

DIGRAPHS WITH LARGE EXPONENT*

S. KIRKLAND^{\dagger}, D. D. OLESKY^{\ddagger}, AND P. VAN DEN DRIESSCHE[§]

Abstract. Primitive digraphs on n vertices with exponents at least $\lfloor \omega_n/2 \rfloor + 2$, where $\omega_n = (n-1)^2 + 1$, are considered. For $n \geq 3$, all such digraphs containing a Hamilton cycle are characterized; and for $n \geq 6$, all such digraphs containing a cycle of length n-1 are characterized. Each eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved to be geometrically simple.

Key words. primitive directed graph, exponent.

AMS subject classifications. 15A48, 05C20

1. Introduction. A directed graph (digraph) D is primitive if for some positive integer m there is a (directed) walk of length m between any two vertices u and v(including u = v). The minimum such m is the exponent of D, denoted by exp(D). It is well known that D is primitive iff it is strongly connected and the gcd of its cycle lengths is 1. A nonnegative matrix A is primitive if A^m is entrywise positive for some positive integer m. If D = D(A), the digraph of a primitive matrix A, then exp(D) = exp(A), which is the minimum m such that A^m is entrywise positive.

Denoting $(n-1)^2 + 1$ by ω_n , the best upper bound for exp(D) when a primitive digraph D has $n \ge 2$ vertices is given by $exp(D) \le \omega_n$, with equality holding iff $D = D(W_n)$ where W_n is a Wielandt matrix; see, e.g., [2, Theorem 3.5.6]. When n = 2, then $D(W_2)$, consisting of a 1 cycle and a 2 cycle, has exponent equal to 2. Henceforth we assume that $n \ge 3$. The digraph $D(W_n)$ consists of a Hamilton cycle (i.e., a cycle of length n) and one more arc, between a pair of vertices that are distance two apart on the Hamilton cycle, giving a cycle of length n - 1.

The following result of Lewin and Vitek [6, Theorem 3.1], see also [2, Theorem 3.5.8], is the basis for our discussion of digraphs with large exponent.

THEOREM 1.1. If D has $n \ge 3$ vertices and is primitive with sufficiently large exponent, namely

(1)
$$exp(D) \ge \lfloor \omega_n/2 \rfloor + 2, with \ \omega_n = (n-1)^2 + 1,$$

then D has cycles of exactly two different lengths j, k with $n \ge k > j$.

We say that a primitive digraph D on n vertices satisfying (1) has a *large exponent*. Note that in Theorem 1.1, gcd(j,k) = 1 since D is primitive. If gcd(j,k) = 1, then

^{*}Received by the editors on 26 January 2000. Accepted for publication on 21 February 2000. Handling editor: Richard A. Brualdi.

[†]Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada (kirkland@math.uregina.ca). Research supported in part by an NSERC Research Grant.

[‡]Department of Computer Science, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada (dolesky@csr.uvic.ca). Research supported in part by an NSERC Research Grant.

[§]Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, V8W 3P4, Canada (pvdd@math.uvic.ca). Research supported in part by an NSERC Research Grant.

every integer greater than or equal to (j-1)(k-1) can be written as $c_1 j + c_2 k$, where c_i are nonnegative integers. The value (j-1)(k-1) is the smallest such integer, and is called the Frobenius-Schur index for the two relatively prime integers j and k; see, e.g., [2, Lemma 3.5.5].

The Frobenius-Schur index is used to prove the following result that gives a necessary and sufficient condition for the existence of a primitive digraph with large exponent and cycles of two specified lengths.

THEOREM 1.2. Let k and j be such that gcd(j,k) = 1 and $n \ge k > j$. There exists a primitive digraph D on n vertices having only cycle lengths k and j and $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ iff $j(k-2) \ge \lfloor \omega_n/2 \rfloor + 2 - n$.

