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ESTIMATION OF THE MAXIMUM MULTIPLICITY OF AN
EIGENVALUE IN TERMS OF THE VERTEX DEGREES OF THE

GRAPH OF A MATRIX ∗

CHARLES R. JOHNSON † AND CARLOS M. SAIAGO ‡

Abstract. The maximum multiplicity among eigenvalues of matrices with a given graph cannot
generally be expressed in terms of the degrees of the vertices (even when the graph is a tree). Given
are best possible lower and upper bounds, and characterization of the cases of equality in these
bounds. A by-product is a sequential algorithm to calculate the exact maximum multiplicity by
simple counting.
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1. Introduction. Throughout let T be a tree on n vertices, whose degrees are
d1 ≥ d2 ≥ · · · ≥ dk ≥ 3 > dk+1 ≥ · · · ≥ dn, and let S(T ) be the set of all real
symmetric matrices whose graph is T . The diagonal entries of matrices in S(T )
are unconstrained by T . For any n-by-n matrix A, mA(λ) denotes the (algebraic)
multiplicity of λ as an eigenvalue of A, and m(A) = maxλ∈C mA(λ), the maximum
multiplicity of an eigenvalue of A. Then, we let m(T ) = maxA∈S(T ) m(A), the maxi-
mum multiplicity of an eigenvalue among matrices whose graph is T .

It was shown in [2] that m(T ) equals the path cover number, p(T ), of T , the
smallest number of vertex disjoint paths of T that cover all the vertices of T . It was
also shown in [2] that m(T ) = max[p − q] over all ways in which q vertices may be
removed from T so as to leave p paths (i.e. the subgraph of T induced by the other n−q
vertices consists of p paths, an isolated vertex counting as a path). However, neither
of these formulae for m(T ), though polynomially computable from T , is expressible
in terms of overt parameters of T , such as the vertex degrees; in fact, there can be
no formula for m(T ) strictly in terms of the vertex degrees. There are trees with the
same degree sequence but different path cover number. For example, the following
trees have degree sequence 3, 3, 2, 1, 1, 1, 1, but, m(T1) = 3 and m(T2) = 2.
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‡Dep. de Matemática, Fac. de Ciências e Tecnologia da Univ. Nova de Lisboa, 2829-516 Quinta
da Torre, Portugal (cls@fct.unl.pt). Research supported in part by Fundação para a Ciência e a
Tecnologia, Portugal, through the research grant SFRH/BD/899/2000. Part of the research was
done while visiting the College of William and Mary.

27

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 27-31, March 2002

http://math.technion.ac.il/iic/ela



ELA

28 C.R. Johnson and C.M. Saiago

Our purpose here is to give simple, tight bounds for m(T ) in terms of vertex
degrees only, and then to indicate for which trees these bounds are exact. For this
purpose, let H = H(T ) be the subgraph of T induced by the k vertices of degree at
least 3 in T . If H consists of a collection of disjoint vertices (possibly empty), we call
T segregated ; in general e = e(H) is the number of edges present in H , so that e = 0
is equivalent to T being segregated.

2. Main results. Our principal result is Theorem 2.1 whose proof consists of
the pendant lemmas. Given a graph G we denote by V(G) the vertex set of G and by
degG(v) the degree of a vertex v in G.

Theorem 2.1. Let T be a tree. Then,

1 +
k∑

i=1

(di − 2)− e ≤ m(T ) ≤ 1 +
k∑

i=1

(di − 2).

Equality occurs in the right hand inequality if and only if T is segregated. Equality
occurs in the left hand inequality if and only if V(H) = ∅ or degT (v) ≥ degH(v) + 2
for all vertices v of H.

As usual, given a graph G with vertex set V(G) and U ⊂ V(G), G − U denotes
the subgraph of G induced by the vertex set V(G) \ U . Denote by p

U
the number of

components of G−U and by qU the cardinality of U . If U = {u} and G is a tree, the
components of G − U (or G − u) are called branches of G at u.

