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ELA

NATURAL GROUP ACTIONS ON TENSOR PRODUCTS OF THREE
REAL VECTOR SPACES WITH FINITELY MANY ORBITS∗

DRAGOMIR Ž. D– OKOVIĆ† AND PETER W. TINGLEY†

Abstract. Let G be the direct product of the general linear groups of three real vector spaces
U, V, W of dimensions l, m, n (2 ≤ l ≤ m ≤ n < ∞). Consider the natural action of G on the tensor
product of these spaces. The number of G-orbits in X is finite if and only if l = 2 and m = 2 or 3.
In these cases the G-orbits and their connected components are classified, and the closure of each of
the components is determined. The proofs make use of recent results of P.G. Parfenov, who solved
the same problem for complex vector spaces.
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1. Introduction. First we set up some notation. Let U , V , W be real vector
spaces of dimension l, m, n respectively, where 2 ≤ l ≤ m ≤ n and denote by U c, V c,
W c their complexifications. Set X = U ⊗R V ⊗R W and Xc = U c ⊗C V c ⊗C W c.
We consider the natural action of the group G = GL(U) × GL(V ) × GL(W ) on X ,
and that of Gc = GL(U c)×GL(V c)×GL(W c) on Xc.

It is well known that the number ofGc-orbits in Xc is finite if and only if l = 2 and
m = 2 or 3; see [9]. When l = m = n = 2 there are seven orbits, their representatives
and isotropy subalgebras were described in [6, Proposition 5.19] and [2]. When l = 2
andm = n = 3 there are eighteen orbits, and their representatives were obtained in [7,
Table 1, 	=2]. In a recent announcement [8], Parfenov gives a list of representatives
of Gc-orbits for all the finite cases. Moreover, he has determined the closure of each
of the Gc-orbits in Xc.

For any real vector space V denote by GL+(V) the subgroup of all a ∈ GL(V) with
positive determinant. For U ,V ,W as above, let G+ = GL+(U)×GL+(V )×GL+(W ).
In this paper we enumerate the G+-orbits in X for the cases when l = 2 and m = 2 or
3 (see Theorem 5.1), and also find their closures (see Theorem 6.1 and the Appendix).

We found that for each Gc-orbit Oc ⊂ Xc, Oc ∩X is either a single G-orbit, or
a union of two G-orbits, so there are a few more G-orbits in X than Gc-orbits in Xc.
Furthermore, in the cases where n is small, many of the G-orbits are not connected.
Since G+ is the identity component of G, the G+-orbits are simply the connected
components of the G-orbits, so we get a larger number of G+-orbits. The additional
orbits make the closure diagrams more complicated than in the complex case. With
the restriction to G+, orbits that are distinct for one space may be contained in a
single orbit for a larger space. For this reason we have made several diagrams to
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capture all the cases, as opposed to the previous work of Parfenov [8] where one
diagram could display all cases. Our main results are stated in Theorems 5.1 and 6.1.
Theorem 5.1 gives the classification of the G and G+-orbits in X for each m and n,
and Theorem 6.1 discribes the closures of the G+-orbits.

Remark 1.1. Note that the G+-orbits in X are also the orbits of the smaller
group SL(U)×SL(V )×SL(W )×R

∗
+, where R

∗
+ is the multiplicative group of positive

real numbers which acts on X by scalar multiplication. Since l = 2, −I ∈ SL(U) and
(−I, I, I) · ξ = −ξ for all ξ ∈ X . Consequently, there is a one-to-one correspondence
between the nonzero orbits of G+ in X and the orbits of SL(U)× SL(V )× SL(W ) in
the projective space P(X). Hence our results give also the classification of the orbits
(and their closures) in P(X) under the action of SL(U)× SL(V )× SL(W ).

2. Preliminaries. We fix a basis {u1, u2, ..., ul} of U , a basis {v1, v2, ..., vm} of
V , and {w1, w2, ..., wn} ofW . Then the elements eijk = ui⊗vj⊗wk form a basis of X
(and Xc). So, using summation convention, every tensor ξ ∈ Xc can be written as a
linear combination ξ = ξijkeijk. An element a ∈ GL(U c) is identified with its matrix
representation (ap

i ) with respect to the above basis, so that a(ui) = ap
i up. Thus p

is the row index and i the column index in the matrix (ap
i ). Similar conventions are

used for b ∈ GL(V c) and c ∈ GL(W c).
We assume, from now on, that l = 2 and m = 2 or 3. The tensor ξ will be

associated with the pair (Aξ, Bξ) of m × n matrices Aξ = (ξ1jk) and Bξ = (ξ2jk),
where we agree that j is the row index and k the column index. We often replace the
pair (Aξ, Bξ) by the matrix pencil λAξ + µBξ where λ and µ are indeterminates.

For η = (a, b, c) · ξ we have, using summation convention, ηpqr = ap
i b

q
jc

r
kξ

ijk .
When we look at the matrix pencils associated with each tensor, they are related by
λAη+µBη = b(λ(a1

1Aξ+a1
2Bξ)+µ(a2

1Aξ+a2
2Bξ))cT , where cT denotes the transpose

of c. So our group acts by left and right multiplication by nonsingular matrices, along
with a nonsingular linear change in variables λ and µ.

The equivalence classes of matrix pencils, i.e., the orbits under left and right
multiplication by invertible constant matrices (matrices that do not depend on λ or
µ) have been studied in an old theory by Kronecker and Weierstrass, which is valid
over any field. These correspond to the orbits in our X under the smaller group
GL(V )×GL(W ). From this we derive the following result:

For any matrices A and B, denote by A ⊕ B the matrix
[
A 0
0 B

]
, with the

obvious generalization for more than two matrices. We allow matrices having no rows
or columns. Thus if, say, B is a 0 by k matrix, then A ⊕ B = [A 0] is the matrix
obtained from A by appending k zero columns.

For any nonnegative integer ε let Lε be the ε× (ε+ 1) matrix


λ µ 0 ... 0
0 λ µ ... 0
:
0 0 ... λ µ


 .
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Then every matrix pencil is equivalent to one of the form

C ⊕ Lε1 ⊕ Lε2 ⊕ ...⊕ Lεp ⊕ LT
η1

⊕ LT
η2

⊕ ...⊕ LT
ηq
,

where C is a square matrix pencil with non-vanishing determinant, which will be
called the regular core of the pencil. Furthermore the minimal indices εi and ηj are
uniquely determined up to permutation, as are the elementary divisors of C. As well,
it was shown by Ja’Ja [5] that the minimal indices of a pencil remain unchanged by the
action of GL(U c). The elementary divisors of C on the other hand are transformed
by a nonsingular linear change in variables λ and µ. As pointed out by Atkinson [1],
there is an error in Ja’ja’s paper [5], which results in his Theorems 2, 3 and 4 being
false. However the proof of his Theorem 1, quoted below, is correct. (We state it only
for the case of the complex field.)

Theorem 2.1. [5, Theorem 1] Given an m×n singular pencil of matrices λAξ+
µBξ over C , the Kronecker minimal indices are invariant under the action of Gc.