Proof. Suppose that D is a digraph with large exponent and cycle lengths k and $j < k \le n$. We claim that for any pair of vertices u and v, there is a walk from u to v of length at most $k + n - j - 1 \ge n$ that goes through a vertex on a k cycle and a vertex on a j cycle. To prove this claim, note that from the proof of Theorem 1 in [4], there are no pairs of vertex disjoint cycles in D; that is, any pair of cycles share at least one common vertex. If there is a walk from u to v of length less than or equal to n that passes through at least one vertex on a k cycle and at least one vertex on a j cycle, then the claim is proved.

So suppose that this is not the case. In particular, assume that u and v are only on k (resp. j) cycles, and any path from u to v passes only through vertices not on any j (resp. k) cycle. Consider the first case. Let l be the number of vertices not on a j cycle, and note that $2 \leq l \leq n-j$. Since a shortest path from u to v goes only through vertices not on a j cycle, the length p of such a path satisfies $p \leq l-1$. Consider the walk from u to v formed by first traversing a k cycle at u (necessarily going through a vertex on a j cycle), then taking the path of length p from u to v. This generates a walk from u to v that goes through a vertex on a k cycle and one on a j cycle, and its length is $k + p \leq k + l - 1 \leq k + n - j - 1$. The second case follows by interchanging k and j and noting that j + n - k - 1 < k + n - j - 1. Thus the claim is proved. By the Frobenius-Schur index, there is a walk from u to v of length k + n - j - 1 + (k - 1)(j - 1) = n + j(k - 2) for any pair u, v. Thus $n + j(k - 2) \geq exp(D) \geq |\omega_n/2| + 2$, giving the condition on k and j.

For the converse, assume the condition on k and j, and consider the digraph D consisting of the k cycle $1 \rightarrow k \rightarrow k-1 \rightarrow \cdots \rightarrow k+j-n+1 \rightarrow k+j-n \rightarrow k+j-n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and arcs $1 \rightarrow k+1 \rightarrow k+2 \rightarrow \cdots \rightarrow n-1 \rightarrow n \rightarrow k+j-n$. Thus D has exactly one k cycle and one j cycle. Consider the length of a walk from k to k+j-n+1. Such a walk has length n-j-1 or $k+n-j-1+c_1k+c_2j$ for some nonnegative integers c_i , and (from the Frobenius-Schur index) there is no walk of length k+n-j-1+(k-1)(j-1)-1. Thus

$$exp(D) \ge k + n - j - 1 + (k - 1)(j - 1) = n + j(k - 2) \ge \lfloor \omega_n/2 \rfloor + 2.$$

Note that for D primitive with only cycles of lengths k and j with $j < k \le n$, the bound on exp(D) found in the above proof, namely $exp(D) \le n + j(k-2)$, improves the bound in [4, Lemma 1] and includes the converse. Furthermore, Theorem 1.2 does not include additional assumptions as in [6, Theorem 4.1].

We assume that D has a large exponent and focus on the graph theoretic aspects of this condition. In Section 2, we characterize the case when D has a Hamilton cycle $(k = n \ge 3)$; and in Section 3, we characterize the case k = n - 1. Our characterizations give some information on the case for general $k \le n$ when $n \ge$ 4, since a result of Beasley and Kirkland [1, Theorem 1] implies that any induced subdigraph on k vertices that is primitive also has large exponent (relative to $\lfloor \omega_k/2 \rfloor +$ 2), so the structure of some such induced subdigraphs is known from our results. It is known from results in [6] exactly which numbers $\ge \lfloor \omega_n/2 \rfloor + 2$ are attainable as exponents of primitive digraphs. (Note that there are some gaps in this exponent set.) Our work in Sections 2 and 3 focuses on describing the corresponding digraphs when $k \ge n - 1$.

Some algebraic consequences of the large exponent condition (1) for a stochastic matrix A with D(A) = D have been investigated in [4] and [5]. The characteristic polynomial of A has a simple form (see [4, Theorem 1]), and, if n is sufficiently large, then about half of the eigenvalues of A have modulus close to 1. Kirkland and Neumann [5] considered the magnitudes of the entries in the group generalized inverse of I - A (which measures stability of the left Perron vector of A under perturbations). In Section 4 we use results of Sections 2 and 3 to investigate the multiplicities of eigenvalues of stochastic matrices with large exponents.

