1 + ε, when n = 4m+ 2 for some m.

Proof. Let u = [u1, . . . , un]T , v = [v1, . . . , vn]T ∈ Rn, and A = (1 + ε) eeT

n −
uuT − εvvT . We will require that 0 = 1+ε

n − u2
i − εv2

i , for 1 ≤ i ≤ n, so that A

has all zero diagonal entries. Let ui =
√

1+ε
n cos θi and vi =

√
1+ε
nε sin θi, where

the θi’s are chosen below. Our θi’s must satisfy
∑n

i=1 cos θi =
∑n

i=1 sin θi =∑n
i=1 cos θi sin θi = 0. So that u and v are unit vectors we must have

∑n
i=1 cos2 θi =

n
1+ε and

∑n
i=1 sin2 θi = nε

1+ε , which will be achieved if
∑n

i=1 cos2 θi−
∑n

i=1 sin2 θi =
n(1−ε)

1+ε , and
∑n

i=1 cos2 θi +
∑n

i=1 sin2 θi = n. So for any given ε ∈ [0, 1] we also

require for our choice of θi’s that
∑n

i=1 cos 2θi =
n(1−ε)

1+ε .
Let 0 ≤ δ < 2π

n , and choose the angles θi, 1 ≤ i ≤ n, around the origin in the
plane.

Let θi for 1 ≤ i ≤ m be, respectively, the 1st quadrant angles
2π
n − δ, 2( 2π

n − δ), . . . , (m − 1)( 2π
n − δ), m( 2π

n − δ).
Let θi for m+ 1 ≤ i ≤ 2m be, respectively, the 2nd quadrant angles
(m+ 1)2π

n +mδ, (m + 2)2π
n + (m − 1)δ, . . . , (2m − 1) 2π

n + 2δ, 2m 2π
n + δ.

Let θ2m+1 = π.
Let θi for 2m+ 2 ≤ i ≤ 3m+ 1 be, respectively, the 3rd quadrant angles

−2m 2π
n − δ, −(2m− 1) 2π

n − 2δ, . . . ,−(m+ 2) 2π
n − (m − 1)δ,−(m+ 1) 2π

n − mδ.
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Let θi for 3m+ 2 ≤ i ≤ 4m+ 1 be, respectively, the 4th quadrant angles
−m( 2π

n − δ), −(m − 1)( 2π
n − δ), . . . ,−2( 2π

n − δ),−( 2π
n − δ).

Let θ4m+2 = 0.
For each θi there is a θi + π in the above list, by pairing off 1st quadrant angles

with appropriate 3rd quadrant angles, and pairing 2nd quadrant angles with appro-
priate 4th quadrant angles. Therefore since cos (θi + π) = −cos θi we conclude that∑n

i=1 cos θi = 0.
For each θi �= 0 and θi �= π in the above list we can pair off any θi with a

corresponding −θi and conclude that
∑n

i=1 sin θi = 0.
Similarly,

∑n
i=1 sin 2θi = 0.

Pairing off each θi with a θi + π in the same way as before, and since cos 2θi =
cos (2θi + 2π), we must have

n∑
i=1

cos 2θi = 2 +
∑

1st,2nd,3rd,4th quadrant

cos 2θi = 2 + 2
∑

1st,4th quadrant

cos 2θi.

Because we can pair off each θi in the 1st quadrant with each −θi in the 4th quadrant∑n
i=1 cos 2θi = 2 + 4

∑
1st quadrant cos 2θi. Next using the trigonometric formula

n∑
j=0

cos jα =
sin (n+1

2 α) cos (n
2 α)

sin α
2

(found in [11], for example), where α = 2(2π
n − δ) and some simplification we obtain

that
n∑

i=1

cos 2θi = 2
sin ((2m+ 1)δ)
sin ( π

2m+1 − δ)
. Let f(δ) = 2 sin ((2m+1)δ)

sin ( π
2m+1−δ) , then f(0) = 0 and

lim
δ→ 2π

n

f(δ) = n, and notice that f is continuous on the interval [0, 2π
n ). Also, since

0 ≤ ε ≤ 1 we have that 0 ≤ n(1−ε)
1+ε ≤ n, but then by the Intermediate Value Theorem

for each ε ∈ (0, 1] there is a δ ∈ [0, 2π
n ) such that f(δ) = n(1−ε)

1+ε . The case ε = 0 and
δ = 2π

n is covered by the remark after Theorem 2.3.
In order to deal with the case where n is odd we will improve on Theorem 2.3.
Theorem 3.3. Let σ = {1 + ε,−1,−ε, 0, 0, . . . , 0}, where 3

2n−3 > ε ≥ 0, and
n ≥ 3. Then σ cannot be realized by a symmetric nonnegative matrix A ∈ Rn×n with
eigenvector e corresponding to 1 + ε, when n = 2m+ 1 for some m.