We also need a theorem of Atkinson [1]. To state Atkinson’s theorem, we must
first introduce some of his notation. His theorem deals with the case m = n and
det(λAξ+µBξ) �= 0 (the so called regular case). Let Dk(λ, µ) be the greatest common
divisor of all k × k minors of λAξ + µBξ. Then the classical homogeneous invariant
polynomials are defined by

ik(λ, µ) =
Dn−k+1(λ, µ)
Dn−k(λ, µ)

, 1 ≤ k ≤ n.

It can be shown that these are in fact polynomials, and furthermore that ik(λ, µ)
divides ik−1(λ, µ). Factor these invariant polynomials into powers of, say r, distinct
irreducible polynomials:

i1(λ, µ) = φ1(λ, µ)τ11φ2(λ, µ)τ12 . . . φr(λ, µ)τ1r ,
i2(λ, µ) = φ1(λ, µ)τ21φ2(λ, µ)τ22 . . . φr(λ, µ)τ2r ,

in(λ, µ) = φ1(λ, µ)τn1φ2(λ, µ)τn2 . . . φr(λ, µ)τnr ,

where τst ≤ τs−1,t, and τ1s > 0. Then define the family of vectors

v1 = (τ11, . . . , τn1), v2 = (τ12, . . . , τn2), . . . , vr = (τ1r , . . . , τnr).

(Again we specify the field to be C .)
Theorem 2.2. [1] Two regular tensors ξ1 and ξ2 lie in the same Gc-orbit if and

only if
(a) The familly of vectors defined above is the same for λAξ1+µBξ1 as for λAξ2+

µBξ2 , and
(b) The action of GL(U c) can simultaneously take each irreducible invariant fac-

tor of λAξ1 +µBξ1 to an irreducible invariant factor of λAξ2 +µBξ2 whose associated
vector (as above) is the same.

Since we force m ≤ 3, and work in C , in our case (b) is always satisfied (provided
that (a) holds). We can then list representatives for each Gc-orbit of regular cores:
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C1 : [.] (the empty core)

C2 : [λ]

C3 :
[
λ 0
0 λ

]
, C4 :

[
λ µ
0 λ

]
, C5 :

[
λ 0
0 µ

]
,

C6 :


 λ 0 0
0 λ 0
0 0 λ


 , C7 :


 λ µ 0
0 λ 0
0 0 λ


 , C8 :


 λ 0 0
0 λ 0
0 0 µ


 ,

C9 :


 λ µ 0
0 λ µ
0 0 λ


 , C10 :


 λ µ 0
0 λ 0
0 0 µ


 , C11 :


 λ 0 0
0 µ 0
0 0 λ+ µ


 .

Once these cores are known, Ja’ja’s theorem allows us to combine them with the
singular pencils Lε and LT

η to get representatives for all the orbits in Xc under Gc.
See Table 3.1 (these orbits are also listed by Parfenov; see [8]).

Remark 2.3. There is a small error in Parfenov’s paper. His results are correct
if we interchange orbit 8 with orbit 11 and orbit 9 with 13. However, his ordering is
nice in that the orbits are in order of non-decreasing dimension for large n. For this
reason we prefer to use his numbering and change the statement of his Theorems 2
and 3. The necessary changes are: The representatives for the case 2× 2× 3 are 1-7,
11, 13, not 1-9; the representatives for the cases 2× 2× n, n ≥ 4, are 1-7, 11, 13, 19,
not 1-9, 19; in the graph of abuttings, there should be no arrow from 19 to 9, but
instead an arrow from 19 to 13.

3. Gc-orbits in Xc. In this section we list the dimensions of each Gc orbit, and
relative invariants for the action of Gc on Xc where they exist. The calculation of
these relative invariants gives rise to quadratic forms which will prove useful later on.

In order to calculate the dimensions of each orbit, we first calculated the dimension
of the stabilizer of the chosen representative in Gc. These calculations are fairly
straightforward, so we will include only one example.

In Table 3.1 we list our representatives for the Gc-orbits for each m = 2 or 3 and
n ≥ m. The representatives are written for the smallest possible values of m and n
only. To get the orbits for a particular set of parameters, take all representatives with
smaller or equal dimension and add zeros to make them fit.

Example 3.1. Calculation of the stabilizer of representative 6 (see Table 3.1).
We must solve the equation[

b11 b12
b21 b22

] [
a1
1λ+ a

2
1µ a1

2λ+ a
2
2µ

0 a1
1λ+ a2

1µ

] [
c11 c21
c12 c22

]
=

[
λ µ
0 λ

]
under the condition that the matrices

a =
[
a1
1 a1

2

a2
1 a2

2

]
, b =

[
b11 b12
b21 b22

]
, and c =

[
c11 c12
c21 c22

]

are nonsingular. In order to simplify the calculation, we let d = (cT )−1 and look at
the equation
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Table 3.1
Orbits in Xc and their dimensions

Orbit Dimension Orbit Dimension

1 [.] 0 15

[
λ 0 0
0 λ 0
0 0 µ

]
3m + 3n − 3

2 [λ] m + n 16

[
λ µ 0
0 λ µ
0 0 λ

]
3m + 3n − 2

3

[
λ
µ

]
2m + n − 1 17

[
λ µ 0
0 λ 0
0 0 µ

]
3m + 3n − 1

4
[

λ µ
]

m + 2n − 1 18

[
λ 0 0
0 µ 0
0 0 λ + µ

]
3m + 3n

5

[
λ 0
0 λ

]
2m + 2n − 3 19

[
λ µ 0 0
0 0 λ µ

]
2m + 4n − 4

6

[
λ µ
0 λ

]
2m + 2n − 1 20

[
λ 0 0 0
0 λ 0 0
0 0 λ µ

]
3m + 4n − 6

7

[
λ 0
0 µ

]
2m + 2n 21

[
λ µ 0 0
0 λ 0 0
0 0 λ µ

]
3m + 4n − 4

8

[
λ 0
0 λ
0 µ

]
3m + 2n − 2 22

[
λ 0 0 0
0 µ 0 0
0 0 λ µ

]
3m + 4n − 3

9

[
λ 0
µ λ
0 µ

]
3m + 2n − 1 23

[
λ 0 0 0
0 λ µ 0
0 0 λ µ

]
3m + 4n − 2

10

[
λ 0 0
0 λ 0
0 0 λ

]
3m + 3n − 8 24

[
λ µ 0 0
0 λ µ 0
0 0 λ µ

]
3m + 4n − 1

11

[
λ 0 0
0 λ µ

]
2m + 3n − 2 25

[
λ 0 0 0 0
0 λ µ 0 0
0 0 0 λ µ

]
3m + 5n − 6

12

[
λ µ 0
0 0 λ
0 0 µ

]
3m + 3n − 4 26

[
λ µ 0 0 0
0 λ µ 0 0
0 0 0 λ µ

]
3m + 5n − 4

13

[
λ µ 0
0 λ µ

]
2m + 3n − 1 27

[
λ µ 0 0 0 0
0 0 λ µ 0 0
0 0 0 0 λ µ

]
3m + 6n − 9

14

[
λ µ 0
0 λ 0
0 0 λ

]
3m + 3n − 4
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[
b11 b12
b21 b22

] [
a1
1λ+ a

2
1µ a1

2λ+ a
2
2µ

0 a1
1λ+ a2

1µ

]
=

[
λ µ
0 λ

] [
d1
1 d1

2

d2
1 d2

2

]
.