2. The Hamiltonian Case. Assuming that D has large exponent and a Hamilton cycle, we begin by finding possible lengths for other cycles in D.

LEMMA 2.1. Suppose that D is a primitive digraph on $n \ge 3$ vertices with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ and that D has a Hamilton cycle. Then D has precisely one Hamilton cycle, and all other cycles have length j, where $n > j \ge \lfloor (n-1)/2 \rfloor$.

Proof. By Theorem 1.1, D contains cycles of exactly two lengths, n = k > j. W.l.o.g. take the given Hamilton cycle as $1 \to n \to n-1 \to \cdots \to 2 \to 1$, and assume that the arc $1 \to j$ lies on a second Hamilton cycle. Note that the only possible arcs from any vertex i are $i \to i-1 \pmod{n}$ and $i \to i+j-1 \pmod{n}$. Since the arc $j+1 \to j$ is not on the second Hamilton cycle, this cycle must include the arc $j+1 \to (j+1)+j-1=2j \pmod{n}$. Similarly, there is an arc on the second Hamilton cycle from (m-1)j+1 to $mj \pmod{n}$, for $m=1,\ldots,n$. As gcd(j,n)=1,D contains the digraph of a primitive circulant. By [3, Theorem 2.1], $exp(D) \leq (n-1)$ or $exp(D) \leq \lfloor n/2 \rfloor$, thus $exp(D) < \lfloor \omega_n/2 \rfloor + 2$. Hence, there is no second Hamilton cycle in D. For the lower bound on j, take k = n in Theorem 1.2; see also [4, Theorem 1]. \square

If D has large exponent and k = n = 3, then Lemma 2.1 implies that $j \in \{1, 2\}$. For j = 1, D consisting of a 3 cycle and a 1 cycle has exponent equal to $4 = \lfloor \omega_3/2 \rfloor + 2$. For j = 2 = n - 1, either $D = D(W_3)$ with exponent equal to $5 = \omega_3$, or D consists of a 3 cycle with two 2 cycles and has exponent equal to 4. This last case is an example of the result that a digraph D on n vertices has $exp(D) = (n-1)^2$ iff D is isomorphic to an n cycle with two additional arcs from consecutive vertices forming two n - 1cycles; see, e.g., [2, pp. 82–83].

These observations motivate our next two theorems, which describe the Hamiltonian digraphs with large exponent. Most cases are covered in Theorem 2.2, but, if n

Digraphs with Large Exponent

is odd, then the case j = (n-1)/2 is slightly different and is given in Theorem 2.3.

THEOREM 2.2. Suppose that $j \ge n/2$. Then D is a primitive digraph on $n \ge 3$ vertices with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ and cycle lengths n and j iff D is isomorphic to a (primitive) subdigraph of the digraph formed by taking the cycle $1 \to n \to n-1 \to \cdots \to 2 \to 1$, and adding in the arcs $i \to i + j - 1$ for $1 \le i \le n - j + 1$.

