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THEORY, AND APPLICATIONS TO CIRCLE PACKINGS∗
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Abstract. The theory of pseudo circle packings is developed. It generalizes the theory of circle
packings. It allows the realization of almost any graph embedding by a geometric structure of circles.
The corresponding Thurston’s relaxation mapping is defined and is used to prove the existence and
the rigidity of the pseudo circle packing. It is shown that iterates of this mapping, starting from
an arbitrary point, converge to its unique positive fixed point. The coordinates of this fixed point
give the radii of the packing. A key property of the relaxation mapping is its superadditivity. The
proof of that is reduced to show that a certain real polynomial in four variables and of degree 20 is
always nonnegative. This in turn is proved by using recently developed algorithms from real algebraic
geometry. Another important ingredient in the development of the theory is the use of nonnegative
matrices and the corresponding Perron–Frobenius theory.
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1. Introduction. A circle packing in the plane is a finite collection of circles
whose interiors are disjoint. Thus, for each pair of circles in a circle packing, either
the distance between the circles is positive or it is zero, in which case the circles are
mutually tangent from the outside. The nerve or the 1-skeleton of a circle packing is
the embedded graph whose vertices correspond to the circles of the packing and in
which two vertices are connected by an edge iff the corresponding circles are tangent
to one another. In the other direction, if G is a graph embedded in the plane, then
a circle-packing realization of G is a circle packing whose nerve is combinatorially
isomorphic to G. All of these notions can be extended to surfaces other than the
plane. It is natural to ask which graph embeddings have circle-packing realizations.
A beautiful result due to Andreev asserts the following.

Theorem 1.1. (Andreev.) Any finite triangulation of the 2-sphere has a circle-
packing realization. Moreover, any two such realizations can be mapped onto one
another by a Möbius transformation.

This theorem contains two parts: (1) the existence of circle-packing realizations
for finite S2 triangulations and (2) the uniqueness of the packing up to the action
of Aut(S2). The later is commonly referred to as rigidity. This formulation of the
theorem of Andreev is due to Thurston [13]; see also [9]. This result was extended
by Thurston to any compact and closed surface of a finite genus. Other proofs of
Andreev’s theorem were given by O. Schramm [14]. A new interest in circle packings
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originated in Thurston’s lecture in the conference to celebrate de Branges’s solution
of the Bieberbach conjecture [2]. There Thurston outlined an algorithmic approach
to approximate the Riemann mapping of a simply connected domain onto the open
unit disc. He left open a few problems concerning the approximation he suggested to
the first-order derivative of the Riemann mapping. These were solved by B. Rodin
and D. Sullivan [12], Z.-X. He, O. Schramm, and others.

This paper outlines a new theory of a much wider family of problems. We call
these the realization of a given graph embedding by pseudo circle packings.

In section 2 we define the notion of a graph embedding that fits our geometric
context.

In section 3 the notion of the a-mapping, fa, of a graph embedding is defined. It
is observed that fa : R+|V | → R+|V | is an isotone mapping. Also, two normalizations
Fa and Ga of fa are presented. These are tools for the study of fa. They have
the same dynamics as that of fa but behave much better under iterations. A main
result to be proved in this paper is that the normalizations have a unique fixed point
in R

+|V | and that the iterates of the normalizations converge to it independently
of the starting point. This is Theorem 3.3, which implies that the dynamics of the
iterations of Fa and of Ga resembles the dynamics of a contraction R

+|V | → R
+|V |.

This statement will be made accurate in section 12. An immediate conclusion of this
theorem is Theorem 3.4, which asserts that fa has a unique positive eigenvalue λ(1)

and a corresponding projectively unique eigenpoint r ∈ R
+|V |. These notions are

defined via the equality

fa(r) = λ(1) · r.
This eigenpoint provides the radii of a pseudo circle-packing realization for the graph
embedding G with an angles-parameter vector a. This is the connection of the a-
mapping with circle packings. In fact this last theorem is a general Andreev-type
theorem, applied to the broader context of pseudo circle packings. It has the two
features of the existence (of the eigenpoint) and the rigidity (the uniqueness of λ(1)

and of r).
In section 4 we explain Andreev’s original theorem using our new terminology.

In section 5 we prove the rigidity of pseudo circle packings. This is the content
of Theorem 5.1. The proof uses the maximum principle for pseudo circle packings
[7, 1]. Later on we will prove a much more general rigidity principle (Theorem 12.5).
This, however, will invoke the Perron–Frobenius theory for nonnegative matrices.
The latter approach gives hope to proving rigidity results for infinite pseudo circle
packings as well. Here one may use the infinite theory of Perron–Frobenius. We hope
to accomplish this in a subsequent paper.

A key property of the a-mapping fa is its superadditivity:

∀ r, s ∈ R
+|V |, fa(r) + fa(s) ≤ fa(r + s).

This is part (b) of Theorem 6.1 in section 6. This property lies on a certain geometric
inequality, which is presented in Lemma 6.5. Here is one interpretation of this in-
equality: Suppose that we have three triangles, one with sides of length X , Y , and Z,
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a second with sides of length U , V , and W , and a third with sides of length (X +U),
(Y + V ), and (Z + W ). Let us denote by α the angle in the first triangle between
the sides of length X and Y . Let β be the corresponding angle in the second triangle
between U and V and let γ be the corresponding angle between (X+U) and (Y +V )
in the third triangle. Then

α · (X + Y − Z) + β · (U + V −W ) ≤ γ · ((X + U) + (Y + V )− (Z +W )).

It turns out that proving this inequality is not at all simple. Later on, we dedicate
the whole of section 10 to a discussion of concave mappings and geometric inequal-
ities. We introduce there two interesting reductions of our inequality. The original
transcendental inequality of Lemma 6.5 is reduced to the nonnegativity of a certain
real polynomial in 4 variables and of degree 20. This falls right into methods of real
algebraic geometry (Lemma 10.6) [11]. Using a recently developed algorithm, the
polynomial is represented as a sum of five squares of other polynomials.

In section 7 we prove elementary properties of the sets

Ai,θ =
{
(r0, . . . , r|V |−1) ∈ R

+|V | |Ri ≥ θri ,

where fa(r0, . . . , r|V |−1) = (R0, . . . , R|V |−1)
}

for 0 ≤ i < |V | and a fixed θ > 0. These sets measure the monotonicity of fa

in a single coordinate. We show that Ai,θ is a cone (Proposition 7.4), is connected
(Proposition 7.5), and has an affine algebraic boundary ∂Ai,θ in R+|V | (Proposition
7.9).

In section 8 we use Sperner’s lemma in order to prove that there exists an r ∈
R

+|V | so that either fa(r) ≥ r or fa(r) ≤ r.
In section 9 we use the Brouwer fixed-point theorem to prove the existence of an

eigenvalue and an eigenpoint of fa (Theorem 9.2). The key feature in the proof is the
superadditivity of fa, which implies that the sets Ai,θ are in fact convex (Theorem
9.1). This almost completes the proofs of Theorems 3.3 and 3.4. The part that is yet
to be proved is that the normalizations Fa and Ga behave like contractions.

For that we apply in section 11 the theory of Perron–Frobenius for (finite) non-
negative matrices. This theory enables us to develop a new machinery that proves
the general rigidity principle for pseudo circle packings. It also produces a wealth
of identities and inequalities for various quantities in our theory. Let us denote by
λ(n) = λ(n)(G, a) the unique eigenvalue of the mapping f

(◦n)
a : R

+|V | → R
+|V |, the

nth iterate of fa. Let us denote by λ(n)(s) = λ(n)(G, a)(s) the largest eigenvalue of
the symmetric, nonnegative, and irreducible matrix (f (◦n)

a )′(s). Then here is a partial
list of these identities and inequalities:

(1) ∀n ∈ Z
+, ∀ r, s ∈ R

+|V |, f
(◦n)
a (r)T ≤ (f (◦n)

a )′(s) · rT and f
(◦n)
a (r)T =

(f◦n)
a )′(r) · rT . (These follow by Theorem 12.2 and Theorem 12.1, respectively.)
(2) If r ∈ R+|V | is the eigenpoint of f (◦n)

a , i.e., f (◦n)
a (r)T = λ(n)rT , then λ(n) =

ρ((f (◦n)
a )′(r)) = λ(n)(r). (This follows by the proof of Theorem 12.5.)
(3) λ(n)(s) ≥ max

r∈R+|V |
, r·rT =1

r · f (◦n)
a (r)T and λn(s) = max

r∈R+|V |
, r·rT =1

r ·
(f (◦n)

a )′(s) · rT . (These follow by Theorem 12.4 and by its proof, respectively.)
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(4) λ(n) = min
s∈R

+|V | λ(n)(s). (This follows by Theorem 12.5.)

(5) λ(n) = max
r∈R

+|V |
, r·rT =1

r · f (◦n)
a (r)T . (This follows by Theorem 13.1.)

(6) λ(n) = max{α ∈ R+ | ∃ v ∈ R+|V | such that f (◦n)
a (v) ≥ αv}. (This follows by

Theorem 13.2.)
The topic in section 12 is the converse of the contraction principle and the

Courant–Hilbert min-max theorem applied to rigidity. We prove the strong rigidity
theorem (Theorem 12.5). This in turn implies that the iterates of the normalizations
converge to their fixed points independently of the starting point (Theorem 12.9). We
then use a theorem of C. Bessaga on the converse of the contraction principle, which
implies that the normalizations are in fact contractions after an appropriate change
of the topology on R

+|V |. This concludes the proofs of Theorems 3.3 and 3.4.
Sections 14 and 15 are devoted to the λ-packing property of geometric configura-

tions (G, a). We give a geometric necessary and sufficient condition on (G, a) so that
fa will have λ as its eigenvalue. This is the λ-packing property. The condition is

dim
(
∩|V |−1

i=0 Ai,λ

)
= 1.

In section 16 we compute the range of the values of the radii and eigenvalues of any
given pseudo circle packing. This is a number theoretical problem (Theorem 16.2,
Corollary 16.3).

The following basic lower bound is computed in Proposition 17.2 in section 17:

λ(1)(G, a) ≥ 1
|V |

{ ∑
ai−closed

1
| sin(ai/(2di))| +

∑
ai−open

1
| sin(ai/(2(di − 1)))|

}
− 1.

This estimate is the key in proving Theorem 18.1, the packing theorem, in section
18: Given G and λ > 0, there exists an angles-parameter vector a such that the
configuration (G, a) has the λ-packing property. Once more, this is a general Andreev-
type theorem.

Finally, in section 19 we compute the expected value of the random variable
λ(1)(G, a). This expectation turns out to be +∞. So we find the tight asymptotics
of this variable. This is done in Theorem 19.4. We prove the following estimates:

1
|V |

|V |−1∑
i=0

1
| sin(ai/(2li))| − 1 ≤ λ(1)(G, a) ≤ max

0≤i<|V |

{
1

| sin(ai/(2li))| − 1
}

and, as an immediate conclusion, we get

λ(1)(G, a) = Ω
(

1
min0≤i<|V | |ai|

)
,

where we use the Ω notation as in complexity theory in computer science.
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2. The embedding of a graph. We describe here the exact information we
need on the embedding of the graphG. V denotes the set of vertices of G. We number
the vertices of G by 0 ≤ i < |V |. For each such vertex i we let di denote the valence
of that vertex in G, i.e., the number of its neighboring vertices. The input given to
us has the following structure:

It contains |V | rows. Row number i, 0 ≤ i < |V |, has one of the following two
forms. Either it is the finite sequence ji,1, . . . , ji,di or the sequence ji,1, . . . , ji,di , ji,1.
Here 0 ≤ ji,k < |V | (1 ≤ k ≤ di) are the di neighbors of vertex i ordered (geometri-
cally) counterclockwise.

Thus, for example, an empty line in such a structure stands for an isolated vertex
and a line containing a single vertex stands for a leaf.

Remark 2.1. The family of graphs we are thinking of is the family of simple
graphs such that the valence d at each and every vertex satisfies d ≥ 3. So they are
connected graphs without any leaves.

3. The isotone accompanying mappings of an embedding of a graph.
Let a = (a0, . . . , a|V |−1) ∈ R

|V |. We call this vector the angles-parameter vector. We
define the following a-mapping fa of the embedding of the graph G as follows:{

fa : R
+|V | → R

+|V |

fa(r0, . . . , r|V |−1) = (R0, . . . , R|V |−1),

where each Ri is a positive real function of (r0, . . . , r|V |−1) defined by the combina-
torial structure of the given embedding of G. Given i (0 ≤ i < |V |), we compute Ri

implicitly as follows:

(rji,k
+ rji,k+1 )

2 = (Ri + rji,k
)2 + (Ri + rji,k+1 )

2 − 2(Ri + rji,k
)(Ri + rji,k+1 ) cosαk

for k = 1, . . . , li − 1 and

li−1∑
k=1

αk = ai,

where li is the length of row i (which is either di or di +1). The geometrical interpre-
tation of this formula is easy. We use the cosine law to express the fact that, if certain
values of radii rji,k

are given at the di neighboring vertices of i, then Ri is the radius
at the vertex i itself that creates a total angle of ai radians around the vertex i. If
row number i has the form ji,1, . . . , ji,di , then the angle is open. If it has the form
ji,1, . . . , ji,di , ji,1, then it is closed and usually in that case ai = 2π. Since the angles
αk, k = 1, . . . , li − 1, between successive tangent circles are less than π, in order for
that to make sense we need the total angle ai to be small enough (less than (di − 1)π
or diπ, depending on the form of row number i). This is provided that we have a
locally flat structure in mind. We call such angles-parameter vectors a admissible.
Intuitively it is clear that there exists exactly one such value Ri and moreover it is
clear that ∂Ri/∂rji,k

> 0 for every 0 ≤ i < |V | and every 1 ≤ k ≤ li. Thus indeed we
have the following proposition.
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Proposition 3.1. The mapping fa is well defined for any admissible value of
the vector a and it is an isotone mapping R

+|V | → R
+|V |.

Remark 3.2. The definition of fa is based on a relation between the total
angle at a vertex of G and the corresponding coordinate of a. The relation is given
by
∑li−1

k=1 αk = ai. The total angle
∑li−1

k=1 αk can be open or closed. This is a
generalization of the notion of the curvature K(v) at an interior vertex v; see [9], [7].
The notion of a curvature at a vertex was used for triangulations. It was defined to
be the sum of all the angles at v of the 2-simplexes that contain v, minus 2π. Thus,
with our notation, ai = 2π.

For any vector x = (x0, . . . , x|V |−1) ∈ R+|V | we denote |x| =∑|V |−1
i=0 xi. Also we

let π : R+|V | → R+ be the projection mapping onto the first coordinate,

π(x0, . . . , x|V |−1) = x0.

We denote by Fa = fa/|fa| the normalization of fa of the first kind. We also denote
by Ga = fa/(π ◦ fa) the normalization of fa of the second kind. We will prove the
following theorem.

Theorem 3.3. Suppose that we are given an embedding of a graph G with a
vertex set V . Suppose that a ∈ R

|V | is an angles-parameter vector. Then
(i) Fa has a unique fixed point r in R+|V |. Moreover, if x is any point in R+|V |,

then

lim
n→∞F

(n)
a (x) = r.

(ii) Ga has a unique fixed point s in R+|V |. Moreover, if x is any point in R+|V |,
then

lim
n→∞G

(n)
a (x) = s.

Here the notation F
(n)
a means the nth iterate of the mapping Fa. A consequence

of this theorem is the following.
Theorem 3.4. Suppose that we are given an embedding of a graph G with a

vertex set V . Then, for any angles-parameter vector a ∈ R|V |, the corresponding
a-mapping fa has a unique positive eigenvalue λ = λ(a). The fixed points of the
normalized mappings Fa and Ga are the positive eigenpoints that correspond to this
eigenvalue.

4. Triangulations of the 2-sphere S2. These will serve to explain the rela-
tionship between circle packings that realize graphs and the fixed points of certain
a-mappings fa of the embeddings of the graphs for certain special values of a.

We recall that any (finite) triangulation of S2 can be thought of as a planar graph.
This graph can be embedded in the plane in such a way that three of its vertices, say
we number them 0, 1, and 2, form a triangle, and all the other vertices 3, 4, 5, . . . lie in
the interior of this triangle. A circle-packing realization of this particular embedding
of the triangulation will consist of three congruent circles that are tangent to one
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another from the outside, plus the other circles located in the circular triangle they
form. If we connect the centers of tangent circles in this triangulation we will get
a graph that is isomorphic to the original triangulation of the sphere minus “the
outside triangle.” The graph is embedded in the plane in such a manner that its
vertices 0, 1, and 2 form an equilateral triangle. All the other vertices are located
inside this triangle. Thus, the total angles made at the vertices 0, 1, and 2 are
a0 = a1 = a2 = π/3. These are open angles. The total angles at all the other (inner)
vertices are ai = 2π, i = 3, 4, 5, . . .. These angles are closed. We have the following
theorem.