This leads to eight equations:
a1
1b

1
1 = d

1
1, a

1
2b

1
1 + a

1
1b

1
2 = d

1
2,

a2
1b

1
1 = d2

1, a
2
2b

1
1 + a2

1b
1
2 = d2

2,
a1
1b

2
1 = d

2
1, a

1
2b

2
1 + a

1
1b

2
2 = d

2
2,

a2
1b

2
1 = 0, a

2
2b

2
1 + a

2
1b

2
2 = 0.

Solving this system is not difficult, and we end up with the solution

a =
[
a1
1 a1

2

0 a2
2

]
, b =

[
b11 b12
0 a2

2b11
a1
1

]
, d =

[
a1
1b

1
1 a1

2b
1
1 + a1

1b
1
2

0 a2
2b

1
1

]
.

From this we see that the dimension of the stabilizer is 5, so the dimension of the
orbit is 4 + 4 + 4− 5 = 7.

To find the dimension for general m and n we can use the following lemma.
Lemma 3.2. Let ξ ∈ Xc be such that both the rows and columns of λAξ+µBξ are

linearly independent over C , and let δ be the dimension of Gc · ξ. Let V ∗ ⊃ V c and
W ∗ ⊃ W c be complex vector spaces of dimension m∗ ≥ m and n∗ ≥ n, respectively.
Let X∗ = U c ⊗C V ∗ ⊗C W ∗ and G∗ = GL(U c) × GL(V ∗) × GL(W ∗). Then the
dimension δ∗ of G∗ · ξ is m(m∗ −m) + n(n∗ − n) + δ.

Proof. Let (a, b∗, c∗) ∈ G∗. Write b∗ =
[
B1 B2

B3 B4

]
, where B1 is m ×m. Also,

taking d∗ = (c∗T )−1, put d∗ =
[
D1 D2

D3 D4

]
, where D1 is n×n. The equation for the

stabilizer then becomes:[
B1 B2

B3 B4

] [
E 0
0 0

]
=

[
λAξ + µBξ 0

0 0

] [
D1 D2

D3 D4

]
,

where E = λ(a1
1Aξ + a1

2Bξ) + µ(a2
1Aξ + a2

2Bξ).
Clearly B2, B4, D3, D4 can be anything, since they are multiplied by zero. By the

independence of rows and columns of λAξ + µBξ it is clear that B3 = 0 and D2 = 0.
The remaining condition for the equation to hold is just that the triple (a,B1, D1) is
in the stabilizer of ξ for Gc acting on Xc. So the dimension of the stabilizer of ξ in
G∗ is m∗(m∗−m)+n∗(n∗−n) plus the dimension of the stabilizer of ξ in Gc. Hence
the dimension δ∗ of G∗ · ξ is
δ∗ = dim(G∗)− [m∗(m∗−m)+n∗(n∗−n)+dim(G)−δ] = m(m∗−m)+n(n∗−n)+δ
as required.

Note that each of the representatives we have chosen has both its rows and
columns linearly independent over C , all zero rows and columns are removed, so
by calculating the dimension in the smallest possible space X we can then easily find
the dimension of the orbit for any larger space.
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For instance, in Example 3.1 of orbit 6, n = m = 2 and δ = 7. So for a 2×m∗×n∗
dimensional space with m∗, n∗ ≥ 2, orbit 6 has dimension 2m∗ + 2n∗ − 1.

Now we need some more notation. For any vector space V over C , denote by S(V∗)
the algebra of all polynomial functions from V to C . S(V∗) = C ⊕S1(V∗)⊕S2(V∗)⊕. . .
where, for each k, Sk(V∗) is the space of all homogeneous polynomial functions of
degree k from V to C . There is a natural action of GL(V) on S(V∗) by a · f(v) =
f(a−1 · v) where a ∈ GL(V) and v ∈ V . Each Sk(V∗) is invariant under the action, so
for each k we get a group action on Sk(V∗). We say that elements in the same orbit
under this action are equivalent to each other.

A relative invariant is a homogeneous polynomial function f : Xc → C such that
g ·f(ξ) = χ(g)f(ξ) for some character χ of Gc and arbitrary g ∈ Gc and ξ ∈ Xc. Now
we move on to the calculation of our relative invariants. Note that the pair (Gc, Xc)
is a prehomogeneous vector space (PV), i.e., there exists a Gc-orbit which is open and
dense in Xc. Its complement, the union of all the other orbits, is called the singular
set of the space. In all cases, the action of Gc on Xc is irreducible.

If the singular set is a hypersurface, then there exists a unique (up to a scalar
multiple) irreducible relative invariant f on Xc such that the singular set is precisely
the zero locus of f . In such cases the PV is said to be regular.

Our basic reference for the theory of PV spaces is [9] which the reader should
consult for more details. By consulting the tables in this paper, we see that (Gc, Xc)
is a regular PV only in the six cases 2 × 2 × n, n = 2, 3, 4 and 2 × 3 × n, n = 3, 4, 6.
In the cases 2 × 2 × 2, 2 × 2 × 4, 2 × 3 × 3, and 2 × 3 × 6 the relative invariant f is
described in [9, Section 7]. In the remaining two cases, 2 × 2 × 3 and 2 × 3 × 4, one
can apply [9, Proposition 18] to compute the relative invariants. Except in the cases
2×2×4 and 2×2×6, these relative invariants are special cases of hyperdeterminants,
which are studied extensively in [4], specifically see Proposition 1.4 of Chapter 14.

In many of the spaces considered, we have constructed a quadratic form p which
will be useful later on in proving that certain orbits are not contained in the closures
of other orbits of larger dimension. We use the notation |M | to mean to determinant
of the matrix, or matrix pencil, M . Here are the results:

Case 2 × 2 × 2: For each tensor ξ ∈ Xc, our p is |λAξ + µBξ|, and the relative
invariant f is the discriminant of this quadratic form. Its character χ is χ(a, b, c) =
|a|2 |b|2 |c|2. This means that if η = (a, b, c) · ξ, then f(η) = χ(a, b, c)f(ξ) for all
(a, b, c) ∈ Gc.

Case 2× 2× 3: Let
Pξ =

[
ξ111 ξ121

ξ211 ξ221

]
, Qξ =

[
ξ112 ξ122

ξ212 ξ222

]
, Rξ =

[
ξ113 ξ123

ξ213 ξ223

]
.

Our p is |λPξ + µQξ + νRξ|, and the relative invariant f is the discriminant of p.
Its character is χ(a, b, c) = |a|3 |b|3 |c|2.