Proof. Assume that D is primitive with large exponent and has a Hamilton cycle. Then by Lemma 2.1, D has only one Hamilton cycle and other cycles of length j, which by assumption is at least n/2. W.l.o.g. assume that the Hamilton cycle is $1 \to n \to n-1 \to \cdots \to 2 \to 1$, and that D contains the arc $1 \to j$. Since D has cycles of just two different lengths, each vertex i of D has outdegree < 2, and if the outdegree is 2, then the outarcs from vertex i are $i \to i-1$ and $i \to i+j-1$. Here and throughout the proof, all indices are mod n. As $1 \rightarrow j$, the outdegree of vertex *i* is 1 for each $i \in \{n - j + 2, \dots, j\}$, since otherwise $1 \to j \to j - 1 \to \dots \to i \to j$ $i+j-1-n \rightarrow i+j-2-n \rightarrow \cdots \rightarrow 2 \rightarrow 1$ is a cycle of length less than j. Consequently if the outdegree of vertex $i \in \{2, \ldots, j\}$ is 2, then in fact $i \in \{2, \ldots, n-j+1\}$. If there is no such i, then D has the desired structure, since D has at most n-j+1 consecutive vertices on the Hamilton cycle (namely 1 and $j + 1, \ldots, n$) of outdegree 2. Henceforth suppose that there exists $i \in \{2, \ldots, n-j+1\}$ with outdegree 2, and let i_1 be the maximum such i; thus $i_1 \rightarrow i_1 + j - 1 \in \{j + 1, \dots, n\}$. As before, the outdegree is 1 for each vertex $\in \{n-j+i_1+1,\ldots,j+i_1-1\}$. In particular, if $n-j+i_1+1 \le j+1$, then the only vertices that can have outdegree 2 are $1, \ldots, i_1$ and $j + i_1, \ldots, n$, that is n-j+1 consecutive vertices, as desired. So suppose henceforth that $n-j+i_1 > j$, that is $i_1 > 2j - n \ge 0$. Suppose also that there exists i_2 such that $n - j + i_1 \ge i_2 \ge j + 1$ with i_2 having outdegree 2. Then $i_2 \rightarrow i_2 + j - 1$. Now $n + i_1 - 1 \ge i_2 + j - 1 \ge 2j$, so that $i_2 + j - 1 \pmod{n} = i_2 + j - 1 - n \in \{2j - n, \dots, i_1 - 1\}$. But then there is a $\operatorname{cycle} i_1 \to i_1 + j - 1 \to i_1 + j - 2 \to \cdots \to i_2 \to i_2 + j - 1 - n \to i_2 + j - 2 - n \to \cdots \to i_2 \to j_2 \to j$ $2 \rightarrow 1 \rightarrow j \rightarrow j - 1 \rightarrow \cdots \rightarrow i_1 + 1 \rightarrow i_1$, which has length 3j - n. As there is only one Hamilton cycle (Lemma 2.1), this implies that 3j - n = j, giving a contradiction, since gcd(n, j) = 1. Thus again each of vertices $i_1 + 1, \ldots, j + i_1 - 1$ has outdegree 1, and so at most n - j + 1 consecutive vertices have outdegree 2, as desired.

For the converse, consider the maximal such digraph D with the above Hamilton cycle and the n-j+1 additional arcs. Note that each of the vertices $n-j+2, \ldots, n$ has outdegree 1, and each of the vertices $1, 2, \ldots, j-1$ has indegree 1, so the only path from n to 1 is $n \to n-1 \to \cdots \to 1$ with length n-1. By Frobenius-Schur, it follows that there is no walk from n to 1 of length n-1+(n-1)(j-1)-1; hence $exp(D) \ge j(n-1)$. Since gcd(n,j) = 1, it follows that j = n/2 is inadmissible. Thus $j \ge n/2$ implies that $j \ge (n+1)/2$, and so $j(n-1) \ge (n^2-1)/2 \ge \lfloor \omega_n/2 \rfloor + 2$. Since D is maximal, any primitive subdigraph has exponent at least as large as exp(D). \Box

THEOREM 2.3. Suppose that $n \geq 3$ is odd and j = (n-1)/2. Then D is a primitive digraph on n vertices with $exp(D) \geq \lfloor \omega_n/2 \rfloor + 2$ and cycle lengths n and j iff D is isomorphic to a (primitive) subdigraph of the digraph formed by taking the cycle $1 \rightarrow n \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and adding in the arcs $i \rightarrow i+j-1$ for $1 \leq i \leq (n-1)/2 = j$.