Proof. σ is realizable when ε = 1 from Theorem 2.2. We wish to determine
the minimum value of ε for which it is possible to construct a matrix of the desired
form. Using the same notation as in the proof of Theorem 3.2 we wish to determine
the minimum value of ε as a function of θ1, . . . , θn subject to the three constraints∑n

i=1 cos θi =
∑n

i=1 sin θi = 0 and
∑n

i=1 cos θi sin θi = 0 (we know from Theorem
2.3 that ε > 0). Observe that finding the minimum ε is equivalent to finding the
maximum value of the function n

1+ε = F (θ1, . . . , θn) =
∑n

i=1 cos
2 θi subject to the

three constraints. For the moment let us determine the maximum value of F subject
to the one constraint

∑n
i=1 cos θi = 0. Let λ denote the Lagrange multiplier so that

−2 cos θisin θi −λ sin θi = 0, i.e. sin θi(2 cos θi +λ) = 0, for each i, 1 ≤ i ≤ n. Then
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for each i we have sin θi = 0 or else cos θi = −λ/2. We cannot have all θi’s equal
to 0 or π, since then we would not have

∑n
i=1 cos θi = 0, because n is odd. Suppose

now that k of the cos θi’s are equal, but not equal to ±1, then k cos θi = ±1± 1 · · · .
Then in order to maximize F we must have as many ±1’s as possible, thus we must
have k = 2 with cos θp = cos θq (say) and the remaining θi’s all either 0 or π. Then
2 cos θi = 1 or − 1, and there are two possibilities:
Case 1: cos θp = cos θq = 1

2 with m − 1 of the remaining cos θi’s equal to 1 and the
other m of the cos θi’s equal to −1.
Case 2: cos θp = cos θq = − 1

2 with m − 1 of the remaining cos θi’s equal to −1 and
the other m of the cos θi’s equal to 1.

In either case the maximum value of F is 1
2 + 2m − 1 = n − 3

2 , in which case
ε = 3

2n−3 .
Notice now that this maximum value for F can be just as easily achieved when

θp = −θq and that then
∑n

i=1 sin θi = 0 and
∑n

i=1 cos θi sin θi = 0. So ε has in
effect been minimized subject to all three constraints.

Corollary 3.4. Let σ = {1 + ε,−1,−ε, 0, . . . , 0}, where 1 ≥ ε ≥ 3
2n−3 , and

n ≥ 3. Then σ can realized as the spectrum of a symmetric nonnegative matrix
A ∈ Rn×n with eigenvector e corresponding to 1 + ε, when n is odd.

Proof. Let F (θ1, . . . , θn) =
∑n

j=1 cos
2 θj. Then

F (
2π
n
1,
2π
n
2, . . . ,

2π
n
(n − 1),

2π
n

n) =
n

2
,

and

F (
2π
3

,−2π
3

, 0, 0, . . . , 0, π, π, . . . , π) = n − 3
2
.

Moreover, F is continuous as a function of cos θ1, . . . , cos θn, particularly on the
following intervals for the cos θi’s:

For n = 4k + 3 let the cos θi’s satisfy cos2π(k+1)
n ≤ cos θk+1 ≤ cos2π

3 and
cos2π(3k+3)

n ≤ cos θ3k+3 ≤ cos2π
3 . Also, let cos

2π
n j ≤ cos θj ≤ cos 0 for 1 ≤ j ≤ k and

3k + 4 ≤ j ≤ 4k + 3, and let cos π ≤ cos θj ≤ cos2π
n j for k + 2 ≤ j ≤ 3k + 2 except

that cos θ2k+2 = cos π.
For n = 4k + 1 let the cos θi’s satisfy cos2π(k+1)

n ≤ cos θk+1 ≤ cos2π
3 and

cos2π(3k+2)
n ≤ cos θ3k+2 ≤ cos2π

3 . Also, let cos
2π
n j ≤ cos θj ≤ cos 0 for 1 ≤ j ≤ k and

3k + 3 ≤ j ≤ 4k + 1, and let cos π ≤ cos θj ≤ cos2π
n j for k + 2 ≤ j ≤ 3k + 1 except

that cos θ1 = cos 0.
For each ε such that 1 ≥ ε ≥ 3

2n−3 we have n
2 ≤ n

1+ε ≤ n − 3
2 , then from the

Intermediate Value Theorem for real valued functions of several variables it follows
that for each ε ∈ [ 3

2n−3 , 1] there is a (θ1, . . . , θn) such that F (θ1, . . . , θn) = n
1+ε .

The author does not see a natural extension of the above methods to deal with
the case of at most four nonzero eigenvalues.
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