Case 2× 2× 4: In this case, our relative invariant f is simply

f(ξ) =

∣∣∣∣∣∣∣∣
ξ111 ξ121 ξ211 ξ221

ξ112 ξ122 ξ212 ξ222

ξ113 ξ123 ξ213 ξ223

ξ114 ξ124 ξ214 ξ224

∣∣∣∣∣∣∣∣
,
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which has character χ(a, b, c) = |a|2|b|2|c|. This expression can also be obtained in
a similar method as before, yielding p. To do this, define Pξ, Qξ, and Rξ as in the

previous case, and let Sξ =
[
ξ114 ξ124

ξ214 ξ224

]
. We let p = |λPξ + µQξ + νRξ + σSξ|.

The discriminant of p is then a relative invariant. However, in this case the
discriminant turns out to be f2, so f is really the minimal invariant.

Case 2×3×3: If we put the tensor ξ in pencil form, λAξ+µBξ, then the relative
invariant f is the discriminant of the binary cubic form |λAξ + µBξ|. Its character is
χ(a, b, c) = |a|6 |b|4 |c|4.

Case 2× 3× 4: We let

q =

∣∣∣∣∣∣∣∣
ξ121 ξ122 ξ123 ξ124

ξ131 ξ132 ξ133 ξ134

ξ221 ξ222 ξ223 ξ224

ξ231 ξ232 ξ233 ξ234

∣∣∣∣∣∣∣∣
, r =

∣∣∣∣∣∣∣∣
ξ111 ξ112 ξ113 ξ114

ξ131 ξ132 ξ133 ξ134

ξ211 ξ212 ξ213 ξ214

ξ231 ξ232 ξ233 ξ234

∣∣∣∣∣∣∣∣
,

s =

∣∣∣∣∣∣∣∣
ξ111 ξ112 ξ113 ξ114

ξ121 ξ122 ξ123 ξ124

ξ211 ξ212 ξ213 ξ214

ξ221 ξ222 ξ223 ξ224

∣∣∣∣∣∣∣∣
,

α = −

∣∣∣∣∣∣∣∣
ξ111 ξ112 ξ113 ξ114

ξ131 ξ132 ξ133 ξ134

ξ211 ξ212 ξ213 ξ214

ξ221 ξ222 ξ223 ξ224

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
ξ111 ξ112 ξ113 ξ114

ξ121 ξ122 ξ123 ξ124

ξ211 ξ212 ξ213 ξ214

ξ231 ξ232 ξ233 ξ234

∣∣∣∣∣∣∣∣
,

β =

∣∣∣∣∣∣∣∣
ξ121 ξ122 ξ123 ξ124

ξ131 ξ132 ξ133 ξ134

ξ211 ξ212 ξ213 ξ214

ξ221 ξ222 ξ223 ξ224

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
ξ111 ξ112 ξ113 ξ114

ξ121 ξ122 ξ123 ξ124

ξ221 ξ222 ξ223 ξ224

ξ231 ξ232 ξ233 ξ234

∣∣∣∣∣∣∣∣
,

γ = −

∣∣∣∣∣∣∣∣
ξ121 ξ122 ξ123 ξ124

ξ131 ξ132 ξ133 ξ134

ξ211 ξ212 ξ213 ξ214

ξ231 ξ232 ξ233 ξ234

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
ξ111 ξ112 ξ113 ξ114

ξ131 ξ132 ξ133 ξ134

ξ221 ξ222 ξ223 ξ224

ξ231 ξ232 ξ233 ξ234

∣∣∣∣∣∣∣∣
.

Then our quadratic form is p = qλ2 + rµ2 + sν2 + αµν + βνλ + γλµ. Our relative
invariant is f , the discriminant of p. It has degree 12 and character χ(a, b, c) =
|a|6 |b|4 |c|3.

Case 2× 3× 6: The relative invariant f is given by
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f(ξ) =

∣∣∣∣∣∣∣∣∣∣∣∣

ξ111 ξ121 ξ131 ξ211 ξ221 ξ231

ξ112 ξ122 ξ132 ξ212 ξ222 ξ232

ξ113 ξ123 ξ133 ξ213 ξ223 ξ233

ξ114 ξ124 ξ134 ξ214 ξ224 ξ234

ξ115 ξ125 ξ135 ξ215 ξ225 ξ235

ξ116 ξ126 ξ136 ξ216 ξ226 ξ236

∣∣∣∣∣∣∣∣∣∣∣∣
.

It has degree 6 and character χ(a, b, c) = |a|3 |b|2 |c|.
Remark 3.3. For the cases 2 × 2 × n with n > 4 and 2 × 3 × n with n = 5 or

n > 6 there is no relative invariant as mentioned above. This also follows from the
fact that there is no orbit of co-dimension one, or in the cases where lm < n from the
following argument (due to a referee).

When lm < n any ξ ∈ Xc can be written as ξ =
∑
ui ⊗ vj ⊗wij where wij ∈W c.

Since lm < n we can choose a direct decomposition W c = H ⊕ L where H is a
hyperplane containing all the wij ’s. Let ct ∈ SL(W c) act on H as multiplication by t
and on L as multiplication be t1−n, so |ct| = 1. Then lim

t→0
(I, I, ct) · ξ = 0. So the zero

vector of Xc is in the closure of SL(W c) · ξ and hence every relative invariant must
be a constant.

4. G-orbits in X. We now determine the equivalence classes of regular cores in
the real case. So, assume that ξ ∈ X is such that the associated pencil λAξ + µBξ

is regular, i.e., m = n ≤ 3 and f(λ, µ) = |λAξ + µBξ| �= 0. If f(λ, µ) splits (into a
product of linear factors) then, just as in the complex case, the orbit G · ξ contains a
representative whose associated pencil is one of the pencils C1-C11 listed in Section 3.
Otherwise, either m = n = 2 and f(λ, µ) is irreducible, or m = n = 3 and f = f1f2
where f1 is a linear form, and f2 an irreducible quadratic form. Then we claim that
G · ξ has a representative whose associated pencil is one of the following:

C′
5 :

[
λ µ
−µ λ

]
, C′

11 :


 λ µ 0

−µ λ 0
0 0 λ


 .

These cores are labeled C′
5 and C

′
11 since if we embed X in Xc then C5 and C′

5

represent tensors in the same Gc-orbit, as do C11 and C′
11.

We give a sketch of the argument justifying the above claim. First let m = n = 2.
Clearly we may assume that Aξ = I. By replacing Bξ by a similar matrix, we may

further assume that Bξ =
[
α β
−β α

]
, β > 0. If we let a =

[
1 0

−α/β 1/β

]
, we

find that (a, I, I) · ξ has C′
5 as its associated pencil.

Now, let m = n = 3. Again, we may assume that Aξ = I. Further, by a change
of variables, we may take f1(λ, µ) = λ. By similarity, we can transform Bξ to the

form Bξ =


 α β 0

−β α 0
0 0 0


 , β > 0.
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Table 4.1
Extra G-orbits in X

Orbit Dimension

7′
[

λ µ
−µ λ

]
2m + 2n

18′

[
λ µ 0
−µ λ 0
0 0 λ

]
3m + 3n

22′

[
λ µ 0 0
−µ λ 0 0
0 0 λ µ

]
3m + 4n − 3

If we then take a =
[
α2 + β2 −α
0 β

]
, b = ((α2+ β2)I −αBξ)−1, then it is easy

to verify that C′
11 is the associated pencil of (a, b, I) · ξ.