Proof. First assume that $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2 = (n-1)^2/2 + 2$. Observe that if vertex *i* is on a *j* cycle, then (by Frobenius-Schur) there is a walk of length

 $\leq (n-1) + (n-1)(j-1) = j(n-1) = (n-1)^2/2$ from *i* to each vertex of *D*. It follows that there must be a vertex with distance 2 to the nearest *j* cycle. W.l.o.g. that vertex is *n*, with vertex n-2 on a *j* cycle. In fact that *j* cycle is $n-2 \to n-3 \to \cdots \to (n-1)/2 = j \to n-2$, otherwise n-1 or *n* is on a *j* cycle. None of the vertices $j+1, j+2, \cdots, n$ can have outdegree 2 (otherwise one of n-1 or *n* is on a *j* cycle). However, the j-1 additional arcs $i \to i+j-1$ for $i=1,2,\ldots,j-1$ may be included in *D*. Thus it follows that *D* is a subdigraph of the digraph that has the n-1 cycle and the additional *j* arcs as in the theorem statement.

For the converse, note that if D is isomorphic to a subdigraph of the specified digraph, then a walk from n to n-1 of length greater than 1 must traverse the entire Hamilton cycle, so walks from n to n-1 have length 1 or $n+1+c_1n+c_2j$ where c_1 and c_2 are nonnegative integers. Thus (by Frobenius-Schur) there is no walk from n to n-1 of length $n+1+(n-1)(n-3)/2-1=(n-1)^2/2+1$, so that $exp(D) \ge (n-1)^2/2+2$, as desired. \square

Using the structures of Hamiltonian digraphs D with large exponents given in Theorems 2.2 and 2.3, we determine the exact value of exp(D) in terms of a parameter a that depends on which j cycles occur in D.

COROLLARY 2.4. Suppose that D is a primitive digraph on $n \ge 3$ vertices with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$, a Hamilton cycle and all other cycles of length j, where $n > j \ge \lceil (n-1)/2 \rceil$. Suppose that the Hamilton cycle is $1 \to n \to n-1 \to \cdots \to 2 \to 1$. Let $1 \le a \le n-j+1$ if $j \ge n/2$, and $1 \le a \le j$ if j = (n-1)/2. Suppose that D also contains the $arc(s) \ 1 \to j$ and $a \to a+j-1$, and that if i is a vertex of outdegree 2, then $1 \le i \le a$. Then exp(D) = n-a+1+(n-2)j.

Proof. The shortest walk from n to a+j that passes through a vertex on a j cycle has length n-a-j+n, so it follows (by Frobenius Schur) that there is no walk from n to a+j of length n-a-j+n+(n-1)(j-1)-1. Thus $exp(D) \ge n-a+1+(n-2)j$. Further, since there is a walk between any two vertices of length at most n-a-j+nthat goes through a vertex on a j cycle, it follows that $exp(D) \le n-a+1+(n-2)j$, and thus exp(D) = n-a+1+(n-2)j. \Box

If $j \ge n/2$, note that $exp(D) = n-a+1+(n-2)j \ge j(n-1)$ for $1 \le a \le n-j+1$, giving the result of [6, Corollary 3.1] when k = n without the additional assumption. Also note that if j = n - 1 and a = 1, then exp(D) achieves its maximum value of ω_n , and $D = D(W_n)$, as described in Section 1. It is interesting to note that in the above corollary, it is only the value of a that influences the value of the exponent; if $2 \le i \le a - 1$, the presence or absence of the arc $i \to i + j - 1$ does not affect the exponent. For fixed n and j, this result gives a range of values of exp(D) in which there are no gaps; see [6].

3. The Case k = n-1. If D on n vertices has large exponent with cycle lengths n-1 and j < n-1, then Theorem 1.2 shows that $j \ge \lceil n/2 \rceil$ provided that $n \ge 5$. (There are no such digraphs for $n \le 4$.) Our next two theorems characterize these digraphs for $n \ge 6$. As in the Hamiltonian case, most digraphs are covered by the first result (Theorem 3.3), but the case j = n/2 (when n is even) is different, and is given by the second result (Theorem 3.4). Before proving our main results, we give a definition and a preliminary Lemma. Note that since there is a cycle of length n-1,

indices are taken mod (n-1). Vertex *n* replicates vertex $v \in \{1, \ldots, n-1\}$ in a digraph *D* on *n* vertices if for all $a, b \in \{1, \ldots, n-1\}, a \to n$ iff $a \to v$ and $n \to b$ iff $v \to b$. Thus in the adjacency matrix *A* with D = D(A), the rows (and columns) corresponding to vertices *n* and *v* are the same.