Theorem 4.1. Let T be a planar embedding of an S2 triangulation. Let us
assume that the vertices 0, 1, and 2 of the embedding form a triangle that contains
in it all the other vertices of T . Let a = (π/3, π/3, π/3, 2π, . . . , 2π) ∈ R

|V |. Then
any fixed point r = (r0, r1, . . . , r|V |−1) of fa has coordinates that are the radii of a
circle-packing realization of T .

Proof. Given any inner vertex, the circles at its neighbors do not overlap and
do not intersect the circle at the vertex. This is because of the choice of a. Now an
inductive argument on the number of “generations” about that circle shows that it
is impossible for a circle of a later generation to intersect the original circle. This is
because this will imply the existence of a circle that has an intersecting neighbor.

A direct consequence of this simple observation is that the Andreev theorem is
equivalent to the following statement: If a and fa are as in the theorem above, then
fa has a fixed point. Our uniqueness result of the eigenvalue of this fa is just the
well-known rigidity result in the statement of the Andreev theorem. This motivates
our study of fixed points of a-mappings.

5. Rigidity of pseudo circle packings. We first turn our attention to the
uniqueness of the eigenvalue of any a-mapping fa. We refer to this, geometrically, as
the rigidity of pseudo circle packings. The reason will become clear after we define this
notion. However, in the previous section we managed to identify this uniqueness with
the rigidity result of the Andreev theorem for the particular case of triangulations
of S2. We will give an argument to prove that there exists at most one eigenvalue.
Also we will demonstrate that the set of all the eigenpoints that correspond to the
eigenvalue (if it exists) is one dimensional. By that we mean that the eigenpoints of
any such pair are proportional to one another. The proof of the last property makes
use of the maximum principle. We will use it here in a similar way to that used in [7]
(section 2).

Theorem 5.1. Suppose that we are given an embedding of a graph G with a vertex
set V . Suppose that a ∈ R

|V | is an angles-parameter vector. Then fa has at most
one eigenvalue. Moreover, if the eigenvalue exists, then any pair of corresponding
eigenpoints are proportional to one another.

Proof. Let λ and µ be eigenvalues of fa. By the definition, there exist two points
(corresponding eigenpoints) r and s in R

+|V | such that fa(r) = λr and fa(s) = µs.
Let us denote r = (r0, . . . , r|V |−1) and s = (s0, . . . , s|V |−1). Let us assume that the
ratio ri/si, 0 ≤ i < |V |, attains its maximum for i = 0. The defining equations of
fa are homogeneous. Hence we can scale s and assume that λr0 = µs0. As agreed
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before, let us denote the neighboring vertices of vertex 0 by j0,1, . . . , j0,l0 . Here they
are listed as in row number 0 in the embedding of G. Also l0 = d0 if the angle about
0 is open and l0 = d0 + 1 if this angle is closed. If λ �= µ, then we can assume that
µ < λ. We will now proceed to show that, for k = 1, . . . , l0, we have the inequalities
rj0,k

< sj0,k
. This will give us the desired contradiction and prove that µ = λ. Let

Ck be the center of the circle with the radius rj0,k
(the one that corresponds to the

vertex j0,k with respect to r). Here k = 1, . . . , l0. Also let us denote by C0 the center
of the circle at vertex 0. This circle has a radius equal to λr0. Let αk be the angle
formed by the centers CkC0Ck+1 as in the definition of fa. Then by the definition∑l0−1

k=1 αk = a0, a constant. In fact this constant (the total angle about vertex 0)
equals the first coordinate of a. Clearly |αk| is a nondecreasing function of the radius
at j0,k (and that at j0,k+1). Hence the sum |αk−1|+ |αk| is strictly increasing in the
radius at j0,k. So necessarily also

∑l0−1
k=1 |αk| is strictly increasing in the radius at

j0,k. By our choice of the vertex 0 we have rj0,k
/sj0,k

≤ µ/λ < 1, k = 1, . . . , l0. Hence
we must have |αk

′| > |αk|, k = 1, . . . , l0, where the angle αk
′ is the parallel angle

to αk but with respect to s. By the definition of fa also
∑l0−1

k=1 αk
′ = a0. This is a

contradiction and it proves that µ = λ.

We now prove the last part of the theorem. Let λ be the eigenvalue of fa. Let
r = (r0, . . . , r|V |−1) and s = (s0, . . . , s|V |−1) be two eigenpoints that correspond to λ.
Thus fa(r) = λr and fa(s) = λs. Again let us assume that the ratio ri/si, 0 ≤ i < |V |,
attains its maximum for i = 0. We rescale s and assume that r0 = s0. We will now
proceed to show that, for k = 1, . . . , l0, we have the equalities rj0,k

= sj0,k
. If we

do that it will imply that the ratio function ri/si, 0 ≤ i < |V |, attains its maximum
value also on each one of the neighboring vertices of 0, i.e., k = 1, . . . , l0. Hence this
ratio function is in fact a constant function (in fact it equals 1 because of our scaling).
Hence r = s, which is exactly what we need to show. We use the same notation Ck

as in the first part of the proof, except that here, obviously, C0 is the center of the
unit circle at vertex 0. We have as before∑l0−1

k=1 αk =
∑l0−1

k=1 αk
′ = a0. But our choice of the vertex 0 implies this time

that rj0,k
/sj0,k

≤ 1, k = 1, . . . , l0. So the monotonicity of the angles with respect to
the radii implies that |αk

′| ≥ |αk|, k = 1, . . . , l0, and so, necessarily, αk
′ = αk for

k = 1, . . . , l0. This in turn proves that rj0,k
= sj0,k

for each such k.

Remark 5.2. The above proof shows that if r and s are two eigenpoints of the
a-mapping fa, then the sequence of ratios ri/si, 0 ≤ i < |V |, is a constant sequence.
We can think of a different—more general—definition of the a-mapping fa. In this
definition we will take a ∈ R

D, where 1 ≤ D ≤ |V |. The geometric meaning will be
that we preassign values to the total angles only at a subset of V , the set of all the
vertices of G. These preassigned angles can also be closed or open. The first part of
the proof applied to the ratio function only at the vertices that correspond to a shows
that the corresponding mapping fa has at most a single eigenvalue. The second part
shows that the maximum principle holds in that case as well. Namely, we define the
boundary vertices of G to be those vertices to which we did not assign a total angle
by the vector a. Then, if r and s are two eigenpoints of fa, the sequence of ratios
ri/si, 0 ≤ i < |V |, cannot attain its maximum at a nonboundary vertex unless it is a
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constant function. This is another form of rigidity, more general than the above. We
will not make use of it in this paper.

6. Superadditivity of fa. Our computing experiments indicate clearly that fa

enjoys the property of being superadditive. This is part (b) of the following.
Theorem 6.1. Suppose that we are given an embedding of a graph G with a

vertex set V . Suppose that a ∈ R
|V | is an angles-parameter vector. Then

(i) for any r ∈ R
+|V | and for any t > 0 we have

fa(tr) = tfa(r) and

(ii) for any r, s ∈ R
+|V | we have

fa(r) + fa(s) ≤ fa(r + s).

Remark 6.2. Part (i) follows immediately from the definition of fa. This is so
because the defining equations of fa are homogeneous. Hence only part (ii) needs to
be proved.

Remark 6.3. The definition of fa implies that it will suffice to prove the follow-
ing. Suppose that the equations below hold:

l−1∑
k=1

cos−1

(
1− 2rkrk+1

(R+ rk)(R + rk+1)

)
= α,

l−1∑
k=1

cos−1

(
1− 2sksk+1

(S + sk)(S + sk+1)

)
= α,

l−1∑
k=1

cos−1

(
1− 2(rk + sk)(rk+1 + sk+1)

(T + rk + sk)(T + rk+1 + sk+1)

)
= α,

where l ≥ 2, α > 0, rk, sk, R, S, T > 0, and each cos−1 β lies in (0, π). Then R+ S ≤
T .

Remark 6.4. If we use the following identity:

rkrk+1

(R + rk)(R + rk+1)
=

1
2
(1− cosαk) = sin2

(αk

2

)
,

for some 0 < αk < π, and similar identities for the other two equations, then we see
that the above three equations are equivalent to the following three equations:

l−1∑
k=1

sin−1

{√
rkrk+1

(R+ rk)(R+ rk+1)

}
=

α

2
,
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l−1∑
k=1

sin−1

{√
sksk+1

(S + sk)(S + sk+1)

}
=

α

2
,

l−1∑
k=1

sin−1

{√
(rk + sk)(rk+1 + sk+1)

(T + rk + sk)(T + rk+1 + sk+1)

}
=

α

2
.

Our branch of the function sin−1 x is an increasing function for 0 ≤ x ≤ 1 and so,
given the first two equations, we need to prove that

l−1∑
k=1

sin−1

{√
(rk + sk)(rk+1 + sk+1)

(R + S + rk + sk)(R + S + rk+1 + sk+1)

}
≥ α

2

because this is equivalent to proving that R+ S ≤ T .
We now proceed to give a complete proof of the theorem. It will be based on the

following lemma.
Lemma 6.5. If a, b, c, d, R, S > 0, then

R sin−1

{√
ab

(R + a)(R+ b)

}
+ S sin−1

{√
cd

(S + c)(S + d)

}

≤ (R+ S) sin−1

{√
(a+ c)(b+ d)

(R+ S + a+ c)(R+ S + b+ d)

}
.

Remark 6.6. The lemma has two simple geometric interpretations:
(1) Three circles of radii R, a, and b that are mutually tangent to one another

from the outside form a Euclidean triangle. The vertices of the triangle are the centers
of the circles. The sides of the triangle have the following lengths: R+ a, a+ b, and
R+ b. Similarly, three circles of radii S, c, and d form a triangle of sides S+ c, c+ d,
and S+d. Finally, a third such triangle is formed by three circles of radii R+S+a+c,
a + c + b + d, and R + S + b + d. We note that the sides of the third triangle have
lengths that are the sums of the respective sides of the first two triangles. On the
other hand, the three sets of triples of circles also form three circular triangles. The
vertices of these triangles are the tangency points of pairs of circles in each triple. The
lemma implies that the circular sides of the third (largest) triangle are greater than
or equal to the sums of the respective circular sides of the first two circular triangles.

(2) Let us consider three Euclidean triangles, one with sides of length X , Y , and
Z, and an angle α between X and Y ; a second with sides of length U , V , and W ,
and an angle β between U and V ; and a third with sides of length (X +U), (Y +V ),
and (Z +W ), and an angle γ between (X + U) and (Y + V ). Then

α · (X + Y − Z) + β · (U + V −W ) ≤ γ · ((X + U) + (Y + V )− (Z +W )).
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Proof (of theorem on superadditivity of fa). Let us assume that

l−1∑
k=1

sin−1

{√
rkrk+1

(R + rk)(R + rk+1)

}
=

α

2

and
l−1∑
k=1

sin−1

{√
sksk+1

(S + sk)(S + sk+1)

}
=

α

2
.

Then, using the lemma, we obtain the following:

α

2
=
(

R

R+ S

)
α

2
+
(

S

R+ S

)
α

2

=
(

R

R+ S

) l−1∑
k=1

sin−1

{√
rkrk+1

(R+ rk)(R + rk+1)

}

+
(

S

R + S

) l−1∑
k=1

sin−1

{√
sksk+1

(S + sk)(S + sk+1)

}

=
l−1∑
k=1

{(
R

R+ S

)
sin−1

{√
rkrk+1

(R+ rk)(R+ rk+1)

}

+
(

S

R + S

)
sin−1

{√
sksk+1

(S + sk)(S + sk+1)

}}

≤
l−1∑
k=1

sin−1

{√
(rk + sk)(rk+1 + sk+1)

(R + S + rk + rk+1)(R + S + rk+1 + sk+1)

}
.

As noted before, this is equivalent to

fa(r) + fa(s) ≤ fa(r + s).

We will return in section 10 to talk about the lemma above. We will also introduce
some other interesting inequalities and reduction techniques. We now proceed to
investigate the existence of eigenvalues of the a-mapping fa. An important application
of the superadditivity of fa will be to prove the convexity of the sets Ai,1 on which
fa is increasing in its ith coordinate. These sets will be defined in the next section.
Using this convexity result, we will be able to use the Brouwer fixed-point theorem
in order to prove the existence of an eigenvalue of fa.

7. Monotonicity in a single coordinate, the sets Ai,θ. We assume that we
are given an embedding of a graph G with a set of vertices V . We also fix a ∈ R|V |

and consider the a-mapping fa.
Definition 7.1.

Ai,θ =
{
(r0, . . . , r|V |−1) ∈ R+|V | |Ri ≥ θri,

where fa(r0, . . . , r|V |−1) = (R0, . . . , R|V |−1)
}
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for 0 ≤ i < |V | and a fixed θ > 0.
In this section we will prove a few elementary and useful properties of the sets

Ai,θ. First we note the following.
Remark 7.2. The boundary ∂Ai,θ contains the intersection of the ith hyperplane

of R
|V |, {Xi = 0}, with ∂R

+|V |. The reason for this is the following: If we consider a
point (r0, . . . , ri−1, 0, ri+1, . . . , r|V |−1) on this hyperplane, where

r0, . . . , ri−1, ri+1, . . . , r|V |−1

are all fixed-positive numbers, then by the definition above we have

(r0, . . . , ri−1, ε, ri+1, . . . , r|V |−1) ∈ Ai,θ

for ε > 0 small enough.
Definition 7.3. Let r ∈ R

+|V | and 0 ≤ i < |V |. ri will denote the vector in
R

|V | that has identical coordinates to those of r at the di locations of the neighbors
of i and also at i itself. It has zeros at the other coordinates.

We will denote by Ri the set of all the vectors in R|V | that have zeros at the
di locations of the neighbors of i and also at i itself and have positive coordinates
elsewhere.

Proposition 7.4. If r ∈ Ai,θ, 0 ≤ i < |V |, θ > 0, and λ > 0, then λri + Ri ⊆
Ai,θ.

Proof. By the definitions it follows that

∂Ai,θ =

{
(r0, . . . , r|V |−1) ∈ R

+|V |
∣∣∣∣∣

li−1∑
k=1

cos−1

(
1 − 2rji,krji,k+1

(θri + rji,k )(θri + rji,k+1)

)
= ai

}
.

Here ∂Ai,θ is the boundary of Ai,θ relative to R
+|V |. This shows that the defining

equation for ∂Ai,θ is homogeneous in ri and in its di neighbors, rji,1 , . . . , rji,di
, but is

independent of the other |V | − di − 1 coordinates.
Proposition 7.5. Ai,θ is a connected set, 0 ≤ i < |V |, θ > 0.
Proof. It is enough to show that ∂Ai,θ is a connected set. This is equivalent to

showing that ∂Ai,θ is an arcwise connected set. To see this let r, s ∈ ∂Ai,θ. Then

li−1∑
k=1

cos−1

(
1− 2rji,k

rji,k+1

(θri + rji,k
)(θri + rji,k+1)

)
= ai

and

li−1∑
k=1

cos−1

(
1− 2sji,k

sji,k+1

(θsi + sji,k
)(θsi + sji,k+1)

)
= ai.

For any admissible (t1, . . . , tli) ∈ R
+li there exists a unique t > 0 such that

li−1∑
k=1

cos−1

(
1− 2tktk+1

(θt+ tk)(θt+ tk+1)

)
= ai.
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This follows by Proposition 3.1. Moreover, t depends continuously on (t1, . . . , tli).
Thus we can deform (rji,1 , . . . , rji,di

) to (sji,1 , rji,2 , . . . , rji,di
) by (αrji,1 , . . . , rji,di

),
where α lies between 1 and sji,1/rji,1 . For each α there corresponds (continuously)
an ri(α). We do that for each of the di coordinates and this defines a path from r to
s that lies in ∂Ai,θ.

Proposition 7.6. If i �= k , then int(Ai,θ) ∩ int(Ak,θ) �= ∅ and
int(Ai,θ) ∩Ac

k,θ �= ∅.
Proof. If {ji,1, . . . , ji,di}∩{jk,1, . . . , jk,dk

} = ∅ the claim is clear. If not we separate
into two cases.

Case 1: k �∈ {ji,1, . . . , ji,di}. We can take rji,l
= 1 for 1 ≤ l ≤ di and rjk,l

= 1 for
1 ≤ l ≤ dk. We also take ri and rk small enough. If

fa(. . . , ri, . . . , rk, . . .) = (. . . , Ri, . . . , Rk, . . .),

then we have θri < Ri and θrk < Rk.
Case 2: k ∈ {ji,1, . . . , ji,di}. In this case i is a neighbor of k and vice versa. Since

G is a simple graph we either have dk > 3 or dl > 3. Let us assume that dk > 3. We
take ri = 1 and rk = 1+ ε, where ε > 0. We take for all the other neighbors of i and k
huge radii. This completes the second case and proves that int(Ai,θ) ∩ int(Ak,θ) �= ∅
whenever i �= k.

A similar proof works for int(Ai,θ) ∩Ac
k,θ �= ∅.

Next we make a simple observation regarding the extension to the boundary of
fa.