The representatives given in Table 3.1 are in fact all real, so, for the G-orbits in
X coming from cores C1 through C11, we use the same representatives. From the two
new cores, we get three G-orbits in X that do not have representatives in Table 3.1.
They are given in Table 4.1.

5. G+-orbits in X. Since G+ is the identity component of G, the G+-orbits in
X are just the connected components of the G-orbits. So, for ξ ∈ X , the number
of G+-orbits contained in G · ξ is [G : G+Gξ] where Gξ represents the stabilizer of
ξ in G. By looking at Gξ, this quickly allows us to determine all the orbits in X
under the action by G+. Again, the calculations are straightforward, so only a few
examples are included. Figuring out the G+-orbits from the stabilizers is simplified
by the following notation:

For an element (a, b, c) of G, we define the sign signature of (a, b, c) to be the
triple (s1, s2, s3) where s1 is the sign of the determinant of a, either + or −, s2 the
sign of the determinant of b, and s3 the sign of the determinant of c.

To illustrate this, consider orbit 6. In the case 2×2×2 the only possible sign sig-
natures of elements in the stabilizer of our representative are (+,+,+) and (−,−,−)
(see Example 3.1). So we see that this one G-orbit splits into four G+-orbits. To
find representatives, we can choose elements of G with sign signatures, for instance,
(+,+,+), (+,+,−), (+,−,+) and (+,−,−). We then act on our representative for
the G-orbit with each of this four group elements to get the representatives of the
four distinct G+-orbits. For simplicity we always use the identity for our element
with signature (+,+,+).

However, in the case 2×2×n with n > 2 the stabilizer contains elements with four
different sign signatures, (+,+,+), (+,+,−), (−,−,+) and (−,−,−), so we only get
two orbits under G+. In the case 2× 3×n for n ≥ 3, the stabilizer contains elements
with all possible sign signatures, so the G-orbit is also a single G+-orbit. This is in
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Table 5.1
Orbits split by G+ for the 2 × 2 × 2 case

3++

[
λ 0
µ 0

]
3−+

[
λ 0
−µ 0

]

4++

[
λ µ
0 0

]
4+−

[
λ −µ
0 0

]

5++

[
λ 0
0 λ

]
5+−

[
λ 0
0 −λ

]

6++

[
λ µ
0 λ

]
6+−

[
−λ µ
0 λ

]
6−+

[
λ µ
0 −λ

]
6−−

[
λ −µ
0 λ

]

7′
++

[
λ µ
−µ λ

]
7′
+−

[
−λ µ
µ λ

]
7′
−+

[
λ µ
µ −λ

]
7′
−−

[
λ −µ
µ λ

]

fact the pattern for all the orbits, and it turns out that for the cases 2× 3 × n with
n ≥ 7, the G-orbits are all connected.

It turns out that for every spaceX considered, and every ξ ∈ X , for eachG+-orbit
O∗ ⊂ G · ξ it is always possible to choose some g ∈ G with sign signature (+, s2, s3)
for some s2 and s3 such that g · ξ ∈ O∗. So, a G+-orbit is uniquely defined by a
representative of the G-orbit which contains it, along with the values of s2 and s3.
We denote a G+-orbit by the number of the G-orbit which contains it, with s2 and
s3 as subscripts. So in the 2 × 2 × 2 case orbit 6−+ is the orbit with representative[
λ µ
0 −λ

]
, since this representative can be obtained from

[
λ µ
0 λ

]
by acting with

an element of G with sign signature (+,−,+). In the cases where the G+-orbits are
the same as the G-orbits, we do not include the signs. Furthermore, in the 2× 3× n
cases it turns out that the G+-orbits are uniquely determined by s3, so we only include
one sign in the subscript. In choosing a representative we can take s1 = s2 = +.

In total, there are twelve G-orbits which, for some values of m and n, are not
connected, and hence get split when the group is restricted to G+. Since they can
split to different extents depending on the parametersm and n, we have included four
Tables (5.1-5.4) to capture the different cases.

The cases 2× 2×n for n ≥ 3 are fairly similar, so we combine them in one table.
For each of the orbits except 19+± the G+-orbits remain the same for all n ≥ 3. Orbit
19 only occurs for n ≥ 4, and remains a single G+-orbit for n ≥ 5 while it splits into
two distinct G+-orbits only in the case n = 4.

The quadratic forms p : Xc → C introduced in Section 3 can be restricted to X
to obtain real quadratic forms X → R. We denote this restriction also by p. These
real quadratic forms are not G+-invariant, but their equivalence class is. This is easy
to verify in all cases except for 2 × 3 × 4, for which we refer to Lemma 7.1. In the
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Table 5.2
Orbits split by G+ for the 2 × 2 × n cases for n ≥ 3

3++

[
λ
µ

]
3−+

[
λ
−µ

]

6++

[
λ µ
0 λ

]
6−+

[
λ µ
0 −λ

]

7′
++

[
λ µ
−µ λ

]
7′
−+

[
λ µ
µ −λ

]

13++

[
λ µ 0
0 λ µ

]
13−+

[
λ −µ 0
0 λ µ

]

19++

[
λ µ 0 0
0 0 λ µ

]
19+−

[
λ µ 0 0
0 0 λ −µ

]
Only for n = 4

Table 5.3
Orbits split by G+ for the 2 × 3 × 4 case

19+

[
λ µ 0 0
0 0 λ µ

]
19−

[
λ µ 0 0
0 0 λ −µ

]

21+

[
λ µ 0 0
0 λ 0 0
0 0 λ µ

]
21−

[
λ µ 0 0
0 λ 0 0
0 0 λ −µ

]

22′
+

[
λ µ 0 0
−µ λ 0 0
0 0 λ µ

]
22′

−

[
λ µ 0 0
−µ λ 0 0
0 0 λ −µ

]

24+

[
λ µ 0 0
0 λ µ 0
0 0 λ µ

]
24−

[
λ µ 0 0
0 λ µ 0
0 0 λ −µ

]

Table 5.4
Orbits split by G+ for the 2 × 3 × 6 case

27+


 λ µ 0 0 0 0
0 0 λ µ 0 0
0 0 0 0 λ µ


 27−


 λ µ 0 0 0 0
0 0 λ µ 0 0
0 0 0 0 λ −µ



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Table 5.5
G+-orbits in X

Dimension G G+ Representatives
2× 2× 2 8 17 1,2, 3±+, 4+±, 5+±, 6±±, 7′±±, 7
2× 2× 3 10 14 1, 2, 4, 5, 7, 11, 3±+, 6±+, 7′±+, 13±+

2× 2× 4 11 16 1, 2, 4, 5 ,7, 11, 3±+, 6±+, 7′±+, 13±+, 19+±
2× 2× n, n ≥ 5 11 15 1, 2, 4, 5, 7, 11, 3±+, 6±+, 7′±+, 13±+, 19
2× 3× 3 20 20 1-18, 7′, 18′

2× 3× 4 27 31 1-18, 7′, 18′, 19±, 20, 21±, 22, 22′±, 23, 24±
2× 3× 5 29 29 1-26, 7′, 18′, 22′

2× 3× 6 30 31 1-26, 7′, 18′, 22′, 27±
2× 3× n, n ≥ 7 30 30 1-27, 7′, 18′, 22′

spaces X for which we have defined p, for each ξ ∈ X we denote by pξ the quadratic
form associated to ξ.