LEMMA 3.1. Let D be a strongly connected digraph on $n \ge 5$ vertices, with cycle lengths n-1 and j, where $n-1 > j \ge 3$. Suppose that $1 \to n-1 \to \cdots \to 2 \to 1$ is an n-1 cycle, and that $c \to n$. Then n has outdegree at most 2, with either $n \to c-2$ or $n \to c+j-2$ or both. Furthermore, if the outdegree of n is 2, then the indegree of n is 1.

Proof. First suppose that there is an arc $n \to a$. Then there is a cycle $n \to a \to a - 1 \to \cdots \to c \to n$ of length a - c + 2 if a > c, or length n + 1 + a - c if c > a. In the former case, a - c + 2 = j or n - 1, from which it follows that a = c + j - 2 or c - 2; in the latter case similarly a = c + j - 2 or c - 2. This establishes the possible outarcs from n. Finally, assume that $n \to c - 2$ and $n \to c + j - 2$. Suppose that $d \to n$ for some $d \neq c$. As above the two outarcs from n can be written as d - 2 and d + j - 2. As $d \neq c$, it follows that d - 2 = c + j - 2 and c - 2 = d + j - 2. Hence d - c = j and c - d = j, giving a contradiction. Thus the indegree of n is 1. \square

COROLLARY 3.2. Let D be as in Lemma 3.1. If $n \to c$, then either $c + 2 \to n$ or $c + 2 - j \to n$ or both. Furthermore, if the indegree of n is 2, then the outdegree of n is 1.

Proof. Form D' by reversing the orientation of each arc in D. Then Lemma 3.1 applies to D', and the result follows. \square

THEOREM 3.3. Suppose that $n \ge 6$ and n-1 > j > n/2. Then D is a primitive digraph on n vertices with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ and cycle lengths n-1 and j iff (up to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a digraph formed by taking an n-1 cycle $1 \rightarrow n-1 \rightarrow n-2 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, adding in the arcs $a \rightarrow a + j - 1$ for $1 \le a \le n-j$, and one of the following:

(a) arcs so that n replicates i_0 for a fixed $i_0 \in \{1, \ldots, n-1\}$,

(b) arcs $1 \rightarrow n, n \rightarrow n-2$ and $n \rightarrow j-1$.

Proof. First suppose that D is primitive with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ and cycle lengths n-1 and j. By relabeling the vertices and/or reversing each arc in D if necessary, we may assume that the n-1 cycle is as above, and that vertex n has indegree 1 (Lemma 3.1 and Corollary 3.2). If the subdigraph induced by $\{1, \ldots, n-1\}$ is not primitive, then this subdigraph is just the n-1 cycle, and without loss of generality $1 \to n$, so by Lemma 3.1 the outarcs of n are a subset of those given in (b). So suppose that the subdigraph induced by $\{1, \ldots, n-1\}$ is primitive. It follows from a result of Beasley and Kirkland [1, Theorem 1], that the exponent of this induced subdigraph is at least $\lfloor \omega_n/2 \rfloor$, which in turn is at least $\lfloor \omega_{n-1}/2 \rfloor + 2$. Hence without loss of generality, take the subdigraph to contain the arc $1 \to j$, and (by Theorem 2.2) to have the property that if $a \to a + j - 1$, then $1 \le a \le n - j$. Let a_0 be the maximum such a. Suppose that $i \to n$ and note from Lemma 3.1 that the only possible outarcs from n are $n \to i-2$ and $n \to i+j-2$. Consider the two cases: (i) $n \not \to i+j-2$, (ii) $n \to i+j-2$.

Case (i) $n \not\rightarrow i + j - 2$: Vertex *n* has outdegree 1 with $n \rightarrow i - 2$ (and indegree 1 with $i \rightarrow n$). From the structure of the subgraph induced by $\{1, \ldots, n-1\}$ (described

above), D is a subdigraph of one constructed as in (a) (with $i_0 = i - 1$).