As we will see, the lower bound presented in Theorem 2.1 is pV(H) − qV(H) .
Lemma 2.2. Let F be a forest with c components (trees). Let F ′ be any subtree

of F with vertex set V(F ′) = {u1, . . . , uq}, q ≥ 1. Then, F − V(F ′) has

c +
q∑

i=1

[degF (ui) − degF ′(ui)] − 1

components.
Proof. For each ui ∈ V(F ′), define δ(ui) = degF (ui) − degF ′(ui), the number of

vertices in F , but not in F ′, that are adjacent to ui. Since F is acyclic and F ′ is a
subtree of one component F ′′ of F ,

∑q
i=1 δ(ui) counts the (distinct) branches of F ′′

that are left as components when V(F ′) is removed from F . Since F ′′ was a component
of F , there are then

∑q
i=1 δ(ui)− 1 additional components, c +

∑q
i=1 δ(ui)− 1 in all,

after the removal of V(F ′) from F .
Lemma 2.3. Let F be a forest with c components. Consider a nonempty subset

U of V(F ) and F ′ the subgraph of F induced by U . Assume that U = {u1, . . . , uq}
and F ′ has e(F ′) edges. Then, the forest F − U has

p
U

= c +
q∑

i=1

[degF (ui) − 1] − e(F ′)

components.
Proof. Assume that F ′ has s components (and hence q − s edges), and that

{u′
1, . . . , u

′
k} are the vertices of a component F ′′ of F ′. Then by Lemma 2.2, the
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removal of F ′′ from F will increase the number of components by[∑k
i=1[degF (u′

i) − degF ′′(u′
i)] − 1]

]
. Thus the removal of all s components of F ′ from

F will increase the number of components to

p
U

= c +
q∑

i=1

[degF (ui) − degF ′(ui)] − s

= c +
q∑

i=1

degF (ui) −
q∑

i=1

degF ′(ui) − s

= c +
q∑

i=1

[degF (ui) − 1] + q − 2e(F ′) − s.

Since e(F ′) = q − s the result follows.
By Lemma 2.3, we have pV(H) = 1 +

∑k
i=1(di − 1)− e. Since qV(H) = k it follows

that

pV(H) − qV(H) = 1 +
k∑

i=1

(di − 2) − e.(2.1)

Lemma 2.4. Let F be a forest with c components. Let p be the number of
components when q vertices each of degree at most 2 are removed from F . Then,
p − q ≤ c. Equality occurs if and only if all the vertices removed from F have degree
2 and no two such vertices are adjacent.

Proof. By Lemma 2.3, the removal of q vertices u1, . . . , uq from F increase the
number of components by

∑q
i=1[degF (ui) − 1] − e(F ′) where F ′ is the subgraph of

F induced by u1, . . . , uq. Since all removed vertices from F have degree at most 2,
the number of remaining components is p ≤ c + q, with equality if and only if all the
vertices removed from F have degree 2 and no two such vertices are adjacent.

Given a tree T , let M be a subset of V(T ) such that p
M

− q
M

= max[p
I
− q

I
]

with I ⊆ V(T ). From Lemma 2.4, there is no vertex of degree 1 in M . Lemma 2.4
also implies that we can assume M contains no vertices of degree 2. In other words,
there is a subset M of V(H) such that pM − qM = max[pI − qI ] with I ⊆ V(T ) i.e.,
p

M
− q

M
= m(T ).

Lemma 2.5. Let T be a tree. Suppose that V(H) = ∅ and degT (v)− degH(v) ≥ 2
for all vertices v of H. Then, pI − qI ≤ pV(H) − qV(H) for all I ⊆ V(H).

Proof. Suppose to the contrary, i.e., that there exist I ⊂ V(H) such that p
I
−q

I
>

pV(H) − qV(H) . Then, there exist I ′ and I ′′ such that I ⊆ I ′ ⊂ I ′′ ⊆ V(H), with
I ′′ = I ′ ∪ {v} and v ∈ I ′, such that p

I′ − q
I′ > p

I
′′ − q

I
′′ . Since q

I′ = q
I′′ − 1,

p
I′ − q

I′ > p
I
′′ − q

I
′′ implies that p

I′ ≥ p
I
′′ . But, since T − I ′ has p

I′ components
and v is a vertex of one component T ′ of T − I ′ with degT ′(v) ≥ 2 (remember
that δ(v) ≥ 2), by Lemma 2.2 the removal of v from T ′ gives at least 1 additional
components. Then, p

I′′ ≥ p
I
′ + 1 gives a contradiction.