For a real quadratic form we define the signature to be (q, r, s) where q, r, and
s are the number of +1’s, −1’s, and 0’s in the diagonalization of p. It is well known
that such triples (q, r, s) parameterize the equivalence classes of real quadratic forms.
It can also be shown that taking a limit of a sequence gt · ξ a 1 or −1 can be changed
to zero, but its sign cannot change, and a zero must remain a zero. In other words, q
and r can decrease, but never increase. So, if the signature of pη has q (or r) larger
than the value for pξ then we know that η is not contained in the closure of G+ · ξ.

We are now ready to state our first theorem:
Theorem 5.1. For each case 2×2×n and 2×3×n, the number of G-orbits, the

number of connected components for these, and representatives for each component
G+-orbit are given in Table 5.5. The first column gives the case, the second gives the
number of G-orbits, the third the number of G+-orbits, and in the last column we list
the G+-orbits.

Proof. In the preceding discussion, we have successfully found all G-orbits in X .
The method we outlined above for finding the component G+-orbits relied on the
ability to calculate the stabilizer in G of our representative for each G-orbit. This
works, but for the three representatives in Table 4.1 the calculations are somewhat
difficult. We shall therefore present a proof that the component G+-orbits for these
three cases are as stated.

We first consider the G-orbit 7′.
Case 2× 2× 2: We claim that the G-orbit 7′ consists of four G+-orbits, 7′±±.
We calculated that the stabilizer of our representative ξ for orbit 7′ has two

connected components. Its identity component is the direct product of two copies of
the multiplicative group C ∗. The first copy consists of the elements (a, b, c) with

a =
1

x2 + y2

[
x −y
y x

]
, b =

[
x y
−y x

]
, c = I,
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and the second with

a =
1

x2 + y2

[
x y
−y x

]
, b = I, c =

[
x y
−y x

]
,

where (x, y) �= (0, 0). As a representative for the non-identity component, we can
take the element

a =
[
1 0
0 −1

]
, b =

[
0 1
1 0

]
, c =

[
0 1
1 0

]
.

Hence the possible sign signatures of elements in the stabilizer are (+,+,+) and
(−,−,−) and our claim is proven.

Case 2× 2× n, n ≥ 3: As in our calculations for the dimension of each orbit, we
see that the stabilizer of ξ consists of the elements (a, b, c) ∈ G with c =

[
C1 C2

0 C4

]
,

where (a, b, C1) belongs to the stabilizer of ξ in the case 2 × 2 × 2. Thus the sign
signatures (s1, s2, s3) of elements in the stabilizer are arbitrary except that s1 = s2.
Hence 7′ is the union of two G+-orbits, 7′++ and 7

′
−+.

Case 2 × 3× n: It is not hard to find elements of the stabilizer with all possible
sign signatures, so the G-orbit 7′ is connected.

For the G-orbit 18′, we can find elements of the stabilizer with all possible sign
signatures. So 18′ is always connected.

Finally we consider the G-orbit 22′.
In the 2× 3× 5 case we can find elements of the stabilizer with all possible sign

signature, so for n ≥ 5 the G-orbit 22′ is connected. For n = 4 we can find elements
of the stabilizer with any sign signature such that s3 = +. So there are at most
two components, 22′+ and 22′−. We see that the signature of our quadratic form p
is different on 22′+ and 22

′
−. So, once we prove that p is invariant on G

+-orbits up
to equivalence, we will have proven that for the case 2 × 3 × 4, the G-orbit 22′ has
exactly two component G+-orbits. This is done in Lemma 7.1.

6. Closure diagrams. We note that if η ∈ X is in the closure of an orbit G+ ·ξ,
then for all g ∈ G+, g · η must also be in the closure of G+ · ξ. So the closure of any
orbit in X is a union of itself with a number of smaller dimensional orbits. Hence
to prove that one G+-orbit O2 is contained in the closure of another G+-orbit O1 we
need only display a family gε ∈ G+, ε > 0, such that gε · ξ → η as ε → 0+ for some
ξ ∈ O1 and η ∈ O2. Furthermore, to show that O2 is not contained in the closure of
O1 it is sufficient to choose one η ∈ O2 and show that it is not in the closure of O1.

Theorem 6.1. The closures of the G+-orbits in X are as shown in the diagrams
in the Appendix.

The following is a proof that all the containments claimed in the diagrams are
correct. The proof that there are no further containments is more difficult, and is
given in the next section. We use the notation O1 → O2 to mean that orbit O2 is
contained in the closure of orbit O1, and O1 �→ O2 to mean that orbit O2 is not
contained in the closure of orbit O1.
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Case 2×2×2: To simplify things, note that the symmetric group S3 acts naturally
on X by permuting the tensor indices i, j, k, and that this action preserves G+-orbits.
So we can let S3 act on the set of G+-orbits in X . We can use a similar trick for the
natural action of G/G+ on the G+-orbits. Let H be the group of permutations of our
orbits generated by these two actions. Then H acts naturally on our diagrams, and
it must take any pair of orbits (O1, O2) with O1 → O2 to another pair (O′

1, O
′
2) with

O′
1 → O′

2. We then only need to show that one line in each H-orbit of lines exists (or
fails to exist), and the others follow.

It can be seen that all of the lines (7′s1s2
, 6s1s2) are in the same H-orbit, as are all

the lines from 7, all the lines from orbits of dimension 7 to orbits of dimension 5, and
all the lines from orbits of dimension 5 to the orbit of dimension 4. So all that needs
to be shown to prove all the lines exist is that 7′++ → 6++, 7 → 6++, 6++ → 5++,
5++ → 2, and 2→ 1.

We shall give the family gε = (a, b, c)ε ∈ G+ in each case by specifying its
components a, b, c as functions of ε. To find these families, we proceeded by performing
elementary row and column operations, along with changes in variables in λ and
µ until we get something close to the representative of the smaller orbit. So, for
7′++ → 6++ we may use the following sequence:[

λ µ
−µ λ

]
−→

[
ελ µ
−εµ λ

]
−→

[
ελ µ

−ε2µ ελ

]
−→

[
λ µ

−ε2µ λ

]
.

Hence a =
[
ε−1 0
0 1

]
, b =

[
1 0
0 ε

]
, and c =

[
ε 0
0 1

]
gives the required family.

For the rest of the cases we will not include the sequence of steps, just the final
expressions for a, b, c in terms of ε.

7→ 6++: a =
[
1 ε−1

0 1

]
, b =

[
1 1
0 ε

]
, c =

[
1 0

−ε−1 1

]
.