Case (ii): $n \to i+j-2$: If $1 \le i-1 \le n-j$ or $n-1 \ge i-1 \ge a_0+j-1$, then D is a subdigraph of one of the ones constructed in (a) (if $i \ne 1$, with $i_0 = i+j-1$) or in (b) (if i = 1). Suppose now that $n-j+1 \le i-1 \le a_0+j-2$. Then $n \le i+j-2 \le a_0+2j-3$, so that $1 \le i+j-2 - (n-1) \le a_0+2j-3 - (n-1) < a_0 - 2$. Note that D contains the closed walk $a_0 \to a_0 + j - 1 \to a_0 + j - 2 \to \dots \to i \to n \to i+j-2 - (n-1) \to i+j-3 - (n-1) \to \dots \to 1 \to j \to j-1 \to \dots \to a_0$, which has length 3j - (n-1). Any closed walk can be decomposed into cycles, thus $3j - (n-1) = c_1j + c_2(n-1)$ for some nonnegative integers c_1, c_2 . Since j < 3j - (n-1) < 2(n-1), the only possible cases are that 3j - (n-1) is one of n-1 (with $c_1 = 0, c_2 = 1$), 2j (with $c_1 = 2, c_2 = 0$) and j + n - 1 (with $c_1 = 1, c_2 = 1$). The last two of these imply that j = n-1 (a contradiction). The first of these three can only occur if 3j = 2(n-1), and since j and n-1 are relatively prime, this is also impossible. Consequently, it must be the case that $1 \le i-1 \le n-j$ or $n-1 \ge i-1 \ge a_0 + j-1$, so that D is a subgraph of one of the ones constructed in (a) or (b).

For the converse, consider a maximal digraph H constructed as in (a). Since n replicates i_0 , exp(H) = exp(H') where H' is formed from H by deleting n and its incident arcs. Now H' is Hamiltonian on n-1 vertices and has the digraph structure of Theorem 2.2, thus $exp(H') \ge \lfloor \omega_{n-1}/2 \rfloor + 2$. Applying Corollary 2.4 to H' with n replaced by n-1 and a = n-j, $exp(H') = j(n-2) \ge \lfloor \omega_n/2 \rfloor + 2$, since j > n/2 and $n \ge 6$. For case (b), observe that there is no walk from n-1 to 1 of length (n-2)j-1 (by the usual Frobenius-Schur argument), so that the exponent is at least (n-2)j, giving the required result as in (a). \square

Note that the result of Theorem 3.3 does not hold for small values of n. For example, if n = 5 a digraph as in (a) of Theorem 3.3 with exponent equal to $9 < 10 = \lfloor \omega_5/2 \rfloor + 2$ can be constructed by taking a Hamiltonian digraph on 4 vertices with two additional arcs from consecutive vertices forming two 3-cycles (see, e.g., [2, pp. 82-83]) and vertex 5 replicating vertex 1.

THEOREM 3.4. Suppose that $n \ge 6$ is even and j = n/2. Then D is a primitive digraph on n vertices with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ and cycle lengths n-1 and j iff (up to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a digraph formed by taking an n-1 cycle $1 \rightarrow n-1 \rightarrow n-2 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, adding in the arcs $i \rightarrow i + j - 1$ for $1 \le i \le n/2 - 3$, and one of the constructions (a) or (b) in Theorem 3.3.

Proof. First suppose that D is primitive with $exp(D) \ge \lfloor \omega_n/2 \rfloor + 2$ and cycle lengths n-1 and j. As in the proof of Theorem 3.3, assume that the n-1 cycle is as above, that the subdigraph induced by $\{1, \ldots, n-1\}$ is primitive, with $1 \to j$, and with the property that if $a \to a+j-1$, then $1 \le a \le n-j$. Finally, also suppose that $i \to n$. By Lemma 3.1 and Corollary 3.2 there are two cases to consider: (i) Dcontains exactly one of the arcs $n \to i+j-2$ and $i-j \to n$, (ii) D contains neither the arc $n \to i+j-2$ nor the arc $i-j \to n$.