Proposition 7.7. The mapping fa : R
+|V | → R

+|V | can continuously be ex-
tended to R

+|V | − {0}.
Proof. This is a straightforward verification through the defining equations

li−1∑
k=1

cos−1

(
1− 2rji,k

rji,k+1

(ri + rji,k
)(ri + rji,k+1)

)
= ai, 0 ≤ i < |V |.

Remark 7.8. With the aid of the last proposition we can view (by extension) the
sets Ai,θ as subsets of R

+|V | − {0}. We end this section with one more proposition
that extends the contents of Propositions 7.4 and 7.5.

Proposition 7.9. ∂Ai,θ is the connected intersection of R
+|V | and of a (|V |−1)-

dimensional affine algebraic variety.
Proof. We will point out how to give the algebraic equation of the affine variety.

For that we consider the defining equation of ∂Ai,θ:

li−1∑
k=1

cos−1

(
1− 2rji,k

rji,k+1

(θri + rji,k
)(θri + rji,k+1)

)
= ai.

We observe that this is, in fact, algebraic in its variables ri, rji,1 , . . . , rji,di
. To see

this we just recall from elementary trigonometry that, if

cos−1 X + cos−1 Y = cos−1 Z,
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then (up to a sign)

Z = XY −
√
1−X2

√
1− Y 2.

Applying this li − 2 times to the defining equation gives us

ALGEBRAIC FORM IN(ri, rji,1 , . . . , rji,di
) = cos ai.

8. Eigenpoints of fa.
Remark 8.1. The definitions imply that the set of fixed points of fa in R+|V | is

exactly the following:

R
+|V | ∩

(
∩|V |−1

i=0 ∂Ai,1

)
.

In other words this is the set of all the eigenpoints of fa that correspond to the
eigenvalue λ = 1.

In general the set of all the eigenpoints of fa that correspond to an eigenvalue
λ > 0 is

R
+|V | ∩

(
∩|V |−1

i=0 ∂Ai,λ

)
.

If λ > 1 then it is a subset of the set

R
+|V | ∩

(
∩|V |−1

i=0 int(Ai,1)
)
.

If λ < 1 then it is a subset of the set

R+|V | ∩
(
∩|V |−1

i=0 Ac
i,1

)
.

Definition 8.2. An a pseudo circle packing consists of three objects:
(a) an embedding of a graph G with the vertex sequence V ;
(b) a vector a = (a0, . . . , a|V |−1) ∈ R

|V |;
(c) a sequence of |V | circles with the radii r = (r0, . . . , r|V |−1) ∈ R

+|V |.
There is a bijection between the vertices in V and the sequence of circles. Two

circles are called neighbors if the corresponding vertices are joined by an edge. The
radii have such values that r is an eigenpoint of the a-mapping fa. Sometimes we will
say that this is an a pseudo circle-packing realization of the embedding of the graph.

Theorem 8.3. fa has |V | defining equations. Any a pseudo circle-packing real-
ization of the embedding of the graph is a positive simultaneous solution of an algebraic
system of |V | equations in |V |+ 1 unknowns. The unknowns are the |V | coordinates
of the eigenpoint of fa and the corresponding eigenvalue λ(a). The equations are ho-
mogeneous in the first |V | unknowns but not in λ(a). The algebraic system depends
only on the combinatorics of the embedding of the graph.

Proof. Recall that our graphs are simple and that the valence at every vertex is at
least 3. So the number of the defining equations for fa is exactly |V | by its definition.
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By the definition of an a pseudo circle-packing realization of the embedding of the
graph, it follows that the equations that characterize the pseudo circle packing are
given by

li−1∑
k=1

cos−1

(
1− 2rji,k

rji,k+1

(λri + rji,k
)(λri + rji,k+1)

)
= ai, 0 ≤ i < |V |.

These are homogeneous in the ri, 0 ≤ i < |V |, but not in λ. Finally, that the system
is an algebraic system follows as in the proof of Proposition 7.9.

Remark 8.4. It is well known [6] (chapter I, section 7, pages 47–55) that over C

any homogeneous system of n equations in m > n unknowns has a nontrivial solution.
This kind of result does not suffice in our case even for λ = 1, for we need positive
solutions. On the top of this, in our case m = n and hence the general theory on
intersections of projective spaces over C does not even apply. Thus, in order to prove
Theorem 3.3, we will have to take advantage of the specific structure of the systems
that correspond to pseudo circle packings. We will outline an iterative process that
converges to the desired fixed point. A priori it seems that this process might lead to
zero or infinite radii. However, we will show that this does not happen.

The following proposition is a variant of the Kantorovich lemma [10] and the
homogeneous nature of fa.

Proposition 8.5. If there exist two points s1, s2 ∈ R
+|V | such that fa(s1) ≤ s1

and fa(s2) ≥ s2, then there are points r ∈ R+|V | such that fa(r) = r.
Proof. Let t > 0 be such that s2 ≤ ts1. Since fa is isotone (by Proposition 3.1),

it follows that fa(s2) ≤ fa(ts1). By the hypothesis, this implies that

s2 ≤ fa(s2) ≤ fa(ts1) ≤ ts1.

Hence the sequence of iterates f
(m)
a (s2) is monotone increasing and bounded from

above and so r = limm→∞ f
(m)
a (s2) is the desired fixed point.

We will not be able to prove that two points as in Proposition 8.5 exist because
this is not true. In fact, our computer experience shows that if we iterate fa starting
from an arbitrary point, then usually the sequence of iterates will have entries that
grow to infinity or that approach zero (unless we start at a fixed point of fa). So our
strategy will be to show (using Sperner’s lemma) that there always exists a point of one
of the two types. Thus, the iterates of fa starting at this point will be monotone and
hence will converge, maybe to infinity or to zero. Then we will pass to a normalized a-
mapping, i.e., Fa or Ga, and use its iterates starting from that point in order to show
that fa has an eigenpoint. This stage of the proof, using the normalized a-mapping,
will use Brouwer’s fixed-point theorem and the fact that the ∂Ai,1 are parts of an
affine variety.

Proposition 8.6. Consider the a-mapping fa : R
+|V | → R

+|V |. Then there
exist points r ∈ R+|V | such that either fa(r) ≥ r or fa(r) ≤ r.

Proof. Let us consider R
+|V | − {0} and the extended (to R

+|V | − {0}) sets Ai,1.
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The defining equation for ∂Ai,1 is

li−1∑
k=1

cos−1

(
1− 2rji,k

rji,k+1

(ri + rji,k
)(ri + rji,k+1)

)
= ai,

where the valence di ≥ 3. It follows that Ai,1 (the extended set) contains the full

intersection of the (|V |−1)-dimensional hyperplane Hi = {Xi = 0} with R+|V |−{0}.
This is so because, when we fix positive values of the coordinates of all the radii
(r0, . . . , r|V |−1) except for ri and take ri > 0 very small, then, by the defining equation,
we get a point that lies in Ai,1 ∩R

+|V | (see Remark 7.2). Now there are two cases to
consider.

Case 1:

∪|V |−1
i=0 Ai,1 �= R+|V | − {0}.

Then there must be a point r ∈ R
+|V | (not just in R

+|V | − {0}) such that r ∈
∩|V |−1

i=0 Ac
i,1. This means that fa(r) ≤ r.

Case 2:

∪|V |−1
i=0 Ai,1 = R

+|V | − {0}.

Let us consider a (|V | − 1)-dimensional hyperplane H that intersects each of the |V |
positive axes of coordinates. The set S = H∩R+|V | is a (|V |−1)-dimensional simplex.
The |V | sets Ai,1 ∩S for 0 ≤ i < |V | form a closed covering of S. By Sperner’s lemma
we obtain

S ∩
(
∩|V |−1

i=0 Ai,1

)
�= ∅.(8.1)

We note that the set in (8.1) can’t have an intersection with ∂R
+|V |. Hence also

S ∩
(
∩|V |−1

i=0 Ai,1

)
⊆ R

+|V |.(8.2)

By (8.1) and (8.2) there exist points r ∈ R+|V | such that fa(r) ≥ r.
Remark 8.7. The last proposition implies that there are always points r ∈ R

+|V |

for which limm→∞ f
(m)
a (r) exists in the broad sense. However, the limit might “blow”

to infinity or “shrink” to zero. Indeed it is this phenomenon that we experience while
executing computer experiments. Thus the dynamics of the a-mapping fa almost
captures solutions of our algebraic system. But it is not good enough.

This leads to the idea of normalization. We want a mapping with dynamics
similar to that of fa but for which the iterates are confined to always stay bounded
away from zero and from ∞. Two such normalizations work and we now proceed to
describe them both. For the reader’s convenience we repeat formally the definitions
that were given before the statement of Theorem 3.3 in section 3.

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 197-254, September 2002

http://math.technion.ac.il/iic/ela



ELA

Concave Maps and Circle Packings 213

Definition 8.8. Let x = (x0, . . . , x|V |−1) ∈ R+|V |. We denote the l1-norm of x
by |x| =∑|V |−1

k=0 xi. Let a ∈ R
|V |. We denote the normalization of the first kind of fa

by Fa = fa/|fa|. We will also use the notation

C =
{
x ∈ R

+|V | | |x| = 1
}
.

Then Fa : R+|V | → C.
Remark 8.9. It follows by the homogeneous property of fa that we have Fa(C) =

Fa(R+|V |) and that Fa can be extended continuously to C.
Definition 8.10. Let x = (x0, . . . , x|V |−1) ∈ R

+|V |. We denote the projection
function on the first coordinate by π : R

+|V | → R. Thus π(x) = x0. Let a ∈ R
|V |.

We denote the normalization of the second kind of fa by Ga = fa/(π ◦ fa). We will
also use the notation

D =
{
x ∈ R

+|V | |π(x) = 1
}
.

Then Ga : R
+|V | → D.

Remark 8.11. It follows by the homogeneous property of fa that we have
Ga(D) = Ga(R+|V |) and that Ga can be extended continuously to D.

Our software implementation used the normalization of the second kind. The
next section will show how the superadditivity of fa and the Brouwer fixed-point
theorem are used to prove the existence of an eigenvalue of fa. We also recall that
our rigidity result on fa, in Theorem 5.1, implies that the eigenvalue is unique.

9. The existence of an eigenvalue of fa. Here is an important application
of the superadditivity of fa.

Theorem 9.1. For each k = 0, . . . , |V | − 1 and any θ > 0, the set Ak,θ is a
convex subset of R

+|V |.
Proof. Let r = (r0, . . . , r|V |−1), s = (s0, . . . , s|V |−1) ∈ Ak,θ. Let 0 ≤ t ≤ 1.

Assume that

fa(r) = (R0, . . . , R|V |−1), fa(s) = (S0, . . . , S|V |−1).

Then, by the definition of Ak,θ, we have the inequalities

θrk ≤ Rk, θsk ≤ Sk.

By the superadditivity of fa, Theorem 6.1, we have

fa(tr + (1− t)s) ≥ fa(tr) + fa((1− t)s)
= tfa(r) + (1− t)fa(s).

If we denote
fa(tr + (1− t)s) = (T0, . . . , T|V |−1), then this inequality applied to the kth coor-

dinate shows that

Tk ≥ tRk + (1− t)Sk.
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But tRk + (1− t)Sk ≥ θ(trk + (1− t)sk) and hence

Tk ≥ θ(trk + (1− t)sk).

This proves that tr + (1 − t)s ∈ Ak,θ and so Ak,θ is a convex set.
We will use the Brouwer fixed-point theorem as it appears in [10].
Theorem 9.2. (The Brouwer fixed-point theorem.) Let G : C ⊆ R

n → R
n be

continuous on the compact, convex set C, and suppose that G(C) ⊆ C. Then G has
a fixed point in C.

Here is the existence theorem of the eigenvalue of fa.
Theorem 9.3. Let V be the set of vertices of a graph G. Let a ∈ R|V | be

an angles-parameter vector. Then the normalization of the first kind Fa of fa has a
unique fixed point in R

+|V | (and hence fa has a unique positive eigenvalue in R
+|V |).

Proof. Let θ > 0 be such that ∅ �= ∩|v|−1
k=0 Ak,θ ⊆ R

+|V |. Let us denote, as usual,
C = {x ∈ R

+|V | | |x| = 1}. Then, by the definition of Fa, we have

Fa =
fa

|fa| : C → C.

Each Ak,θ, k = 0, . . . , |V | − 1, is a convex cone in R+|V |, which is a closed set (for
convexity we used Theorem 9.1). Hence ∩|V |−1

k=0 Ak,θ is a nonempty closed subset of
R

+|V | and is convex (being the intersection of convex sets). Since fa(∩|V |−1
k=0 Ak,θ) ⊆

∩|V |−1
k=0 Ak,θ (fa(r) ≥ θr ⇒ fa(fa(r)) ≥ fa(θr) = θfa(r)), it follows that Fa(C ∩

(∩|V |−1
k=0 Ak,θ)) ⊆ C ∩ (∩|V |−1

k=0 Ak,θ). The set C ∩ (∩|V |−1
k=0 Ak,θ) is compact and convex

(for C is also convex). The Brouwer fixed-point theorem implies that Fa has a fixed
point in C ∩ (∩|V |−1

k=0 Ak,θ). If r0 is such a fixed point, then Fa(r0) = r0. By the
definition of Fa, it follows that

fa(r0) = |fa(r0)| r0.
Hence λ = |fa(r0)| is an eigenvalue of fa. The converse also holds, i.e., if λ is a
positive eigenvalue of fa with an eigenpoint r0 such that |r0| = 1, then fa(r0) = λr0.
Hence we have |fa(r0)| = λ|r0| = λ and so Fa(r0) = r0. Thus r0 is a fixed point of Fa.
The uniqueness of the fixed point of Fa follows by the uniqueness of the eigenvalue of
fa (the rigidity theorem).

We now return to the proof of the superadditivity of fa. This involves an inter-
esting set of inequalities and concavity of certain functions.

10. Concave functions and certain inequalities. The inequality of Lemma
6.5 is

R sin−1

{√
ab

(R + a)(R+ b)

}
+ S sin−1

{√
cd

(S + c)(S + d)

}

≤ (R+ S) sin−1

{√
(a+ c)(b+ d)

(R+ S + a+ c)(R+ S + b+ d)

}
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for any a, b, c, d, R, S > 0. Using the double-angle formula this inequality is equivalent
to

R cos−1

{
1− 2ab

(R+ a)(R + b)

}
+ S cos−1

{
1− 2cd

(S + c)(S + d)

}

≤ (R+ S) cos−1

{
1− 2(a+ c)(b + d)

(R + S + a+ c)(R + S + b+ d)

}
.

Here is a suggestion of Paul Federbush, from the University of Michigan, to try to
prove the inequality. Let’s define the function

g(t) = (tR+ (1 − t)S)

× sin−1

{√
(ta+ (1− t)c)(tb + (1 − t)d)

(t(R + a) + (1 − t)(S + c))(t(R + b) + (1− t)(S + d))

}

for 0 ≤ t ≤ 1. If g(t) is concave in t, then

1
2
(g(0) + g(1)) ≤ g

(
1
2

)
.

This is the inequality of Lemma 6.5. To check concavity it suffices to verify that
g′′(t) ≤ 0 for 0 ≤ t ≤ 1. Here is the advantage of checking that over working with the
original inequality.

Remark 10.1. g′′(t) is an algebraic expression, i.e., sin−1 does not appear in it
any more.

Similarly we could define a function h(t) that involves cos−1 but not the square
root function. When h′′(t) is written as a quotient, the denominator involves the
square root but is easily seen to be positive. The numerator is a polynomial in
(t, R, a, b, S, c, d). It determines the sign of h′′(t). This polynomial is of degree 6 in t,
R, and S (separately) and of degree 5 in a, b, c, and d (separately). The total degree
of the polynomial is 16 and the task is to prove that it is nonpositive for all 0 ≤ t ≤ 1
and all R, a, b, S, c, d > 0.

We mention here an integral representation formula for our function. It is of
interest by itself.

Theorem 10.2. If R, a, b > 0, then

R cos−1

{
1− 2ab

(R+ a)(R + b)

}
= R3/2b1/2

∫ a

0

dx

(R+ x)
√

x(R + x+ b)

= R3/2a1/2

∫ b

0

dx

(R + x)
√
x(R + x+ a)

.

Proof. We consider three circles of radii a, b, and R that are mutually tangent
to one another from the outside. The triangle with their centers as its vertices has
edges of lengths R+ a, a+ b, and R+ b. By Lemma 3.2 in [7], it follows that
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∂

∂(log a)
cos−1

{
1− 2ab

(R + a)(R+ b)

}
=

h

R+ a
,(10.1)

where h is the distance from O, the intersection point of the three common tangents
of the circles, to the edge of length R+ a. In our particular disc pattern h equals the
radius r of the incircle of our triangle. To see this, let A, B, C be the three tangency
points of the circles. Then OA is orthogonal to the edge of length R + a and OB is
orthogonal to that of length a+ b. Hence the angle OBA equals the angle OAB and
so h = |OA| = |OB|. Similarly h = |OC|. Let s = R+ a+ b be the semiperimeter of
the triangle and let F be its area. Then, by elementary geometry,

h =
F

s
.