Lemma 2.6. Let T be a tree. Then, m(T ) ≥ 1 +
∑k

i=1(di − 2)− e, with equality
if and only if V(H) = ∅ or degT (v) ≥ degH(v) + 2 for all vertices v of H.
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Proof. First, observe that if V(H) = ∅ i.e., T is a path, then k = 0, e = 0
and 1 +

∑k
i=1(di − 2) − e = 1, which is the path cover number when T is a path.

Suppose now that V(H) = ∅ and assume that degT (v) ≥ degH(v) + 2 for all vertices
v of H . Consider a vertex set M such that p

M
− q

M
= m(T ) with M ⊆ V(H).

Since M ⊆ V(H) and degT (v) ≥ degH(v) + 2 for all vertices v of H then, from
Lemma 2.5, p

M
− q

M
≤ pV(H) − qV(H) . Then, m(T ) = pV(H) − qV(H) and, by (2.1),

pV(H) − qV(H) = 1+
∑k

i=1(di − 2)− e. Therefore, m(T ) = 1+
∑k

i=1(di − 2)− e. Thus,
if degT (v) ≥ degH(v) + 2 for all vertices v of H , then equality occurs.

It suffices to prove that if there is a vertex v in V(H) such that δ(v) = degT (v)−
degH(v) ≤ 1, then m(T ) > 1 +

∑k
i=1(di − 2) − e. Consider the set H∗ = V(H) \ {v}

of vertices of T . Then, T − H∗ has p
H∗ components and q

H∗ = qV(H) − 1. Since
v ∈ H∗, v is a vertex of one component T ′ of T − H∗ and, the removal of v from
T ′ gives δ(v) − 1 “additional” components. Then, pV(H) = p

H∗ + δ(v) − 1 and since
δ(v) ≤ 1, p

H∗ ≥ pV(H) . Thus, p
H∗ − q

H∗ ≥ pV(H) − q
H∗ and since q

H∗ = qV(H) − 1,
we have p

H∗ − q
H∗ > pV(H) − qV(H) . Then, m(T ) > pV(H) − qV(H) and by (2.1),

pV(H) − qV(H) = 1 +
∑k

i=1(di − 2)− e. Therefore, m(T ) > 1 +
∑k

i=1(di − 2)− e.

Lemma 2.7. Let T be a tree. Then m(T ) ≤ 1 +
∑k

i=1(di − 2), with equality
occurring if and only if T is segregated.

Proof. If V(H) = ∅ then T is a path, and hence a segregated tree. In this case,
k = 0 and, 1 +

∑k
i=1(di − 2) = 1, which is the path cover number when T is a path.

Suppose now that V(H) = ∅. If T is segregated, for all vertices v of H , degH(v) = 0
and degT (v) ≥ 3 > degH(v) + 2. From Lemma 2.6, since e = 0 it follows that
m(T ) = 1 +

∑k
i=1(di − 2). Thus, if T is segregated, equality occurs.

It suffices to prove that if T is a tree that is not segregated then, m(T ) < 1 +∑k
i=1(di − 2). Consider a vertex set M such that p

M
− q

M
= m(T ) and M ⊆ V(H).

From Lemma 2.3, p
M

− q
M

= 1 +
∑

v∈M [degT (v) − 2] − e(M) where e(M) is the
number of edges of the subgraph of T induced by the q

M
vertices in M . If M =

V(H), since T is not segregated, there are, at least, two adjacent vertices of T in
M which implies e(M) > 0. Therefore p

M
− q

M
< 1 +

∑
v∈V(H)[degT (v) − 2] i.e.,

p
M

− q
M

< 1 +
∑k

i=1(di − 2). If M ⊂ V(H), e(M) ≥ 0 and then, p
M

− q
M

≤
1 +

∑
v∈M [degT (v) − 2]. Since M ⊂ V(H) and degT (v) ≥ 3 for all v ∈ V(H),∑

v∈M [degT (v)− 2] <
∑

v∈V(H)[degT (v)− 2], so that p
M
− q

M
< 1 +

∑k
i=1(di − 2).

The proof of Theorem 2.1 is now complete.