6++ → 5++: a =
[
1 0
0 ε

]
, b = c = I.

5++ → 2: a = I, b =
[
1 0
0 ε

]
, c = I.

2→ 1: a = εI, b = c = I.
2 × 2× 3: All the lines starting with orbits of dimension at most 10 follow from

the previous case. The action of G/G+ interchanges orbit 13++ with 13−+ and orbit
7′++ with 7′−+ simultaneously, while fixing 11 and 7, so the only new lines that need
justification are 13++ → 7′++, 13++ → 11, and 11→ 7.

13++ → 7′++: a = b = I, c =


 1 0 −1
0 1 0
0 0 ε


.

13++ → 11: a =
[
ε−1 0
0 1

]
, b =

[
ε 0
0 1

]
, c =


 1 0 0
0 ε 0
0 0 1


.

11→ 7: a = b = I, c =


 1 0 0
0 0 1
0 −ε 0


.
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2×2×4: Since G/G+ permutes transitively the four pairs (19+±, 13±+) we need
only show that 19++ → 13++.

19++ → 13++: a = b = I, c =



1 0 0 0
0 1 1 0
0 0 0 1
0 0 −ε 0


.

2× 3× 3: We have a lot of new lines, so only a few of the more difficult ones are
explicitly included. The others are similar.

18→ 17: a =
[ −ε−1 ε−1

0 −1
]
, b =


 ε ε 0
0 −ε2 0
0 0 −1


, c =


 −1 0 0

−ε−1 −ε−1 0
0 0 1


.

17→ 16: a =
[ −1 ε−1

0 −1
]
, b =


 1 0 ε−1

0 1 −1
0 0 ε


, c =


 −1 0 0

−ε−1 −1 0
0 −ε−1 1


.

16→ 9: a = −I, b =

 0 0 −1
0 −1 0
−1 0 1


, c =


 1 0 1
0 1 0
0 0 ε


.

2× 3× 4: Again we only include the more difficult lines.

22→ 21+: a =
[
1 ε−1

0 1

]
, b =


 1 1 0
0 ε 0
0 0 1


, c =




1 0 0 0
−ε−1 1 0 0
0 0 1 0
0 0 −ε−1 1


.

24+ → 22′+: a = I, b =


 1 0 0

0 1 0
ε−1 0 ε−1


, c =



1 0 −1 0
0 1 0 −1
0 0 ε 0
0 0 0 ε


.

The cases with n ≥ 5 do not pose any significant problems with regards to proofs
of containment, so they are all left to the reader.

7. Proofs of non-containment. Proving that a smaller orbit is not contained
in the closure of a larger one is more interesting, and we have used several different
types of arguments. It is clear that if in X a G+-orbit O1 is contained in the closure
of another G+-orbit O2, then in Xc the Gc-orbit which includes O1 is contained in
the closure of the Gc-orbit which includes O2. Using this observation, the following
results follow from Parfenov’s work, [8]:

4 �→ 3, 10 �→ 3, 10 �→ 4, 19 �→ 8, 12 �→ 9, 20 �→ 9, 20 �→ 12,
20 �→ 13, 16 �→ 15, 21 �→ 18, 21 �→ 18′, 25 �→ 24.

As well, numbering the orbits as we have, no orbit with a larger label is ever contained
in the closure of an orbit with a smaller label. Also note that if a G-orbit O2 is not
contained in the closure of O1, then no G+-orbit contained in O2 can be contained
in the closure of a G+-orbit contained in O1. So these results carry over even if the
orbits split.

We need the following two lemmas.
Lemma 7.1. The quadratic form p, as defined for the case 2× 3× 4, is invariant

up to equivalence on G+-orbits.
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Proof. For each ξ ∈ X , we use the notation pξ to mean the quadratic form p
calculated for ξ. Fix some ξ ∈ X . We prove pξ is invariant under GL+(U),GL+(V ),
and GL+(W ) separately.

First, let a ∈ GL+(U). It is not hard to see that each coefficient of p is multiplied
by a factor of |a|2 when a acts on ξ. With a little calculation, we see that for
c ∈ GL+(W ), each coefficient of p is multiplied by a factor of |c| when c acts on ξ.
Since c has positive determinant, this clearly doesn’t change the equivalence class of
p. So it remains to show that the equivalence class is invariant under the action of
GL+(V ).

Here, we note that GL+(V ) is generated by the diagonal matrices of positive
determinant, along with matrices with ones on the diagonal and one non-zero entry
either just above or just below the diagonal. So we need only prove invariance for
matrices of these types.

First, the case where b is a diagonal matrix, b =


 t1 0 0
0 t2 0
0 0 t3


 , t1t2t3 > 0.

We calculate how each of the coefficients of p transforms. Let q′, r′, s′, α′, β′, γ′

be the coefficients of pb·ξ corresponding to q, r, s, α, β, γ. We see that:

q′ = t22t
2
3q, r

′ = t21t
2
3r, s

′ = t21t
2
2s, α

′ = t21t2t3α, β
′ = t1t22t3β, γ

′ = t1t2t23γ.

So, pb·ξ(λ, µ, ν) = pξ(t2t3λ, t1t3µ, t1t2ν). This is a linear change of variables in
λ, µ, and ν, so the equivalence class of p is not changed.

Now we look at the case b =


 1 t 0
0 1 0
0 0 1


. Then the new coefficients are given

by:

q′ = q, r′ = r − tα+ t2q, s′ = s, α′ = α− tβ, β′ = β, γ′ = γ − 2tq.

It can then be verified that pb·ξ(λ, µ, ν) = pξ(λ− tµ, µ, ν). Again, this is a change
of variables in λ, µ, ν so the equivalence class of p is unchanged. The other three types
of matrices of this form with t in the position (2, 3), (2, 1), or (3, 2) follow in the same
way, so we see that the equivalence class of p is invariant under the action of GL+(V ),
and hence under the action of the whole group G+.

Lemma 7.2. Let W ′ be a subspace of W and ξ, η ∈ U ⊗V ⊗W ′. If η is contained
in the closure of G+ · ξ, then η is contained in the closure of GL+(U) × GL+(V ) ×
GL(W ′) · ξ.

Remark 7.3. This is a variation of Parfenov’s Theorem 1 in [8].
Proof. We may assume that {w1, w2, . . . , wn′}, the first n′ basis vectors for W ,

form a basis forW ′. Choose a sequence gs = (as, bs, cs) ∈ G+ such that gs ·ξ → η. For

each s write cs =
[
c′s Xs

Ys Zs

]
, where c′s is an n

′×n′ matrix and the other dimensions
are as needed.
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Notice that, since ξijk = 0 for k > n′, gs ·ξ = (as, bs,

[
c′s 0
Ys I

]
) ·ξ. Furthermore,

Ys only affects components of gs · ξ with k > n′, so since ηijk = 0 for k > n′, we see
that (as, bs, c

′
s) · ξ also approaches η in the space U ⊗ V ⊗W ′.

For the following cases we use the quadratic forms p introduced in Section 2 when
we were calculating relative invariants.