By the Heron formula, F =
√
sRab, and so

h =

√
sRab

s
=

√
Rab

s
=

√
Rab

R+ a+ b
.

Going back to (10.1),

∂

∂(log a)
cos−1

{
1− 2ab

(R+ a)(R + b)

}
=
(

1
R+ a

)√
Rab

R + a+ b
,

so that

a
∂

∂a
cos−1

{
1− 2ab

(R + a)(R+ b)

}
=
(

1
R+ a

)√
Rab

R+ a+ b

and hence

R cos−1

{
1− 2ab

(R+ a)(R + b)

}
=
∫ a

0

R

x(R + x)

√
Rxb

R+ x+ b
dx

= R3/2b1/2

∫ a

0

dx

(R+ x)
√

x(R + x+ b)
.

We can change the roles of a and b by working similarly with the edge of the triangle
of length R+ b.

We now proceed to give another technique of proving the inequality of Lemma
6.5. There are two ideas involved in it. The first idea is summarized in the following.

Theorem 10.3. Suppose that there exists a twice-differentiable, surjective, and
strictly increasing function f : I → [0, 1] that satisfies the following two conditions:

(1) f ′′(1− f2) + f · (f ′)2 ≤ 0 on I.
(2)(

R

R+ S

)
f−1

(√
ab

(R + a)(R+ b)

)
+
(

S

R + S

)
f−1

(√
cd

(S + c)(S + d)

)

≤ f−1

(√
(a+ c)(b+ d)

(R+ S + a+ c)(R+ S + b+ d)

)
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for all a, b, c, d, R, S > 0. Then the inequality of Lemma 6.5 holds true.
Proof. Consider the function y = sin−1 f(x) for x ∈ I. Then

dy

dx
=

f ′√
1− f2

,

d2y

dx2
=

f ′′(1− f2) + f · (f ′)2

(1− f2)3/2
.

By condition (1) we get d2y/dx2 ≤ 0 on I and hence y is concave in I. So, for any
x, z ∈ I and for any 0 ≤ t ≤ 1, we have

t sin−1 f(x) + (1− t) sin−1 f(z) ≤ sin−1 f(tx+ (1− t)z).(10.2)

We make the following choice:

x = f−1

(√
ab

(R+ a)(R + b)

)
, z = f−1

(√
cd

(S + c)(S + d)

)
, t =

(
R

R + S

)
.

Then, by (10.2), we get

(
R

R + S

)
sin−1

(√
ab

(R+ a)(R + b)

)
(10.3)

+
(

S

R + S

)
sin−1

(√
cd

(S + c)(S + d)

)
≤ sin−1 f(tx+ (1− t)z).

By condition (2) we have

tx+ (1 − t)z ≤ f−1

(√
(a+ c)(b + d)

(R + S + a+ c)(R + S + b+ d)

)

and, since f is increasing and also sin−1 is increasing, we get

sin−1 f(tx+ (1 − t)y) ≤ sin−1

(√
(a+ c)(b + d)

(R+ S + a+ c)(R + S + b+ d)

)
.(10.4)

Lemma 6.5 follows from (10.3) and (10.4).
Special cases.
(I) f(x) = sinx, I = [0, π/2]. Then, in this case, we have

f ′′(1− f2) + f · (f ′)2 = − sinx cos2 x+ sinx cos2 x ≡ 0

and condition (1) of the theorem is satisfied. Condition (2) is the inequality of Lemma
6.5 and so the theorem is correct trivially in this case.
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(II) f(x) = 1− 1/x, I = [1,∞]. Then, in this case, we have

f ′′(1− f2) + f · (f ′)2 = − 2
x3

(
1−
(
1− 1

x

)2
)
+
(
1− 1

x

)
· 1
x4

=
1
x5

− 3
x4

< 0

for x ≥ 1. So condition (1) is satisfied. Condition (2) and the conclusion of the
theorem prove the following.

Lemma 10.4. If for every a, b, c, d, R, S > 0 the following inequality is true:

(
R

R + S

)(
1

1−√(ab)/[(R+ a)(R + b)]

)

+
(

S

R+ S

)(
1

1−√(cd)/[(S + c)(S + d)]

)

≤ 1
1−√[(a+ c)(b + d)]/[(R + S + a+ c)(R + S + b+ d)]

,

then the inequality of Lemma 6.5 is true.
It might have been easier to continue from here if f−1 of Theorem 10.3 were

concave. Unfortunately this is never so, which might be a reason for the difficulty in
proving the inequality of the last lemma. This is explained in the following.

Remark 10.5. The function f(x) of Theorem 10.3 is concave on I. For f, (1−
f2) ≥ 0, so by condition (1) we get, on I,

f ′′ ≤ −f · (f ′)2

1− f2
≤ 0.

Hence f−1 is convex on [0, 1].
The second idea in this approach (after that of Theorem 10.3) is an elementary

trick to get rid of the square root functions in Lemma 10.4. Let us denote

α =
√

a

R+ a
, β =

√
b

R+ b
, γ =

√
c

S + c
, δ =

√
d

S + d
.

Then 0 ≤ α, β, γ, δ ≤ 1. Also α, β are independent except for α = 1 iff β = 1. That
happens only if R = 0. γ, δ are independent except for γ = 1 iff δ = 1. That happens
only if S = 0. For the inverse transformations we have

a =
(

α2

1− α2

)
R, b =

(
β2

1− β2

)
R, c =

(
γ2

1− γ2

)
S, d =

(
δ2

1− δ2

)
S.

With this notation, the left-hand side of the inequality in Lemma 10.4 is(
R

R+ S

)(
1

1− αβ

)
+
(

S

R+ S

)(
1

1− γδ

)
=

R(1− γδ) + S(1− αβ)
(R+ S)(1− αβ)(1 − γδ)

.
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As for the right-hand side, we have

I1 =
√

a+ c

R + S + a+ c
=

√
α2(1 − γ2)R + γ2(1− α2)S
(1 − γ2)R+ (1− α2)S

,

I2 =

√
b+ d

R+ S + b+ d
=

√
β2(1 − δ2)R+ δ2(1− β2)S
(1− δ2)R + (1− β2)S

.

Plugging these into the inequality of Lemma 10.4 we get

R(1− γδ) + S(1− αβ)
(R+ S)(1− αβ)(1 − γδ)

≤ 1
1− I1I2

.

Hence,

I1I2 ≥ Rαβ(1 − γδ) + Sγδ(1− αβ)
R(1− γδ) + S(1− αβ)

.

On squaring both sides we conclude that, in order to prove Lemma 6.5, it suffices to
prove the following.

Lemma 10.6. If R,S > 0 and 0 < α, β, γ, δ < 1, then(
α2(1− γ2)R+ γ2(1− α2)S

(1− γ2)R+ (1 − α2)S

)(
β2(1− δ2)R + δ2(1− β2)S
(1− δ2)R+ (1− β2)S

)

≥
(
Rαβ(1− γδ) + Sγδ(1− αβ)

R(1− γδ) + S(1− αβ)

)2

.

Proof (of Lemma 10.6). Let us define

E =
(
α2(1 − γ2)R + γ2(1− α2)S
(1 − γ2)R+ (1− α2)S

)(
β2(1− δ2)R+ γ2(1− α2)S
(1 − δ2)R+ (1 − α2)S

)

−
(
Rαβ(1 − γδ) + Sγδ(1− αβ)

R(1− γδ) + S(1− αβ)

)2

.

Then

E =
RS(R+ S)[(1 − γδ)L ·R+ (1− αβ)M · S]

[(1− γ2)R+ (1− α2)S][(1− δ2)R+ (1− α2)S][(1− γδ)R+ (1− αβ)S]2
,

where we have

L = α2β2(α− β)2 + (α− β)2γ3δ3

+ {(αδ)2(1− αβ)(1 + αβ − 2β2)− (αδ)(βγ)(2 − 4αβ + βα3 + αβ3)
+ (βγ)2(1− αβ)(1 + αβ − 2α2)}
+ {γ2β(1− αβ)(2α − β − αβ2)− γδ(α2 + β2 + 2α3β3 − 4α2β2)
+ δ2α(1− αβ)(2β − α− α2β)}γδ,
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or, as a polynomial in γ and δ,

L = α2β2(α− β)2 + β2(1− αβ)(1 + αβ − 2α2)γ2

+α2(1− αβ)(1 + αβ − 2β2)δ2 − αβ(2 + αβ3 − 4αβ + βα3)γδ
+ β(1− αβ)(2α− β − αβ2)γ3δ − (α2 + β2 + 2α3β3 − 4α2β2)γ2δ2

+α(1− αβ)(2β − α− α2β)γδ3 + (α− β)2γ3δ3,

and where M = M(α, β, γ, δ) = L(γ, δ, α, β). Thus it suffices to prove that, for
any 0 < α, β, γ, δ < 1, we have L(α, β, γ, δ) ≥ 0. For this will also imply that
M(α, β, γ, δ) ≥ 0 for any such choice. This, in turn, will show that E ≥ 0 for every
choice of R,S > 0 and 0 < α, β, γ, δ < 1 and hence will prove Lemma 10.6. To check
the nonnegativity of L(α, β, γ, δ) we make the substitutions

(α, β, γ, δ) =
(

x2

1 + x2
,

y2

1 + y2
,

z2

1 + z2
,

w2

1 + w2

)

and clear the denominators. This gives us a nonnegative polynomial in R[x, y, z, w].
To check its nonnegativity one may use techniques of real algebraic geometry [11].
This polynomial has a representation as a sum of five squares of other polynomials.

Here is another interesting inequality regarding the denominators in Lemma 10.6.
Proposition 10.7. If R,S > 0 and 0 < α, β, γ, δ < 1, then

((1 − γ2)R+ (1− α2)S)((1 − δ2)R + (1− β2)S) ≤ ((1 − γδ)R+ (1− αβ)S)2.

In fact we have the following identity:

((1 − γδ)R+ (1− αβ)S)2 − ((1 − γ2)R + (1− α2)S)((1 − δ2)R+ (1 − β2)S)
= (γ − δ)2R2 − ((αδ − βγ)2 − (α− β)2 − (γ − δ)2)RS + (α − β)2S2.

The discriminant of this quadratic form in R and S is

∆ = ((αδ − βγ)2 − (α− β)2 − (γ − δ)2)2 − 4(α− β)2(γ − δ)2

= (αδ − βγ + α− β + γ − δ)(αδ − βγ − α+ β − γ + δ)
× (αδ − βγ + α− β − γ + δ)(αδ − βγ − α+ β + γ − δ).

We note that the inequality of Proposition 10.7 relates the denominators of the two
sides of the inequality of Lemma 10.6. The numerators, however, are not comparable.
However, we have the following identity here:

(α2(1− γ2)R + γ2(1 − α2)S)(β2(1 − δ2)R+ δ2(1− β2)S)− (αβ(1 − γδ)R
+γδ(1− αβ)S)2

= −α2β2(γ − δ)2R2 + (β2γ2 − β2γ2δ2 − α2β2γ2 + α2δ2 − α2β2δ2 − α2γ2δ2

−2αβγδ + 2αβγ2δ2 + 2α2β2γδ)RS − γ2δ2(α − β)2S2.
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The discriminant of this quadratic form in R and S is

∆1 = (αβγ + αγδ − αδ − αβδ + βγ − βγδ)(αβγ − αγδ + αδ − αβδ − βγ + βγδ)
× (αβγ − αγδ − αδ − αβδ + βγ + βγδ)(αβγ + αγδ + αδ − αβδ − βγ − βγδ).

We note that we are interested here in quadratic forms that are nonnegative for
nonnegative values of their variables. Probably the next result is known. We provide
the proof for the convenience of the reader.

Theorem 10.8. AR2 + 2BRS + CS2 ≥ 0 for all R,S ≥ 0 iff (i) A,B,C ≥ 0 or
(ii) A ≥ 0, B < 0, B2 ≤ AC.

Proof. In one direction: First assume that AR2 + 2BRS + CS2 ≥ 0 for all
R,S ≥ 0. Plugging in S = 0 we get AR2 ≥ 0 for all R ≥ 0 and hence necessarily
A ≥ 0. Similarly C ≥ 0. If also B ≥ 0 then we have case (i). Otherwise B < 0.
We claim that in this case A > 0. Otherwise A = 0 and the form is S(2BR + CS).
The sign of the form is the same as that of 2BR + CS. If we let S → 0+, then
2BR + CS < 0 for B < 0, which is a contradiction. Hence if B < 0, then A > 0.
Similarly C > 0. Now we have

AR2 + 2BRS + CS2 = A

(
R+

BS

A

)2

+
(
AC −B2

A

)
S2.

Since B < 0, we can choose R,S > 0 so that R+BS/A = 0. Hence AC −B2 ≥ 0 is
a necessity and we have case (ii).

In the opposite direction: We assume that (i) or (ii) holds. In case (i) we have
A,B,C ≥ 0 and this clearly implies that AR2 +2BRS+CS2 ≥ 0 for all R,S ≥ 0. In
case (ii), by B < 0 we get B2 > 0 and by AC ≥ B2 it follows that AC > 0. Hence,
again we have the identity

AR2 + 2BRS + CS2 = A

(
R+

BS

A

)2

+
(
AC −B2

A

)
S2.

So by (ii) we obtain

AR2 + 2BRS + CS2 ≥
(
AC −B2

A

)
S2 ≥ 0

for all R,S (not just R,S ≥ 0).
By this theorem it follows that, in order to prove Proposition 10.7, i.e., to prove

that

(γ − δ)2R2 − ((αδ − βγ)2 − (α− β)2 − (γ − δ)2)RS + (α− β)2S2 ≥ 0

for all R,S > 0, 0 ≤ α, β, γ, δ ≤ 1 we need to show that case (ii) holds. This means
we need to show that the assumptions

(1) 0 ≤ α, β, γ, δ ≤ 1 and
(2) (αδ − βγ)2 > (α− β)2 + (γ − δ)2

imply that

∆ = ((αδ − βγ)2 − (α − β)2 − (γ − δ)2)2 − 4(α− β)2(γ − δ)2 ≤ 0.
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Proof (of Proposition 10.7). We make the assumptions (1) and (2) above. Also,
without any restrictions, we assume that α ≥ β, γ ≥ δ. Then 1 − α ≤ 1 − β,
1 − γ ≤ 1 − δ, and all these numbers are nonnegative. To show that ∆ ≤ 0 is
equivalent to showing that

((αδ − βγ)2 − (α− β)2 − (γ − δ)2)2 ≤ 4(α− β)2(γ − δ)2.

By assumption (2), the number under the square on the left side is nonnegative as
are those on the right side. So we can extract square roots to get

(αδ − βγ)2 − (α − β)2 − (γ − δ)2 ≤ 2(α− β)(γ − δ)

or

(αδ − βγ)2 ≤ (α− β + γ − δ)2

or

0 ≤ (α− β + γ − δ − αδ + βγ)(α− β + γ − δ + αδ − βγ).

We will now show that both factors are nonnegative. This will establish the proof.
The first factor is α−β+ γ− δ−αδ+βγ = α(1− δ)−β(1− γ)+ γ− δ. Here we have
α ≥ β, 1− δ ≥ 1− γ and so α(1− δ) ≥ β(1 − γ). Also γ − δ ≥ 0 and hence indeed

α− β + γ − δ − αδ + βγ ≥ 0.

The second factor is α− β + γ − δ+ αδ − βγ = γ(1− β)− δ(1− α) + α− β, which is
nonnegative as well, for similar reasons.

We give one more reduction of Lemma 6.5, which is based on Theorem 10.3.
Lemma 10.9. (i) If for every a, b, c, d, R, S > 0 there exists an n > 0 such that

the following inequality is true:

(
R

R + S

)(
1

1 −
√

ab/((R + a)(R + b))

)1/n

+
(

S

R + S

)(
1

1 −
√

cd/((S + c)(S + d))

)1/n

≤
(

1

1 −
√

(a + c)(b + d)/((R + S + a + c)(R + S + b + d))

)1/n

,

then the inequality of Lemma 6.5 is true.
(ii) If for every a, b, c, d, R, S > 0 the following inequality is true:

{
1−
√

ab

(R + a)(R+ b)

}R/(R+S){
1−
√

cd

(S + c)(S + d)

}S/(R+S)

≥ 1−
√

(a+ c)(b+ d)
(R+ S + a+ c)(R+ S + b+ d)

,

then the inequality of Lemma 6.5 is true.
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Proof. We first note that the proof of Theorem 10.3 gives us, in fact, a stronger
theorem.

Theorem 10.3′. Let a, b, c, d, R, S > 0 be fixed. Suppose that there exists a twice-
differentiable, surjective, and strictly increasing function f : I → [0, 1] that satisfies
the following two conditions:

(1) f ′′(1− f2) + f · (f ′)2 ≤ 0 on I,
(2)

(
R

R+ S

)
f−1

(√
ab

(R + a)(R+ b)

)
+
(

S

R + S

)
f−1

(√
cd

(S + c)(S + d)

)

≤ f−1

(√
(a+ c)(b+ d)

(R+ S + a+ c)(R+ S + b+ d)

)
,

then

(
R

R+ S

)
sin−1

(√
ab

(R + a)(R+ b)

)
+
(

S

R + S

)
sin−1

(√
cd

(S + c)(S + d)

)

≤ sin−1

(√
(a+ c)(b+ d)

(R+ S + a+ c)(R+ S + b+ d)

)
.