3. An algorithm. We close by giving a simple algorithm to compute m(T ) by
computing the path cover number of T .

Lemma 3.1. Let T be a tree and let M be a subset of V(H) such that p
M
− q

M
=

m(T ). Then, there is no vertex of degree at least 3 in T − M .
Proof. Let T(M) = T −M and suppose that v ∈ M and degT(M)

(v) ≥ 3. Consider
the set M ′ = M ∪ {v} of vertices of T and the graph T(M ′) = T − M ′ (= T(M) − v).
From Lemma 2.2, T(M ′) has p

M′ = pM +degT(M)
(v)−1 components and q

M′ = qM +1.
Since degT(M)

(v) ≥ 3, p
M′ ≥ p

M
+ 2, and p

M′ − q
M′ ≥ p

M
+ 2 − q

M′ = p
M

− q
M

+ 1.
Thus, p

M′ − q
M′ > pM − qM gives a contradiction.
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Lemma 3.2. Let T be a tree and let M be a subset of V(H) such that p
M
− q

M
=

m(T ). If v ∈ V(H) is such that δ(v) = degT (v) − degH(v) ≥ 3, then v ∈ M .
Proof. Let T(M) = T − M and suppose that v ∈ M and δ(v) ≥ 3. Remember

that M ⊆ V(H) thus, degT(M)
(v) ≥ δ(v) ≥ 3. From Lemma 3.1, degT(M)

(v) ≥ 3 gives
a contradiction. Therefore, v ∈ M .

Lemma 3.3. Let T be a tree and let M be a subset of V(H) such that pM − qM =
m(T ). For any v ∈ V(H) such that δ(v) = degT (v) − degH(v) = 2, there is a subset
M ′ of V(H) such that M ⊆ M ′, v ∈ M ′ and p

M′ − q
M′ = m(T ).

Proof. Let T(M) = T −M and suppose that v ∈ V(H) with δ(v) = 2. If v ∈ M , let
M ′ = M . Suppose now that v ∈ M . Recall that M ⊆ V(H); then degT(M)

(v) ≥ δ(v).
Consider the set M ′ = M ∪ {v} and graph T(M ′) = T − M ′ (= T(M) − v). From
Lemma 2.2, T(M ′) has p

M′ = p
M

+ degT(M)
(v) − 1 components and q

M′ = q
M

+ 1.
Then, p

M′ − q
M′ = pM − qM + degT(M)

(v) − 2.
By Lemma 3.1, degT(M)

(v) < 3, hence degT(M)
(v) = 2 in which case p

M′ − q
M′ =

p
M

− q
M

. Therefore, v ∈ M ′ and p
M′ − q

M′ = m(T ).
We note that Lemmas 3.2 and 3.3 indicate how to inductively compute a subset

M ′ of V(H) such that p
M′ − q

M′ = m(T ). By Lemma 2.4, given any tree T , there is
a subset M of V(H) such that p

M
− q

M
= m(T ) and, by Lemmas 3.2 and 3.3, there

is always a subset M ′ of V(H), containing all vertices v of T with δ(v) ≥ 2, such that
M ⊆ M ′ and p

M′ − q
M′ = m(T ).

Algorithm 3.4. Given a tree T , consider the subgraph H of T induced by the
vertices of degree at least 3. Remove from T all vertices v of H such that δ(v) ≥ 2.

This algorithm is applied to the initial tree T and then to each of the resulting
components and so on. Let M ′ be the set of vertices removed via repeated application
of Algorithm 3.4. By Lemmas 3.2 and 3.3, all vertices v of T with δ(v) ≥ 2 are in M ′.
If there is a vertex of degree at least 3 in T − M ′, again by Lemmas 3.2 and 3.3, the
application of the Algorithm 3.4 to each of the components of T − M ′ (each one is a
tree) allows us to include new vertices in M ′ in route to maximizing p

M′ − q
M′ . By

Lemma 3.1, the process stops when there is no vertex of degree at least 3. The set of
removed vertices from T gives M ′, the cardinality of M ′ gives q

M′ and the number
of components of T − M ′ (each of which is a path) gives p

M′ . Finally, the maximum
multiplicity of an eigenvalue among matrices whose graph is T , m(T ), is equal to
p

M′ − q
M′ .
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