Case 2×2×2: We show that 7′++ �→ 5+−. By acting on the orbits by both S3 and
G/G+ as described at the beginning of Section 6 we get proofs of all non-containments
between orbits of dimension 8 and orbits of dimension 5.

To see that 7′++ �→ 5+− simply note that for the representatives we have chosen,
the signature of p for the orbit 7′++ is (2, 0, 0) while the signature for 5+− is (0, 1, 0),
which completes the proof by the argument stated just before Theorem 5.1.

Case 2 × 2 × 3: Using p as defined in Section 2 we see that its signature for the
orbit 13++ is (1, 2, 0), for 7′−+ is (2, 0, 1), and for 3−+ is (0, 1, 0). So 13++ �→ 7′−+

and 7′−+ �→ 3++. Using the natural action of G/G+ we also get 13−+ �→ 7′++ and
7′++ �→ 6−+, which completes the proof that there are no more lines in the diagram.

Cases 2× 2× n, n ≥ 4: All non-containments in these cases follow from the cases
2× 2× 2 and 2× 2× 3 using Lemma 7.2.

Case 2×3×3: Everything here follows immediately from Parfenov’s work except
12 �→ 7′ and 14 �→ 7′.

12 �→ 7′: Note that ξ ∈ U⊗v1⊗W +U⊗V ⊗w3 where ξ is our representative for
orbit 12. So if ξ′ is in the closure of orbit 12, there must be some v ∈ V and w ∈ W
such that ξ′ ∈ U ⊗ v ⊗W + U ⊗ V ⊗ w. We now show that our representative η for
orbit 7′ is not of this type, which will complete the proof.

Assume that η ∈ U ⊗ v ⊗W + U ⊗ V ⊗ w for some v ∈ V and w ∈ W . Using
summation convention, we have v = djvj , w = rkwk, and

η = xikui ⊗ v ⊗ wk + yijui ⊗ vj ⊗ w = (xikdj + yijrk)eijk.

By equating the coefficients for i, j, k = 1, 2, we obtain the system
x11d1 + y11r1 = 1, x21d1 + y21r1 = 0,
x12d1 + y11r2 = 0, x22d1 + y21r2 = 1,
x11d2 + y12r1 = 0, x21d2 + y22r1 = −1,
x12d2 + y12r2 = 1, x22d2 + y22r2 = 0.

By eliminating the xik, we obtain
(y11d2 − y12d1)r1 = d2, (y21d2 − y22d1)r1 = d1,
(y11d2 − y12d1)r2 = −d1, (y21d2 − y22d1)r2 = d2.

Hence r1d1 + r2d2 = r2d1 − r1d2 = 0. But

(r1d1 + r2d2)2 + (r2d2 − r1d2)2 = ((r1)2 + (r2)2)((d1)2 + (d2)2),

so we see that r1 = r2 = 0 or d1 = d2 = 0. In both cases our system of equations is
inconsistent. So we have that 12 �→ 7′.

14 �→ 7′: Let ξ and η be our representatives for the G+-orbits 14 and 7′ respec-
tively. By specializing λ = 0, µ = 1, the pencil λAξ + µBξ gives the matrix Bξ of
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rank 1. On the other hand every non-trivial specialization of λAη + µBη produces a
matrix of rank 2.

Case 2 × 3 × 4: Using the previous cases, along with Lemma 7.2 and Parfenov’s
work, we get everything except: 23 �→ 22′±, 24+ �→ 22′−, 24− �→ 22′+, 22

′
+ �→ 19−,

22′− �→ 19+, 22 �→ 18′, and 22′± �→ 18.
By directly evaluating the coefficients for our representatives, we find the signa-

tures of p for the following orbits: 24+ : (1, 2, 0); 23 : (1, 1, 0); 22′− : (2, 0, 0); 19+ :
(0, 1, 2).

It follows from this that 24+ �→ 22′−, 22
′
− �→ 19+, and 23 �→ 22′±. From the action

of G/G+ we also see that 24− �→ 22′+ and 22
′
+ �→ 19−.

In order to handle the remaining cases, we recall a property of real binary cubic
forms c0λ3 + c1λ2µ+ c2λµ2 + c3µ3. The discriminant D of this form is given by

D = c21c
2
2 + 18c0c1c2c3 − 4(c0c32 + c31c3)− 27c20c23.

The cubic form splits (into linear factors) if and only if D ≥ 0.
22 �→ 18′: Let ξ and η be our representatives of the G+-orbits 22 and 18′ re-

spectively. The greatest common divisor of the 3 × 3 minors of λAξ + µBξ is λµ.
Consequently, every 3 × 3 minor of this pencil splits, and so its discriminant is ≥ 0.
Clearly this is also true for all ξ′ in the orbit G+ · ξ, and consequently for all ξ′ in the
closure of this orbit. On the other hand the first 3× 3 minor of η is λ(λ2 +µ2) which
has discriminant −4. Hence η is not in the closure of G+ · ξ.

22′± �→ 18: Let ξ and η be our representatives for the G+-orbits 22′± and 18
respectively. The greatest common divisors of the 3 × 3 minors of λAξ + µBξ is
λ2 + µ2. Consequently, every 3 × 3 minor of this pencil has discriminant ≤ 0. As
above this is also true for all ξ′ in the closure of G+ · ξ. On the other hand the first
3 × 3 minor of λAη + µBη is λµ(λ + µ) which has discriminant 1. Hence η is not in
the closure of G+ · ξ. This completes the 2× 3× 4 case.

For the cases 2×3×n with n ≥ 5 all non-containments follow from smaller cases,
or from Parfenov’s paper [8], so the proof is now complete.

8. Appendix. In figures 1-4 we exhibit the closure diagrams for G+-orbits in
X in the cases 2 × 2× 2, 2 × 2× 4, 2 × 3× 4, and 2 × 3 × 6. In these diagrams, the
closure of an orbit is the union of itself with all orbits that can be reached from it by
following lines in a downward direction in the diagram. The numbers on the left hand
side show the dimensions of the orbits at each level. Some modifications need to be
made to obtain the diagrams for cases not explicitly shown. These are as follows:

2× 2× 3: Drop orbits 19± from the diagram for 2× 2× 4 (Figure 2).
2× 2× n, n ≥ 5: Combine orbits 19+ and 19− to form the single orbit 19 in the

diagram 2× 2× 4 (Figure 2). Both orbits 13+ and 13− are in the closure of orbit 19.
2 × 3 × 3: Take the portion of the diagram for the cases 2 × 3 × 4 (Figure 3)

consisting of orbits present in the smaller space (see Table 5.5).
2×3×5: Take the part of the diagram for 2×3×6 (Figure 4) consisting of orbits

present in the smaller space (see Table 5.5).
2×3×n, n≥ 7: Combine orbits 27+ and 27− in the diagram for 2×3×6 (Figure

4) to get a single orbit 27. Orbit 26 is in the closure of orbit 27.
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In the cases where the diagrams need to be modified, the dimensions of the orbits
change. They are given in Tables 3.1 and 4.1.
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Figure 3: 	 = 2, m = 3, n = 4
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Figure 4: 	 = 2, m = 3, n = 6
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