A proof of (i). Let us fix a, b, c, d, R, S > 0. By the assumption there exists a
corresponding n > 0. We define

f(x) = 1− 1
xn

, I = [1,∞].

Then f ′(x) = n/xn+1, f ′′(x) = −n(n+ 1)/xn+2, and so

f ′′(1 − f2) + f · (f ′)2 =
−n(n+ 1)

xn+2

(
1−
(
1− 1

xn

)2
)
+
(
1− 1

xn

)
·
( n

xn+1

)2

=
−n(n+ 1)

xn+2
· 1
xn

·
(
2− 1

xn

)
+
(
1− 1

xn

)
· n2

x2n+2

=
−2n(n+ 1)

x2n+2
+

n(n+ 1)
x3n+2

+
n2

x2n+2
− n2

x3n+2

=
n

x3n+2
− n(n+ 2)

x2n+2
=

n

x3n+2
(1− (n+ 2)xn) < 0

for x ∈ I since n > 0. This proves that f(x) satisfies condition (1) of Theorem
10.3′. Condition (2) of Theorem 10.3′ is satisfied by our assumption on n. Hence,
by Theorem 10.3′, the inequality of Lemma 6.5 holds for our fixed a, b, c, d, R, S > 0.
But this is true for any choice of a, b, c, d, R, S > 0 and hence the conclusion of part
(i).
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A proof of (ii). Let a, b, c, d, R, S > 0. Let us denote

t1 =

√
ab

(R+ a)(R + b)
, t2 =

√
cd

(S + c)(S + d)
,

t3 =

√
(a+ c)(b + d)

(R+ S + a+ c)(R + S + b+ d)
, α =

R

R+ S
.

Thus,

1− α =
S

R+ S
.

Let us assume that

(1 − t1)α(1 − t2)1−α > 1− t3

so that

−α log(1 − t1)− (1− α) log(1− t2) < − log(1− t3).

We claim that in this case there exists an n > 0 for which the inequality of part (i) is
satisfied and is sharp, i.e., with no equality. To see this we note that, for any n > 0,
0 < t < 1, the binomial expansion gives us(

1
1− t

)1/n

= (1− t)−1/n = 1 +
1
n
· t+ 1

2
· 1
n
·
(
1
n
+ 1
)
· t2 + · · · .

Hence,

α

(
1

1− t1

)1/n

+ (1− α)
(

1
1− t2

)1/n

= α

{
1 +

1
n
· t1 + 1

2
· 1
n
·
(
1
n
+ 1
)
· t21 + · · ·

}

+(1− α)
{
1 +

1
n
· t2 + 1

2
· 1
n
·
(
1
n
+ 1
)
· t22 + · · ·

}

= 1 +
1
n
{αt1 + (1− α)t2}+ 1

2
· 1
n
·
(
1
n
+ 1
){

αt21 + (1− α)t22
}
+ · · ·

= 1 +
1
n

{
α

(
t1 +

t21
2
+ · · ·

)
+ (1− α)

(
t2 +

t22
2
+ · · ·

)}
+O

(
1
n2

)

= 1 +
1
n
{α (− log(1− t1)) + (1− α) (− log(1− t2))}+O

(
1
n2

)
.

Similarly we have the expansion(
1

1− t3

)1/n

= 1 +
1
n
(− log(1 − t3)) +O

(
1
n2

)
.
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By our assumption we conclude that for all n > 0 large enough we have

α

(
1

1− t1

)1/n

+ (1− α)
(

1
1− t2

)1/n

<

(
1

1− t3

)1/n

,

which proves the assertion. If a, b, c, d, R, S > 0 are such that we have equality,

(1− t1)α(1− t2)1−α = 1− t3,

then we make small perturbations

a′ = a+ ε1, b
′ = b+ ε2, c

′ = c+ ε3, d
′ = d+ ε4, R

′ = R+ ε5, S
′ = S + ε6

such that with the perturbed parameters we get strict inequality:

(1 − t′1)
α′
(1− t′2)

1−α′
> 1− t′3.

By the first part of the proof, the inequality of Lemma 6.5 holds with a′, b′, c′, d′, R′, S′.
We now let ε′j → 0, 1 ≤ j ≤ 6, which is clearly possible to do.

Remark 10.10. The fact that we can have ε′j → 0 while keeping the strict
inequality

(1− t′1)
α′
(1 − t′2)

1−α′
> 1− t′3

follows by the permanence principle for holomorphic functions. For, if we had the
opposite situation, then by the permanence principle we should have had the identity

{1− t1(a′, b′, c′, d′, R′, S′)}R′/(R′+S′){1− t2(a′, b′, c′, d′, R′, S′)}S′/(R′+S′)

≡ 1− t3(a′, b′, c′, d′, R′, S′)

in some open subset of R
6, |a′−a|, |b′−b|, |c′−c|, |d′−d|, |R′−R|, |S′−S| < ε. Since the

functions t1, t2, and t3 are real holomorphic in the real variables (a′, b′, c′, d′, R′, S′)
we conclude that the above identity should have been true in all of (R+)6. This is
false! We can take, for example,

a = 1, b = 2, c = 3, d = 4, R = 5, S = 6.

Remark 10.11. It is interesting to note that, if we consider in part (ii) of the
previous lemma only the linear term in the binomial expansion (i.e., the coefficients
of t1, t2, and t3), we obtain the following inequality, which seems to be correct for
every a, b, c, d, R, S > 0:

(
R

R+ S

)√
ab

(R+ a)(R + b)
+
(

S

R + S

)√
cd

(S + c)(S + d)

≤
√

(a+ c)(b + d)
(R + S + a+ c)(R + S + b+ d)

.
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We mimic our reduction of Lemma 6.5 to Lemma 10.6 and obtain that in order
to prove Lemma 6.5 it suffices to prove the following.

Lemma 10.12. If 0 < α, β, γ, δ, t < 1, then the following inequality is true:(
tα2(1− γ2) + (1− t)γ2(1− α2)

t(1− γ2) + (1− t)(1− α2)

)(
tβ2(1− δ2) + (1− t)δ2(1− β2)
t(1− δ2) + (1 − t)(1− β2)

)

≥ (1− (1− αβ)t(1 − γδ)1−t
)2

.

Proof.

α2 =
a

R+ a
=⇒ a =

α2R

1− α2
, β2 =

b

R+ b
=⇒ b =

β2R

1− β2
,

γ2 =
c

S + c
=⇒ c =

γ2S

1− γ2
, δ2 =

d

S + d
=⇒ d =

δ2S

1− δ2
.

We substitute

a+ c

R+ S + a+ c
=

α2R(1− γ2) + γ2S(1− α2)
R(1− γ2) + S(1− α2)

,

b+ d

R + S + b+ d
=

β2R(1− δ2) + δ2S(1− β2)
R(1− δ2) + S(1− β2)

,

so the inequality of Lemma 10.9(ii) becomes

(1 − αβ)t(1 − γδ)1−t

≥ 1 −
√(

tα2(1 − γ2) + (1 − t)γ2(1 − α2)

t(1 − γ2) + (1 − t)(1 − α2)

)(
tβ2(1 − δ2) + (1 − t)δ2(1 − β2)

t(1 − δ2) + (1 − t)(1− β2)

)
.

This is exactly the inequality of Lemma 10.12, where we define

t =
R

R+ S
.

11. Monotonicity and convexity of fa and the Perron–Frobenius theory.
Let a ∈ R

|V | be an angles-parameter vector. Then the mapping{
fa : R

+|V | → R
+|V |

fa(r0, . . . , r|V |−1) = (R0, . . . , R|V |−1),

which is implicitly defined by the equations

li−1∑
k=1

cos−1

(
1− 2rji,krji,k+1

(Ri + rji,k)(Ri + rji,k+1)

)
= ai, 0 ≤ i < |V |
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(see section 3), satisfies the following three properties:
(1) fa is an isotone mapping (Proposition 3.1). This means that

r, s ∈ R+|V |, r ≤ s =⇒ fa(r) ≤ fa(s).

(2) fa is a homogeneous mapping (Theorem 6.1(i)). This means that

r ∈ R
+|V |, t > 0 =⇒ fa(tr) = tfa(r).

(3) fa is a superadditive mapping (Theorem 6.1(ii)). This means that

r, s ∈ R+|V | =⇒ fa(r) + fa(s) ≤ fa(r + s).

Remark 11.1. Property (3) implies property (1).
We recall definition 13.3.1 on page 448 of [10].
Definition 11.2. A mapping F : D ⊆ R

n → R
n is convex on a convex subset

D0 ⊆ D if F (tr+(1− t)s) ≤ tF (r)+ (1− t)F (s) whenever r, s ∈ D0 and 0 < t < 1.
Theorem 11.3. −fa is convex on R

+|V |.
Proof. Let r, s ∈ R

+|V | and let 0 < t < 1. Then we have

−fa(tr + (1− t)s) ≤ −fa(tr)− fa((1 − t)s) (property (3))
= t (−fa(r)) + (1− t) (−fa(s)) (property (2)).

As an immediate consequence of the above we obtain the following.
Theorem 11.4.
(i) For every r ∈ R

+|V | we have fa
′(r) ≥ 0.

(ii) For every r, s ∈ R+|V | we have

(fa(s)− fa(r))
T ≤ fa

′(r) · (s− r)T .

(iii) For every r, s ∈ R
+|V | we have

(fa
′(s)− fa

′(r)) · (s− r)T ≤ 0.

(iv) For every r ∈ R+|V | and every h ∈ R|V | we have

fa
′′(r)hh ≤ 0.

Proof. (i) This follows by property (1). For every i, 0 ≤ i < |V |, the component
function Ri(r0, r1, . . . , r|V |−1) is nondecreasing in rj , 0 ≤ j < |V |. Hence

∂Ri

∂rj
≥ 0, 0 ≤ i, j < |V |.

(ii) This follows by Theorem 11.3 and Theorem 13.3.2 on page 448 of [10], equation
(3).
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(iii) and (iv) follow by Theorem 11.3 and Theorem 13.3.2 on page 448 of [10],
equations (4) and (5), respectively.

Theorem 11.5. For every r ∈ R
+|V | we have

fa
′(r) · rT = fa(r)T .

Proof. This is essentially Euler’s theorem on homogeneous functions of degree 1.
Namely, if fa(r) = (R0, . . . , R|V |−1), then by property (2) we have for 0 ≤ i < |V |

Ri(tr0, . . . , tr|V |−1) = tRi(r0, . . . , r|V |−1).

Here r = (r0, . . . , r|V |−1). So by Euler’s theorem, mentioned above, we have

|V |−1∑
j=0

rj
∂Ri

∂rj
= Ri, 0 ≤ i < |V |.

This is just the matrix identity

fa
′(r) · rT = fa(r)T .

Remark 11.6. In this paper the vectors in R
n are row vectors. This is the reason

that we need the transposed operation in our expressions above.
Theorem 11.7. For every r, s ∈ R

+|V | we have

fa(r)T ≤ fa
′(s) · rT .

Proof. By Theorem 11.4(ii) we have

fa(r)T − fa(s)T ≤ fa
′(s) · (rT − sT ).

So

fa(r)T − fa(s)T ≤ fa
′(s) · rT − fa

′(s) · sT .

By Theorem 11.5 we have the identity

fa
′(s) · sT = fa(s)T ,

so we can cancel this quantity on both sides of the matrix inequality to obtain

fa(r)T ≤ fa
′(s) · rT .

Corollary 11.8. For every r, s ∈ R
+|V | and for every k ∈ Z

+ ∪ {0} we have

f
(◦k)
a (r)T ≤ (fa

′(s))k · rT ,
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where the notation f
(◦k)
a (r) stands for k applications of the mapping fa on the vector

r.
Proof. For k = 0 we have f

(◦0)
a (r)T = rT and (fa

′(s))0 = I|V |, the identity
|V | × |V | matrix. Hence

rT = f
(◦0)
a (r)T = (fa

′(s))0 · rT = I|V | · rT .

For k = 1 the inequality follows by Theorem 11.7. So let us assume inductively that

f
(◦k)
a (r)T ≤ (fa

′(s))k · rT .

Then for k + 1 we have

f
(◦(k+1))
a (r)T = fa(f

(◦k)
a (r))T (Theorem 11.7)

≤ (fa
′(s)) · f (◦k)

a (r)T (induction assumption)

≤ (fa
′(s)) · (fa

′(s))k · rT = (fa
′(s))k+1 · rT .

Theorem 11.9. For every r, s ∈ R
+|V |, if ρ(fa

′(s)) < 1, then (I|V | − fa
′(s))−1

exists and is nonnegative and

∞∑
k=0

f
(◦k)
a (r)T ≤ (I|V | − fa

′(s))−1 · rT .

In particular under the assumptions of the theorem we have for every r ∈ R
+|V |

lim
k→∞

f
(◦k)
a (r)T = 0.

Here we use the standard notation ρ(A) for the spectral radius of the matrix A.
Proof. By Corollary 11.8 we have for every r, s ∈ R

+|V | and for every k ∈ Z
+∪{0}

f
(◦k)
a (r)T ≤ (fa

′(s))k · rT .

Hence for every N ∈ Z
+ ∪ {0}

N∑
k=0

f
(◦k)
a (r)T ≤

{
N∑

k=0

(fa
′(s))k

}
· rT .

If ρ(fa
′(s)) < 1 then most of the claims follow by Neumann’s lemma (page 45 in

[10]). In fact by Theorem 11.4(i) we have fa
′(s) ≥ 0 so Theorem 2.4.5 on page 53

in [10] implies that (I|V | − fa
′(s))−1 exists and is nonnegative iff ρ(fa

′(s)) < 1. By
Neumann’s lemma we have the identity

(I|V | − fa
′(s))−1 =

∞∑
k=0

(fa
′(s))k
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and the proof is completed.
Here is an interesting consequence.
Theorem 11.10.
(i) Let λ(a) be the unique eigenvalue of fa. If there exists an s ∈ R+|V | such that

ρ(fa
′(s)) < 1, then 0 < λ(a) < 1.
(ii) Conversely, if 0 < λ(a) < 1 and if r ∈ R+|V | is an eigenvector of fa, then

ρ(fa
′(r)) = λ(a) < 1.
Proof. (i) Suppose that ρ(fa

′(s)) < 1 for some s ∈ R+|V |. Suppose also that
r ∈ R

+|V | is an eigenvector of fa. Then by Theorem 11.9 we have the inequality

∞∑
k=0

f
(◦k)
a (r)T ≤ (I|V | − fa

′(s))−1 · rT .

In this case we also have the identity fa(r)T = λrT (where we shorten λ = λ(a)) and
by induction we have for every k ∈ Z

+ ∪ {0} the identity f
(◦k)
a (r)T = λkrT . Indeed

for k = 0 this is just

rT = f
(◦0)
a (r)T = λ0rT

and for k = 1 this is fa(r)T = λrT ). If we assume that

f
(◦k)
a (r)T = λkrT ,

then for k + 1 we have

f
(◦(k+1))
a (r)T = fa

(
f

(◦(k))
a (r)

)T

(induction hypothesis)

= fa(λkr)T (property (2))
= λkfa(r)T (the case k = 1)
= λk(λr)T = λk+1rT .

Hence by substituting this into the inequality we get( ∞∑
k=0

λk

)
rT ≤ (I|V | − fa

′(s))−1 · rT .

Hence 0 <
∑∞

k=0 λ
k < ∞, which is equivalent to 0 < λ < 1.

(ii) Let us suppose that 0 < λ < 1 and that r ∈ R
+|V | satisfies the eigenvector

equation for fa

fa(r) = λr.

By Theorem 11.5 we have fa(r)T = fa
′(r) · rT and so

fa
′(r) · rT = λrT
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or

(λI|V | − fa
′(r)) · rT = 0T

.

This shows that λ is also an eigenvalue of the matrix fa
′(r) and that rT is a corre-

sponding eigenvector. Since r ∈ R
+|V | we have rT ≥ 0. In fact each component of

rT is a positive number. By Theorem 11.4(i) fa
′(r) is a nonnegative matrix. We also

claim that fa
′(r) is irreducible. To see that we use Theorem 2.3.5 on page 47 of [10].

We need to show that for any two indices 0 ≤ i, j < |V | there is a sequence of nonzero
elements of the matrix fa

′(r) located in entries of the form

(i, i1), (i1, i2), . . . , (im, j).

This follows by the following geometrical properties:
(a) G is a connected graph.
(b) The valence of every vertex of G is at least 3.
(c) If fa(x0, . . . , x|V |−1) = (R0, . . . , R|V |−1) and l is a vertex of G adjacent to

vertex k, then

∂Rk

∂xl
> 0.

We proved that rT is a positive eigenvector of the nonnegative and irreducible matrix
fa

′(r). By the Perron–Frobenius theory of nonnegative matrices, it follows that rT is
an eigenvector of fa

′(r) that corresponds to ρ(fa
′(r)); see Theorem 1.4 on page 27

of [4] or example 10 on page 58 of [8]. Hence we have the equality ρ(fa
′(r)) = λ(a),

which concludes the proof of part (ii) of our theorem.
It is useful to note that in the course of our proof of Theorem 11.10(ii) we also

proved incidentally the following theorem.
Theorem 11.11. If λ(a) is the unique eigenvalue of fa and if r ∈ R

+|V | is a
positive corresponding eigenvector, then

λ(a) = ρ(fa
′(r)),

the spectral radius of the nonnegative and irreducible matrix fa
′(r), and rT is a positive

eigenvector of this matrix.

12. A converse of the contraction principle, the min-max theorem, and
rigidity. Suppose that G is a graph embedding, a ∈ R

|V | is an angles-parameter
vector, and fa : R+|V | → R+|V | is the corresponding a-mapping. Let Ga be the
normalization of fa of the second kind. The main purpose of this section and of the
next section is to prove that Ga is a contraction on (R+|V |, d) with an appropriate
metric d on R

+|V | that is continuous relative to the standard Euclidean metric. In
particular this will imply that Ga has a unique fixed point in R

+|V | and that the
iterates G(◦n)

a (r) converge to this fixed point for any r ∈ R
+|V |. We recall the equation

of Theorem 11.5:

fa(r)T = fa
′(r) · rT , r ∈ R

+|V |.
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This equation generalizes to iterates of fa as follows.
Theorem 12.1.

∀ r ∈ R+|V |, ∀n ∈ Z+ ∪ {0}, f
(◦n)
a (r)T =

(
f

(◦n)
a

)
′(r) · rT .

Proof.
Method 1. The equation fa(r)T = fa

′(r) · rT is a consequence of Euler’s theo-
rem on homogeneous functions of degree 1. Hence it suffices to prove that f

(◦n)
a is

homogeneous of degree 1. This follows easily by induction on n:

f
(◦(n+1))
a (tr) = f

(◦n)
a (fa(tr)) = f

(◦n)
a (tfa(r))

= tf
(◦n)
a (fa(r)) = tf

(◦(n+1))
a (r) .

Method 2. We use induction on n starting from the equation
fa(r)T = fa

′(r) · rT and the chain rule:

f
(◦(n+1))
a (r)T = f

(◦n)
a (fa(r))

T =
(
f

(◦n)
a

)
′ (fa(r)) · fa(r)T

=
(
f

(◦n)
a

)
′ (fa(r)) fa

′(r) · rT =
(
f

(◦(n+1))
a

)
′(r) · rT .

Here is another useful fact on iterations of fa. It generalizes Theorem 11.7.
Theorem 12.2.

∀ r, s ∈ R+|V |, ∀n ∈ Z+ ∪ {0}, f
(◦n)
a (r)T ≤

(
f

(◦n)
a

)
′(s) · rT .

Proof. The case n = 0 is clear and the case n = 1 was established in Theorem
11.7. We first prove that f

(◦n)
a is a superadditive mapping. We use induction on n.

By the superadditivity of fa and the fact that f (◦n)
a is isotone it follows that

f
(◦(n+1))
a (r + s) = f

(◦n)
a (fa(r + s))

≥ f
(◦n)
a (fa(r) + fa(s)) .

Hence the induction hypothesis implies that

f
(◦(n+1))
a (r + s) ≥ f

(◦n)
a (fa(r)) + f

(◦n)
a (fa(s))

= f
(◦(n+1))
a (r) + f

(◦(n+1))
a (s) .

As in Theorem 11.3 this implies that −f
(◦n)
a is convex on R+|V |. As in Theorem

11.4(ii) this implies the inequality

(
f

(◦n)
a (s)− f

(◦n)
a (r)

)T

≤
(
f

(◦n)
a

)
′(r) · (s− r)T .
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So

f
(◦n)
a (r)T − f

(◦n)
a (s)T ≤

(
f

(◦n)
a

)
′(s) · rT −

(
f

(◦n)
a

)
′(s) · sT .

By Theorem 12.1 we have the identity

f
(◦n)
a (s)T =

(
f

(◦n)
a

)
′(s) · sT ,

so we can cancel this quantity on both sides of the matrix inequality to obtain

f
(◦n)
a (r)T ≤

(
f

(◦n)
a

)
′(s) · rT .

Here is another useful fact on iterations of fa. It generalizes a part of what was
proved in Theorem 11.10(ii).

Theorem 12.3. ∀ r ∈ R+|V |, ∀n ∈ Z+, (f (◦n)
a )′(r) is a nonnegative and irre-

ducible matrix.
Proof. In Theorem 11.10(ii) we proved the case n = 1. The proof of the irre-

ducibility of (f (◦n)
a )′(r) for n > 1 follows similarly to the case n = 1 by noting that

f
(◦n)
a corresponds to paths of length n between vertices of the graph.

The nonnegativity of (f (◦n)
a )′(r) is a consequence of the fact that the mapping

f
(◦n)
a is isotone ∀n ∈ Z+ . This is so because it is an n-folded composition of isotone
mappings.

We quote a version of the min-max theorem for eigenvalues of symmetric matrices.
It appears on page 394 of [5].

Theorem 12.4. (Courant–Fischer min-max theorem.) If A ∈ R
n×n is symmet-

ric, then

λk(A) = max
dim(S)=k

min
0�=y∈S

yAyT

yyT
, k = 1, . . . , n,

where λ1(A) ≥ · · · ≥ λn(A) are the eigenvalues of A and where, as usual, y ∈ R
n is

a row vector.
We can now derive a useful estimate on the largest eigenvalue of (f (◦n)

a )′(s).
Theorem 12.5. Let s ∈ R+|V |, n ∈ Z+ ∪ {0} and let us denote by λ(n)(s) the

largest eigenvalue of (f (◦n)
a )′(s). Then

λ(n)(s) ≥ max
r∈R

+|V |
,r·rT =1

r · f (◦n)
a (r)T .

Proof. We remark that λ(n)(s) is positive because (f (◦n)
a )′(s) is a nonnegative

matrix. Next, by the min-max theorem, we have

λ(n)(s) = max
dim(S)=1

min
r∈S−{0}

r
(
f

(◦n)
a

)
′(s) · rT

r · rT
.
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Hence, since dim(S) = 1, we have

λ(n)(s) = max
r·rT =1

r
(
f

(◦n)
a

)
′(s) · rT .

By the fact that (f (◦n)
a )′(s) is nonnegative (Theorem 12.3) it follows that in fact

λ(n)(s) = max
r∈R

+|V |
,r·rT =1

r
(
f

(◦n)
a

)
′(s) · rT .

By Theorem 12.2 it follows that

λ(n)(s) ≥ max
r∈R

+|V |
,r·rT =1

r · f (◦n)
a (r)T .

We can now give an alternative proof for the rigidity theorem (Theorem 5.1).
This proof is algebraic in nature. In fact we prove much more.

Theorem 12.6. (The general rigidity theorem.) ∀n ∈ Z
+, f

(◦n)
a has at most

one eigenvalue λ(n) (as a mapping R
+|V | → R

+|V |). If λ(n) exists, then any pair of
corresponding eigenpoints are proportional to one another. We have the representation

λ(n) = min
s∈R

+|V |
λ(n)(s),

where λ(n)(s) is the largest eigenvalue of the nonnegative matrix (f (◦n)
a )′(s).

Proof. Let λ be a (positive) eigenvalue of f (◦n)
a . Let r0 ∈ R+|V |, r0 · r0T = 1, be

a corresponding eigenpoint, i.e.,

f
(◦n)
a (r0) = λr0.

As in Theorem 11.11 it follows that λ is the unique positive eigenvalue of the matrix
(f (◦n)

a )′(r0). In fact we have λ = ρ((f (◦n)
a )′(r0)), and r0

T is a positive eigenvector of
the matrix (f (◦n)

a )′(r0). Let s ∈ R
+|V |. By Theorem 12.4 we have

λ(n)(s) ≥ max
r∈R

+|V |
,r·rT =1

r · f (◦n)
a (r)T ≥ r0 · f (◦n)

a (r0)T = r0 · (λr0T ) = λ.

This proves that λ ≤ min
s∈R

+|V | λ(n)(s). By the above consequence of Theorem 11.11
we have λ = λ(n)(r0). This proves that we actually have the equality

λ = min
s∈R

+|V |
λ(n)(s).

Since λ was any eigenvalue of f (◦n)
a , the formula above shows that f (◦n)

a has at most
one eigenvalue and hence rigidity.

Remark 12.7. If λ(n) exists and if r0 is a corresponding eigenpoint, then, by the
above consequence of Theorem 11.11, r0T is a positive eigenvector of the nonnegative
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and irreducible matrix (f (◦n)
a )′(r0) and hence by Perron–Frobenius it is projectively

unique.
However, it seems as if λ(n) may have another (projectively different) eigenpoint

r1. It is true that, again by Perron–Frobenius, r1 is the projectively unique eigenvector
of the matrix (f (◦n)

a )′(r1) but this does not imply the uniqueness of the eigenpoint for
f

(◦n)
a . We will prove that part of Theorem 12.5 and much more in the next section.

Remark 12.8. We proved the existence of a positive eigenvalue of fa (Theorem
9.2). Combining this with the general rigidity theorem (Theorem 12.5) proves the ex-
istence and the uniqueness of the positive eigenvalue and the corresponding projective
eigenpoint of any iteration f

(◦n)
a .

We translate the results for f
(◦n)
a to corresponding results for iterations of the

normalization of the second kind G
(◦n)
a .

Theorem 12.9. ∀n ∈ Z
+, G(◦n)

a has a unique positive fixed point.
Proof. If fa(r) = (R0, . . . , R|V |−1), then by the definition we have

Ga(r) =
1
R0

fa(r).

This implies that every positive eigenpoint of fa is a fixed point of Ga and vice versa.
For we may assume (by the fact that fa is homogeneous) that r = (1, . . .) and so

fa(r) = λr ⇔ r =
1
λ
fa(r) = Ga(r).

As for iterations, we use induction on n

G
(◦(n+1))
a (r) = G

(◦n)
a (Ga(r)) = G

(◦n)
a

(
1
R0

fa(r)
)

=
1

R
(n)
0

f
(◦n)
a

(
1
R0

fa(r)
)
=

1

R0R
(n)
0

f
(◦(n+1))
a (r),

where f
(◦(n+1))
a (r) = (R0R

(n)
0 , . . .). So the theorem holds true for all n ∈ Z

+.
We can now prove our main result.
Theorem 12.10. ∀ r ∈ R

+|V |, the limit limn→∞ G
(◦n)
a (r) exists and equals the

unique fixed point (1, . . .) of Ga.
Proof. By Theorem 12.9 G

(◦n)
a has a unique fixed point ∀n ∈ Z+. Hence the

assumptions of the theorem of C. Bessaga [3] hold. The conclusion is that for any
s ∈ (0, 1) there exists a metric ds on R+|V | (more accurately, on the set D that is
defined in Definition 15.1) so that (R+|V |, ds) is a complete metric space and Ga is
an s-contraction on R

+|V |, i.e.,

∀ r, s ∈ R
+|V |, ds (Ga(r), Ga(s)) ≤ sds(r, s).

Moreover, ds dominates locally the Euclidean metric in the sense that for any Eu-
clidean neighborhood U ⊆ R

+|V | there exists a constant C = C(U) such that
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∀ r, s ∈ U we have the inequality

||r − s||2 ≤ Cds(r, s).

Now the result follows by the theorem of Banach on contractions.
We need to prove now the uniqueness of the eigenpoint of f (◦n)

a of Theorem 12.5.
This will complete our theory so far. We do that in the next section.

13. Uniqueness of the eigenpoint and more formulas for the eigenvalue
of f (◦n)

a . We start with the following structure theorem. Its proof gives as a bonus a
formula for λ(n), different from the one of Theorem 12.5.

Theorem 13.1. Suppose that r, s ∈ R
+|V | satisfy the following two assumptions:

f
(◦n)
a (r)T = λ(n)rT and f

(◦n)
a (s)T ≥ λ(n)sT . Then ∀α, β ∈ R

+|V | ∪ {0}, α2 + β2 > 0,
we have

f
(◦n)
a (αr + βs)T = λ(n)(αr + βs)T .

In particular s must also be an eigenpoint of f (◦n)
a . We also have the following for-

mula:

λ(n) = max
r1∈R

+|V |
,||r1||2=1

r1 · f (◦n)
a (r1)T .

Proof. λ(n) is an eigenvalue of the matrix (f (◦n)
a )′(r), so by the min-max theorem

for nonnegative matrices and by Theorem 12.2 we obtain

λ(n) = max
r1∈R

+|V |
,||r1||2=1

r1

(
f

(◦n)

a

)
′(r) · r1

T ≥ max
r1∈R

+|V |
,||r1||2=1

r1 · f (◦n)

a
(r1)

T .(13.1)

We will denote r1 = (r0, . . . , r|V |−1) and f
(◦n)
a (r1) = (R0(r1), . . . , R|V |−1(r1)). Then

we can rewrite (13.1) as follows:

λ(n) ≥ max
r1∈R+|V |

,||r1||2=1

|V |−1∑
i=0

riRi(r1).(13.2)

By superadditivity (see the proof of Theorem 12.2) we have

f
(◦n)
a (αr + βs)T ≥ f

(◦n)
a (αr)T + f

(◦n)
a (βs)T .(13.3)

By the fact that f (◦n)
a is homogeneous and by the assumptions on r and on s we get

f
(◦n)
a (αr)T + f

(◦n)
a (βs)T ≥ λ(n)(αr + βs)T .(13.4)

So (13.3) and (13.4) give us

f
(◦n)
a (αr + βs)T ≥ λ(n)(αr + βs)T .(13.5)
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If u = αr + βs, (11) implies that, ∀ 0 ≤ i < |V |, Ri(u) ≥ λ(n)ui. So for such a u,
which is normalized to satisfy ||u||2 = 1, we get

|V |−1∑
i=0

uiRi(u) ≥
|V |−1∑
i=0

ui(λ(n)ui) = λ(n).

Combining this with (13.2) gives us

λ(n) ≥ max
r1∈R

+|V |
,||r1||2=1

riRi(r1) ≥
|V |−1∑
i=0

uiRi(u) ≥ λ(n).

Thus we must have the equality sign all along and hence

λ(n) = max
r1∈R

+|V |
,||r1||2=1

r1 · f (◦n)
a (r1)T = u · f (◦n)

a (u)T .

This proves the formula for λ(n) and also proves the equalities Ri(u) = λ(n)ui ∀ 0 ≤
i < |V |. These equalities are equivalent to f

(◦n)
a (u) = λ(n)u and so also the first part

of the theorem follows.
Here is a conclusion of Theorem 13.1.
Theorem 13.2. ∀ v ∈ R+|V | either v is an eigenpoint of f (◦n)

a , i.e., f (◦n)
a (v) =

λ(n)v, or f
(◦n)
a (v)T �≥ λ(n)vT . This gives one more formula for λ(n):

λ(n) = max
{
α ∈ R

+ | ∃v ∈ R
+|V | s.t. f

(◦n)
a (v)T ≥ αvT

}
.

Proof. If v ∈ R
+|V | does not satisfy f

(◦n)
a (v)T �≥ λ(n)vT , then f

(◦n)
a (v)T ≥ λ(n)vT ,

and by Theorem 13.1 this implies that v is an eigenpoint of f (◦n)
a .

Next we take any v ∈ R
+|V |. If v is not an eigenpoint of f (◦n)

a , then by the
above we have f

(◦n)
a (v)T �≥ λ(n)vT so that there exists an index i, 0 ≤ i < |V |,

such that Ri(v) < λ(n)vi (where, as usual, v = (v0, . . . , v|V |−1) and f
(◦n)
a (v) =

(R0(v), . . . , R|V |−1(v))). Hence for such a v if f
(◦n)
a (v)T ≥ αvT then necessarily

α < λ(n). This proves our formula.
We can now conclude the proof of Theorem 12.5. Let us define V (n) = {r ∈

R+|V | | f (◦n)
a (r) = λ(n)r}. Then Theorem 13.1 implies that V (n) is closed with respect

to nonnegative linear combinations. ∀α, β ∈ R+ ∪ {0}, α2 + β2 �= 0, ∀ r, s ∈ V (n),
also αr + βs ∈ V (n). Moreover, f (◦n)

a acts linearly on V (n) for

f
(◦n)
a (αr + βs)T ≥ f

(◦n)
a (αr)T + f

(◦n)
a (βs)T

= αf
(◦n)
a (r)T + βf

(◦n)
a (s)T = α(λ(n)rT ) + β(λ(n)sT )

= λ(n)(αr + βs)T
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and Theorem 13.2 implies that there must be an equality sign:

f
(◦n)
a (αr + βs)T = λ(n)(αr + βs)T = αf

(◦n)
a (r)T + βf

(◦n)
a (s)T .

Finally, the defining equations for fa are of the form

l−1∑
k=1

cos−1

(
1− 2rkrk+1

(R + rk)(R + rk+1)

)
= a.

These show that fa cannot be linear on V (1) if dimV (1) ≥ 2 (for example, one can
differentiate with respect to α, β in αr + βs and observe that the derivatives cannot
be constants if r, s are linearly independent). Similarly f

(◦n)
a cannot be linear on V (n)

if dimV (n) ≥ 2.

14. The packing property. Suppose that G is a graph embedding, a ∈ R
|V | is

an angles-parameter vector, and fa : R
+|V | → R

+|V | is the corresponding a-mapping.
We proved that fa has a unique eigenvalue λ(1) and a projectively unique correspond-
ing eigenvector, say r. Thus the equation

fa(r) = λ(1)r

is satisfied. We recall that our motivation for the study of fa is geometric. Specifi-
cally we are interested in a circle-packing realization of the graph embedding G that
corresponds to the angles-parameter vector a. By the very definition of fa this implies
that we are interested in geometric configurations (G, a) for which

λ(1) = λ(1)(G, a) = 1.

Thus we are led to the following definition.
Definition 14.1. We will say that the geometric configuration (G, a), which

consists of the graph embedding G and the angles-parameter vector a ∈ R
|V |, has the

property P (for packing) if λ(1) = 1.
An interesting problem will be to characterize the geometric configurations that

have the property P . At this stage, we can give some partial results for this geomet-
rical problem. It will be convenient to list some of the relations we proved so far for
eigenvalues of fa and of its iterates. We recall our notation.

λ(n) = λ(n)(G, a) is the unique eigenvalue of the mapping f
(◦n)
a : R+|V | → R+|V |.

λ(n)(s) = λ(n)(G, a)(s) is the largest eigenvalue of the symmetric, nonnegative,
and irreducible matrix (f (◦n)

a )′(s).
Here is a list of some facts that we proved.
(1) f (◦n)

a (r)T ≤ (f◦n)
a )′(s) · rT and f

(◦n)
a (r)T = (f◦n)

a )′(r) · rT

∀n ∈ Z
+, ∀ r, s ∈ R

+|V |. (These follow by Theorem 12.2 and Theorem 12.1,
respectively.)

(2) If r ∈ R+|V | is the eigenpoint of f (◦n)
a , i.e., f (◦n)

a (r)T = λ(n)rT , then λ(n) =
ρ((f (◦n)

a )′(r)) = λ(n)(r). (This follows by the proof of Theorem 12.5.)
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(3) λ(n)(s) ≥ max
r∈R+|V |

, r·rT =1
r · f (◦n)

a (r)T and λn(s) = max
r∈R+|V |

, r·rT =1
r ·

(f (◦n)
a )′(s) · rT . (These follow by Theorem 12.4 and by its proof, respectively.)
(4) λ(n) = min

s∈R
+|V | λ(n)(s). (This follows by Theorem 12.5.)

(5) λ(n) = max
r∈R+|V |

, r·rT =1
r · f (◦n)

a (r)T . (This follows by Theorem 13.1.)

(6)
λ(n) = max{α ∈ R

+ | ∃ v ∈ R
+|V | such that f (◦n)

a (v) ≥ αv}. (This follows by
Theorem 13.2.)

Using fact (4) we obtain immediately that

λ(1) < 1 ⇔ ∃ s ∈ R
+|V | such that λ(1)(s) = ρ(fa

′(s)) < 1,

so that the existence of an s ∈ R
+|V | for which λ(1)(s) < 1 implies that the configu-

ration (G, a) does not have the property P .
Using the three representations we have for λ(1) in facts (4), (5), and (6) we can

give three characterizations of geometric configurations that have the property P . All
we have to do is to take n = 1 and substitute λ(1) = 1 in those formulas. We obtain
the following theorem.

Theorem 14.2. The following four conditions are equivalent.
(i) The geometric configuration (G, a) has the property P .
(ii) ∀ s ∈ R

+|V |, λ(1)(s) ≥ 1 and ∃ r ∈ R
+|V | such that λ(1)(r) = 1.

(iii) ∀ r ∈ R
+|V | such that ||r||2 = 1 we have r · fa(r)T ≤ 1 and ∃ s ∈ R

+|V | such
that ||s||2 = 1 and s · fa(s)T = 1.

(iv) (If v ∈ R
+|V | and α ∈ R

+ satisfy fa(v)T ≥ αvT then α ≤ 1) and (∃ v ∈ R
+|V |

such that fa(v)T = vT ).
Proof. The equivalence between (i) and (ii) follows by fact (4). The equivalence

between (i) and (iii) follows by fact (5). The equivalence between (i) and (iv) follows
by fact (6).

Remark 14.3. Clearly the second part of condition (iv) is enough for the equiv-
alence with (i), however, by the first part, it follows, for example, that if we can find
a v ∈ R+|V | and an α > 1 such that fa(v)T ≥ αvT , then (G, a) cannot have the
property P .

In fact the last remark gives rise to several necessary conditions on the geometric
configuration (G, a) to have the property P . These are interesting because they have
a geometrical nature.

We recall our notation from section 7:

Ai,1 = {(r0, . . . , r|V |−1) ∈ R
+|V | |Ri ≥ ri,

where fa(r0, . . . , r|V |−1) = (R0, . . . , R|V |−1)}.

These are closed cones in R+|V | with the properties that are specified in section 7. In
some sense the intersection of those |V | cones is the set that is responsible for having
the property P .
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Theorem 14.4. We will denote v = (r0, . . . , r|V |−1) ∈ R+|V | and fa(v) =
(R0, . . . , R|V |−1). If the geometric configuration (G, a) has the property P , then each
of the following is true.

(i) For all v ∈ R+|V | there exists an index 0 ≤ i ≤ |V | − 1 such that Ri ≤ ri.
(ii) For every choice of radii r0, . . . , r|V |−1 at the vertices of G there must exist at

least one that shrinks after an application of fa. Shrinks here means does not grow.
(iii)

closure
((

∩|V |−1
i=0 Ai,1

)c)
= R

+|V |.

Here the complement is taken with respect to the set R+|V | ∪ {0}.
Proof. It is clear that the optimal α in the condition fa(v)T ≥ αvT of Theorem

14.2(iv), i.e., the largest α, is

α = min
0≤i<|V |

Ri

ri
.

Thus the necessary condition of Theorem 14.2(iv), α ≤ 1, translates to

min
0≤i<|V |

Ri

ri
≤ 1,

which proves the validity of (i) and (ii) above.
But these are equivalent to ∀ v ∈ R

+|V | ∃ 0 ≤ i < |V | such that v ∈ Ac
i,1. This is

the same as

∪|V |−1
i=0 Ac

i,1 ⊇ R
+|V |,

which is

∪|V |−1
i=0 Ac

i,1 ⊇ R+|V |,

so

closure
((

∩|V |−1
i=0 Ai,1

)c)
⊇ R

+|V |,

which proves (iii).
In fact we can sharpen the condition of Theorem 14.4(iii) in order to obtain the

following characterization.
Theorem 14.5. The geometric configuration (G, a) has the property P iff the

intersection set ∩|V |−1
i=0 Ai,1 is a straight ray starting at the origin. In other words,

dim
(
∩|V |−1

i=0 Ai,1

)
= 1.

In this case any point on ∩|V |−1
i=0 Ai,1 is an eigenpoint of fa and any eigenpoint of fa

is a point on ∩|V |−1
i=0 Ai,1.
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Proof. First let us suppose that (G, a) has the property P . Then we know that
projectively fa has a unique eigenpoint, say r0. Thus fa(r0) = r0 and for any r that
satisfies fa(r) = r there exists a t > 0 such that r = tr0. In particular the straight
ray

{tr0 | t > 0}

is contained in ∩|V |−1
i=0 Ai,1. We claim that in fact we have the equality

{tr0 | t > 0} = ∩|V |−1
i=0 Ai,1.

To see this, let s ∈ ∩|V |−1
i=0 Ai,1. Then by the definition of Ai,1 we have fa(s) ≥ s. By

Theorem 13.1 it follows that s must be an eigenpoint of fa, so that fa(s) = s and
s ∈ {tr0 | t > 0}.

To prove the converse, let us assume that ∩|V |−1
i=0 Ai,1 is a straight ray starting

at the origin. Say ∩|V |−1
i=0 Ai,1 = {tr0 | t > 0} for some r0 ∈ R

+|V |. (We remark here
that the intersection ∩|V |−1

i=0 Ai,1 is invariant with respect to fa, i.e., fa(∩|V |−1
i=0 Ai,1) ⊆

∩|V |−1
i=0 Ai,1. This is so because fa(r) ≥ r ⇒ fa(fa(r)) ≥ fa(r).) In this case every

point of ∩|V |−1
i=0 Ai,1 must be a boundary point of every Ai,1, i.e., we must have the

following equality:

∩|V |−1
i=0 Ai,1 = ∩|V |−1

i=0 ∂Ai,1 = {tr0 | t > 0}.

We noted that ∀ 0 ≤ i < |V | we have

∂Ai,1 = {(r0, . . . , r|V |−1) ∈ R+|V | |Ri = ri},

where, as usual, fa(r0, . . . , r|V |−1) = (R0, . . . , R|V |−1). Hence for every

s ∈ ∩|V |−1
i=0 ∂Ai,1

we have the equation

fa(s) = s.

This proves that λ(1) = 1 and so (G, a) has the property P .

15. The λ-packing property. This section extends in a straightforward man-
ner the results of section 14. It turns out that the packing property is merely the
special case of λ-packing where λ = 1. We will omit the proofs of Theorems 15.2,
15.3, and 15.4, which correspond to the proofs of Theorems 14.2, 14.4, and 14.5, re-
spectively, with the value λ(1) = 1 switched to λ(1) = λ. First we give the following
definition.

Definition 15.1. We will say that the geometric configuration (G, a) has the
property λ-P (for λ-packing) if λ(1) = λ.

Theorem 15.2. The following four conditions are equivalent.
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(i) The geometric configuration (G, a) has the property λ-P .
(ii) For all s ∈ R

+|V |, λ(1)(s) ≥ λ, and there exists an r ∈ R
+|V | such that

λ(1) = λ.
(iii) For all s ∈ R

+|V | such that ||s||2 = 1 we have s · fa(s)T ≤ λ and there exists
an r ∈ R+|V | such that ||r||2 = 1 and r · fa(r)T = λ.

(iv) If v ∈ R
+|V | and α ∈ R

+ satisfy fa(v)T ≥ αvT , then α ≤ λ, and there exists
a v ∈ R

+|V | such that fa(v)T = λvT .
Theorem 15.3. We will denote v = (r0, . . . , r|V |−1) ∈ R+|V | and fa(v) =

(R0, . . . , R|V |−1). If the geometric configuration (G, a) has the property λ-P then
each of the following is true.

(i) For all v ∈ R+|V | there exists an index 0 ≤ i < |V | such that Ri ≤ λri.
(ii) For every choice of radii r0, . . . , r|V |−1 at the vertices of G there must exist at

least one that does not grow more than λ times its original size after an application
of fa.

(iii)

closure
((

∩|V |−1
i=0 Ai,λ

)c)
= R

+|V |.

Theorem 15.4. The geometric configuration (G, a) has the property λ-P iff the
intersection set ∩|V |−1

i=0 Ai,λ is a straight ray starting at the origin. In other words,

dim
(
∩|V |−1

i=0 Ai,λ

)
= 1.

In this case any point on ∩|V |−1
i=0 Ai,λ is an eigenpoint of fa and any eigenpoint of fa

is a point on ∩|V |−1
i=0 Ai,λ.

16. The range of the radii and of the eigenvalue. Let (G, a) be a geometric
configuration and let fa : R

+|V | → R
+|V | be the corresponding a-mapping. Let λ(1)

be the unique eigenvalue of the mapping fa. We recall that, if r ∈ R
+|V | is an

eigenpoint of fa, i.e., if the following equation holds true:

fa(r) = λ(1)r,

then the set of all the eigenpoints of fa is given by the ray

{tr | t > 0} = ∩|V |−1
i=0 Ai,λ(1) .
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Notation.
We will denote by ra the eigenpoint of fa whose first coordinate equals the number

1. Thus ra is characterized by the equations

fa(ra) = λ(1)ra and ra = (1, . . . , r|V |−1).

Clearly λ(1) = λ(1)(G, a) and ra = r(G, a) are both functions of the geometric con-
figuration (G, a). The first is a scalar-valued function with positive values and the
second is a vector-valued function whose entries are positive and whose first entry
equals 1. The problem we would like to address in this section is the following: What
are the possible values of the functions λ(1)(G, a) and r(G, a)?

The answer to this question is arithmetical in nature. We recall that the defining
system of equations for r(G, a) and λ(1)(G, a) is given by

li−1∑
k=1

cos−1

(
1− 2rji,krji,k+1

(λ(1)ri + rji,k)(λ(1)ri + rji,k+1)

)
= ai, 0 ≤ i < |V |.

As noted in the proof of Proposition 7.9, these equations are algebraic in λ(1) in
r(G, a) and in cos a = (cos a0, . . . , cos a|V |−1). One way to see this is to note the
elementary fact that cos−1 X + cos−1 Y = cos−1 Z implies that up to a sign we have
XY −√

1−X2
√
1− Y 2 = Z and to iterate this li − 2 times in order to get

ALGEBRAICEXPRESSION(λ(1), r(G, a)) = cos ai.

It is interesting to note that the left-hand side of this equation involves, except for
the four arithmetic operations (of addition, subtraction, multiplication, and division),
only the extractions of square roots. Let us discuss the form of the above algebraic
expressions more carefully. The defining algebraic system is a finite set of equations
that can be written in one of the following equivalent forms:

dk∑
j=1

cos−1

{
1− 2rjrj+1

(R+ rj)(R + rj+1)

}
= Const.

or equivalently

dk∑
j=1

sin−1

{√
rjrj+1

(R+ rj)(R + rj+1)

}
= Const.

We have used the short notation R for λ(1)r. We note that, if

X = 1− 2rjrj+1

(R+ rj)(R + rj+1)
, ∗

then

√
1−X2 =

2
√
rjrj+1R(R+ rj+1 + rj)
(R + rj)(R + rj+1)

, ∗∗
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and, if

X =
√

rjrj+1

(R + rj)(R + rj+1)
,

then

√
1−X2 =

√
R(R+ rj+1 + rj)
(R+ rj)(R+ rj+1)

.

It will be convenient to use these computations in what follows. In order to obtain
the exact form of the algebraic system we carry out the following computation. We
fix the following notation:

Xj = cosαj , 0 ≤ αj < π, 1 ≤ j ≤ m.

We assume that
∑m

j=1 cos
−1 Xj = C and we would like to write down algebraic

formulas for cosC and for sinC in terms of the Xj ’s. If we define two sequences as
follows:

Cm = cos (α1 + . . .+ αm) ,

Sm = sin (α1 + . . .+ αm) ,

then we obtain the recursion relations


C1 = X1, S1 =
√
1−X2

1 ,

Cm+1 = CmXm+1 − Sm

√
1−X2

m+1,

Sm+1 = SmXm+1 + Cm

√
1−X2

m+1.

We can get closed forms for the sequences Cm and Sm by using the Euler formula

Cm + iSm = ei(α1+···+αm) =
m∏

j=1

eiαj =
m∏

j=1

(
Xj + i

√
1−X2

j

)
.

The expansion of this last product proves the following theorem.
Theorem 16.1. Let Xj = cosαj , 0 ≤ αj < π, 1 ≤ j ≤ m. Then

cos(α1 + · · · + αm) = X1X2 · · ·Xm

−
∑

1≤i<j≤m

(X1 · · ·Xi−1

√
1 − X2

i Xi+1 · · ·Xj−1

√
1 − X2

j Xj+1 · · ·Xm)

+
∑

1≤i<j<k<l≤m

(X1 · · ·
√

1 − X2
i Xi+1 · · ·

√
1 − X2

j · · ·
√

1 − X2
l Xl+1 · · ·Xm) − · · · ,

sin(α1 + · · · + αm) =
∑

1≤i≤m

(X1 · · ·Xi−1

√
1 − X2

i Xi+1 · · ·Xm)

−
∑

1≤i<j<k≤m

(X1 · · ·Xi−1

√
1 − X2

i · · ·Xj−1

√
1 − X2

j · · ·Xk−1

√
1 − X2

k · · ·Xm) + · · · .
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We can now answer the question of the possible values of the functions λ(1)(G, a)
and r(G, a).

Theorem 16.2. If (G, a) is a geometric configuration, then the corresponding
eigenvalue λ(1) and the set of radii (r0, . . . , r|V |−1) are solutions of the following al-
gebraic system:

li−1∏
k=1

(
1− 2rji,krji,k+1

(λ(1)ri + rji,k)(λ(1)ri + rji,k+1)

)

×

1−

∑
1≤k<l≤li−1

(
2
√
rji,krji,k+1λ(1)ri(λ(1)ri + rji,k + rji,k+1)

(λ(1)ri + rji,k)(λ(1)ri + rji,k+1)− 2rji,krji,k+1

)

·
(

2
√
rji,lrji,l+1λ(1)ri(λ(1)ri + rji,l + rji,l+1)

(λ(1)ri + rji,l)(λ(1)ri + rji,l+1)− 2rji,lrji,l+1

)
+ · · ·

}

= cos ai, 0 ≤ i < |V |,
li−1∏
k=1

(
1− 2rji,krji,k+1

(λ(1)ri + rji,k)(λ(1)ri + rji,k+1)

)

×



∑
1≤k≤li−1

(
2
√
rji,krji,k+1λ(1)ri(λ(1)ri + rji,k + rji,k+1)

(λ(1)ri + rji,k)(λ(1)ri + rji,k+1)− 2rji,krji,k+1

)
− · · ·




= sin ai, 0 ≤ i < |V |.

Proof. This follows by the defining system of equations for λ(1)(G, a) and r(G, a),
by Theorem 16.1, and by equations (*) and (**) above in this section, which imply
that if

X = 1− 2rkrk+1

(R+ rk)(R + rk+1)

then
√
1−X2

X
=

2
√
rkrk+1R(R+ rk + rk+1)

(R+ rk)(R + rk+1)− 2rkrk+1
.

An immediate consequence is the following.
Corollary 16.3. If (G, a) is a geometric configuration, then the corresponding

eigenvalue λ(1) and the set of the normalized radii r(G, a) = (1, . . . , r|V |−1) belong to
the finite-field extension of the rationals Q(cos a, sina).

Proof. By Theorem 16.2 those numbers belong to the smallest field that contains
Q and {cosa0, sin a0, . . . , cosa|V |−1, sin a|V |−1}. This field is Q(cos a, sin a).

Remark 16.4. We note that the field Q(cos a, sina) depends only on a and not
on the graph embedding G.
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17. The packing property and geometry. In section 14 we gave the defi-
nition of the packing property. The geometric configuration (G, a) was said to have
this property iff λ(1)(G, a) = 1. We would like to point out the fact that our graph
embeddings are completely arbitrary. This may result in configurations that have
the packing property but for which the interpretation of a circle-packing realization
is not at all clear. The origin of these nonintuitive situations lies in the fact that a
completely arbitrary graph embedding cannot, in general, be embedded (in the nat-
ural sense) on a reasonable 2-manifold. To demonstrate this we will pick the family
of embeddings of the complete graph on |V | vertices.

Notation.
We will denote by K|V | any embedding of the complete graph on |V | vertices.
Thus the structure of any K|V | is as follows. It contains |V | rows. Row number i,

0 ≤ i < |V |, is any permutation of the |V |−1 numbers {0, 1, . . . , i−1, i+1, . . . , |V |−1}.
Remark 17.1. K3 and K4 are planar; however, by a theorem of Kuratowskii on

planar graphs, K|V | is not planar for |V | ≥ 5. Clearly, as |V | grows it is harder to
imagine how K|V | could be embedded on a reasonable 2-manifold.

In spite of the above remark we will prove that any K|V | has the packing property
for some choice of the angles-parameter vector. We start with the following simple
proposition.

Proposition 17.2. Let (G, a) be a geometric configuration. Let us denote a =
(a0, . . . , a|V |−1) and the corresponding vector of valences by (d0, . . . , d|V |−1). Then
the following inequality is true:

λ(1)(G, a) ≥ 1
|V |

{ ∑
ai−closed

1
| sin(ai/(2di))| +

∑
ai−open

1
| sin(ai/(2(di − 1)))|

}
− 1.

Proof. By Theorem 13.1 we have λ(1) = max
r∈R+|V |

, r·rT =1
r · fa(r)T . Hence for

any r0 ∈ R
+|V | such that r0 · r0T = 1 we have the following estimate:

λ(1) ≥ r0 · fa(r0)T .

Let us take

r0 =
1√|V | (1, 1, . . . , 1).

Then to compute fa(r0) we need to find radii Ri such that at a closed angle ai we
will obtain exactly di equal angles, each equal to ai/di, and at an open angle ai we
will obtain exactly di − 1 equal angles. The law of cosines gives us, after scaling by
the factor

√|V |, the equation

(1 + 1)2 = 2(1 +Ri)2 − 2(1 +Ri)2 cos
(
ai

di

)
or

Ri =
1

| sin(ai/(2di))| − 1
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or

(1 + 1)2 = 2(1 +Ri)2 − 2(1 +Ri)2 cos
(

ai

di − 1

)
,

i.e.,

Ri =
1

| sin(ai/(2(di − 1)))| − 1.

Hence

r0· fa (r0) =
1√|V | (1, 1, . . . , 1) ·

1√|V | (. . . ,
1

| sin(ai/(2di))| − 1, . . .)

=
1
|V |

{ ∑
ai−closed

(
1

| sin(ai/(2di))| − 1
)
+

∑
ai−open

(
1

| sin(ai/(2(di − 1)))| − 1
)}

=
1
|V |

{ ∑
ai−closed

1
| sin(ai/(2di))| +

∑
ai−open

1
| sin(ai/(2(di − 1)))|

}
− 1.

This proves the result.
A calculation similar to the computation made above for closed angles gives the

following proposition.
Proposition 17.3.

λ(K|V |, (α, α, . . . , α)) =
1

| sin(α/(2(|V | − 1)))| − 1

and

r(K|V |, (α, α, . . . , α)) = (1, 1, . . . , 1).

Proof. Here all the angles are closed and all the valences are identical. In fact,
di = |V | − 1, 0 ≤ i < |V |. Hence the computation made in the proof of the previous
proposition for closed angles gives us

f(α,α,...,α)((1, 1, . . . , 1)) =
{

1
| sin(α/(2(|V | − 1)))| − 1

}
(1, 1, . . . , 1),

which proves the result.
Corollary 17.4. The geometric configuration(

K|V |,
π

3
(|V | − 1)(1, 1, . . . , 1)

)
has the packing property.

Proof. By Proposition 17.3 we need to solve for α so that

1
| sin(α/(2(|V | − 1)))| − 1 = 1.
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Hence ∣∣∣∣sin
(

α

2(|V | − 1)

)∣∣∣∣ = 1
2

and so a possible solution is

α =
π

3
(|V | − 1).

Remark 17.5. Strangely enough, the configuration

(K7, (2π, 2π, . . . , 2π))

seems to be flat at every vertex, with a circle-packing realization of seven congruent
(i.e., identical) circles. However, it is hard to imagine K7 embedded flat on a 2-
manifold.

18. The packing theorem. Going back to the packing property or more gener-
ally to the λ-packing property, it is of interest to answer the following question: Given
a graph embedding G and a positive number λ > 0, is there an angles-parameter vec-
tor a such that the geometric configuration (G, a) has the λ-packing property?

That the answer is positive is the content of the main result of this section.
Theorem 18.1. (the packing theorem) Let G be a graph embedding and let λ > 0.

Then there exists an angles-parameter vector a such that the geometric configuration
(G, a) has the λ-packing property.

To prove this theorem we will use Proposition 17.2, which gives us a lower bound
on λ(1)(G, a), and the following fact.

Theorem 18.2. Let G be a graph embedding and let λ > 0. Then there exists an
angles-parameter vector a such that

λ(1)(r0) = ρ(fa
′(r0)) = λ, r0 = (r, r, . . . , r), r > 0.

Moreover, an eigenvector of the nonnegative matrix fa
′(r0) that corresponds to λ is

(1, 1, . . . , 1).
Proof. Let us consider the vector r0 = (r, r, . . . , r) for some positive r > 0. Using

the definition of the mapping fa we deduce that at a closed angle ai we have

(r + r)2 = 2(r +Ri)2 − 2(r +Ri)2 cos
(
ai

di

)

or

Ri(r0) = r

(
1

| sin(ai/(2di))| − 1
)

and at any open angle ai we have

Ri(r0) = r

(
1

| sin(ai/(2(di − 1)))| − 1
)
.

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 197-254, September 2002

http://math.technion.ac.il/iic/ela



ELA

Concave Maps and Circle Packings 249

Hence for any 0 ≤ i < |V | we have
dRi(r0)

dr
=

1
| sin(ai/(2di))| − 1

at a closed ai and

dRi(r0)
dr

=
1

| sin(ai/(2(di − 1)))| − 1

at an open ai. An elementary fact from calculus is the following: Suppose that
the function R = f(r0, r1, . . . , r|V |−1) has first-order partial derivatives. Then the
function of a single variable r

R(r) = f(r, r, . . . , r)

has a derivative with respect to r (whenever it makes sense) and

dR(r)
dr

=
|V |−1∑
i=0

∂f

∂ri
(r, r, . . . , r).

Hence we have proved the following formula:

fa
′(r0) ·




1
1
...
1


 =




...
| sin(ai/(2di))|−1 − 1

...
| sin(aj/(2(dj − 1)))|−1 − 1

...




.

To conclude the proof of the theorem we define a to be the solution vector of the
following system:{ | sin(ai/(2di))|−1 − 1 = λ if ai is closed,

| sin(aj/(2(dj − 1)))|−1 − 1 = λ if ai is open.

There are always solutions a of this system and for these we have

fa
′(r0) ·




1
1
...
1


 = λ




1
1
...
1


 .

Since the vector (1, 1, . . . , 1)T is positive it follows by the Perron–Frobenius theory
that λ is the largest eigenvalue of the nonnegative matrix fa

′(r0). Hence

λ(1)(r0) = ρ(fa
′(r0)) = λ
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and the proof is completed.
Remark 18.3. We note that for a given graph embedding G, the eigenvalue

λ(1)(G, a) of fa is a continuous function of a.
We are now in a position to give a proof of the packing theorem.
Proof. By Theorem 12.5,
λ(1) = min

s∈R
+|V | λ(1)(s). Hence for any r0 ∈ R+|V | we have the estimate λ(1) ≤

λ(1)(r0). Let us take an angles-parameter vector a0 such that

λ(1)(r0) = ρ(fa
′(r0)) =

1
2
λ.

Such an a0 exists by Theorem 18.2. Then λ(1)(G, a0) ≤ λ/2. Now using the estimate
of Proposition 17.2 it is seen that we can find a sequence of angles-parameter vectors
aj , j = 1, 2, 3, . . ., so that

lim
j→∞

λ(1)(G, aj) = +∞.

In fact this could be done by altering a single coordinate angle. In particular we may
assume that

λ ≤ λ(1)(G, a1).

Thus we have the double inequality

λ(1)(G, a0) < λ ≤ λ(1)(G, a1).

Using the remark above, we can find on any path from a0 to a1 a point aλ such that

λ(1)(G, aλ) = λ.

19. The expected value of λ(1)(G, a). Let G be a graph embedding. Any
angles-parameter vector a determines the geometric configuration (G, a) and all of its
byproducts. In particular we obtain the positive-valued function

λ(1)(G, a) : R
|V | → R

+.

By the packing theorem we know that λ(1)(G, a) is a surjective function.
Remark 19.1. In fact λ(1)(G, a) is defined only for admissible values of a.

Actually (G, a) is a geometric configuration iff a is admissible.
We now recall what these admissible values are. As usual, we will denote by

{0, 1, . . . , |V |−1} the set of indices of the vertices of G. The vector of the correspond-
ing valences will be denoted by (d0, d1, . . . , d|V |−1). Let us consider vertex number i,
0 ≤ i < |V |. It has di neighboring vertices arranged counterclockwise according to
the embedding G. The angle made by any two subsequent neighbors and the vertex
i itself is strictly less than π in absolute value. Hence the total angle about vertex
i is strictly less than (in absolute value) diπ or (di − 1)π according to whether the
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angle at i is closed or open. Similarly, this angle is never 0. Hence, the set of all the
admissible values for ai is

0 < |ai| <
{

diπ, closed angle,
(di − 1)π, open angle.

If we use the notation

li =
{

di, closed angle
di − 1, open angle

}
,

then we can write the set of admissible values for ai as the punctured interval
(−liπ, liπ)× = (−liπ, liπ) − {0}, 0 ≤ i < |V |. Thus the set of all the admissible
angles-parameter vectors a is the Cartesian product

|V |−1∏
i=0

(−liπ, liπ)×.

Now we can write more accurately

λ(1)(G, a) :
|V |−1∏
i=0

(−liπ, liπ)× → R+.

As mentioned above this is a surjective function. We will use the notation

S(G) =
|V |−1∏
i=0

(−liπ, liπ)×.

Computing experiments indicate that λ(1)(G, a) is not uniformly distributed in a. In
other words when one chooses a uniformly in S(G), the values of λ(1)(G, a) are not
uniformly distributed in R+. There will be some values that are more likely to be taken
by λ(1)(G, a) than other values. If we think of λ(1)(G, a) as a random variable defined
over the sample space S(G), then we can adopt the following standard definition.

Definition 19.2. The expected value of the eigenvalue λ(1)(G) is defined by

E(λ(1)(G)) =
∫

S(G)

λ(1)(G, a)da.

It turns out that this notion is not very interesting in our context. An immediate
consequence of Proposition 17.2 is the following theorem.

Theorem 19.3. For every graph embedding G, we have

E(λ(1)(G)) = +∞.
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Proof. By Proposition 17.2 we have the inequality

λ(1)(G, a) ≥ 1
|V |




|V |−1∑
i=0

1
| sin(ai/(2li))|


− 1.

Integrating this over the sample space gives us

E(λ(1)(G)) =
∫

S(G)

λ(1)(G, a)da

≥
∫

S(G)


 1
|V |




|V |−1∑
i=0

1
| sin(ai/(2li))|


− 1


 da = +∞.

Clearly, Proposition 17.2 indicates that λ(1)(G, a) has singularities whenever ai →
0+ for some 0 ≤ i < |V |. These singularities are at least as wild as

1
min0≤i<|V | | sin(ai/(2li))| ≈

c

min0≤i<|V | |ai| .

Naturally we would like to estimate the growth of λ(1)(G, a) near the faces ai = 0. It
turns out that the above order of magnitude is the correct one.

Theorem 19.4. Let (G, a) be a geometric configuration. Let us denote a =
(a0, . . . , a|V |−1) and the corresponding vector of valences by (d0, . . . , d|V |−1). Let
(l0, . . . , l|V |−1) be the vector of the adjusted valences (i.e., li = di or di − 1 according
to whether the angle at vertex i is closed or open, respectively). Then the following
estimate holds:

1
|V |

|V |−1∑
i=0

1
| sin(ai/(2li))| − 1 ≤ λ(1)(G, a) ≤ max

0≤i<|V |

{
1

| sin(ai/(2li))| − 1
}
.

Proof. The lower bound for λ(1)(G, a) was evaluated in Proposition 17.2. Thus
it remains to prove the right inequality (the upper bound). By Theorem 12.5 we
have λ(1)(G, a) = min

s∈R
+|V | λ(1)(s), where λ(1)(s) is the largest eigenvalue of the

nonnegative, symmetric, and irreducible matrix fa
′(s). In fact by Perron–Frobenius

we have λ(1)(s) = ρ(fa
′(s)), the spectral radius. Thus for any s ∈ R+|V | we have

the inequality λ(1)(G, a) ≤ λ(1)(s). It is well known that if A is any n × n complex
matrix and if λ is any eigenvalue of A, then λ ≤ ||A|| for any matrix norm || · ||
on A. The one-line proof is that, if u �= 0 is an eigenvector of A corresponding
to λ, then ||Au|| = |λ| ||u||. In particular |λ| ≤ ||A||∞. It is also well known that
||A||∞ = max1≤i≤n

∑n
j=1 |aij | [10] (page 41 equation (12)). Combining the above

inequalities we deduce that for any s ∈ R+|V | we have the estimate

λ(1)(G, a) ≤ max
0≤i<|V |

|V |−1∑
j=0

∂Ri(s)
∂rj

,
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where we denote fa(r) = (R0(r), . . . , R|V |−1(r)), r = (r0, . . . , r|V |−1). In particular,
if we take s = r0 = (r, r, . . . , r), then the computation in the proof of Theorem 18.2
shows that

|V |−1∑
j=0

∂Ri(r0)
∂rj

=
1

| sin(ai/(2li))| − 1

and hence we obtain the inequality

λ(1)(G, a) ≤ max
0≤i<|V |

{
1

| sin(ai/(2li))| − 1
}
.

An immediate consequence of the last theorem is the following tight estimate.
Theorem 19.5.

λ(1)(G, a) = Ω
(

1
min0≤i<|V | |ai|

)
.

The constants depend only on |V | and on the valences (d0, . . . , d|V |−1) but not on any
particular embedding of G.

Proof. By Theorem 19.4 it follows that there are two positive constants c1 ≤ c2
such that

c1
min0≤i<|V | | sin(ai/(2li))| ≤ λ(1)(G, a) ≤ c2

min0≤i<|V | | sin(ai/(2li))| .

For small |x| we have

sin
( x
2l

)
≈ x

2l

from which we deduce the result.
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