Case (i): We claim that we may assume that $n \to i + j - 2$. To see the claim, observe that if instead we have the arc $i - j \to n$ (and thus, by Lemma 3.1, $n \to i - 2$), we can reverse every arc in D and relabel vertices $1, \ldots, n-1$ by sending t to n-t for each such t. With this relabeling, it follows from Lemma 3.1 that $n - i + 2 \to n$ and

Digraphs with Large Exponent

 $n \to n - i + j$. With n - i + 2 replaced by i, this digraph contains the arc $n \to i + j - 2$. So without loss of generality, we assume that the arc $n \rightarrow i + j - 2$ is in D. Since vertex n is on a j-cycle and since D has diameter at most n-1, it follows that there is a walk from n to any vertex of length $n-1+(n-2)(n/2-1)=(n^2-2n+2)/2$, and similarly that from any vertex in D there is a walk to n of length $(n^2 - 2n + 2)/2$. Since $exp(D) > |\omega_n/2| + 2 = (n^2 - 2n + 6)/2$, it must be the case that there are vertices u and $v \in \{1, \ldots, n-1\}$ such that there is no walk from u to v of length $(n^2 - 2n + 4)/2$. Observe that for any vertex $w \in \{1, \ldots, n-1\}$ that is on a *j*-cycle, there is a walk from w to every vertex in $\{1, ..., n-1\}$ of length $n-2+(n-2)(n/2-1) = (n^2-2n)/2$. As a result, the shortest walk from u to a vertex in $\{1, \ldots, n-1\}$ that is on a *j*-cycle must have length at least 3. It follows from this that in fact vertex n-1 must be at least 3 steps from the nearest j-cycle, so that in particular, none of n-1, n-2and n-3 can be on a j-cycle. Thus in $D, n-j \not\rightarrow n-1, n-j-1 \not\rightarrow n-2$ and $n-j-2 \not\rightarrow n-3$, and so if $a \rightarrow a+j-1$, then $a \leq n-j-3 = n/2-3$. Further, it must be the case that $1 \le i \le n-j-2$, otherwise one of vertices n-1, n-2 and n-3is on a j-cycle (involving vertices i and n). Consequently, D can be relabeled to yield a subdigraph of one of those constructed in (a) with $i_0 = i - 1$ (if $2 \le i \le n - j - 2$), or (b) (if i = 1).

Case (ii): If D contains neither the arc $n \to i + j - 2$ nor the arc $i - j \to n$, then n has both indegree and outdegree 1, with $i \to n \to i - 2$. Now if D contains either of the arcs $i - 1 \to i + j - 2$ or $i - j \to i - 1$, then the labels of vertices i - 1 and n can be exchanged and case (i) above applies. On the other hand if Dcontains neither of those two arcs, then i - 1 has indegree and outdegree 1, with $i \to i - 1 \to i - 2$, so that vertex n replicates vertex i - 1. Thus exp(D) = exp(D')where D' is formed from D by deleting vertex n and the arcs incident with it. From Corollary 2.4 with n replaced by n - 1, exp(D') = n - 1 - a + 1 + (n - 3)j where $a = max\{b \text{ is a vertex in } D':$ the arc $b \to b + j - 1$ is in $D'\}$. Thus exp(D') = $exp(D) = n - a + (n - 3)n/2 \ge (n^2 - 2n + 6)/2$, which implies that $a \le n/2 - 3$. Consequently D is a subdigraph of one of those constructed in (a) with $i_0 = i - 1$.

For the converse, consider a digraph H constructed as in (a). Since n replicates i_0 , exp(H) = exp(H'), where H' is formed from H by deleting n and its incident arcs. Appealing to Corollary 2.4 with n replaced by n-1, a = n/2 - 3, and j = n/2, $exp(H') = (n^2 - 2n + 6)/2 = \lfloor \omega_n/2 \rfloor + 2$ if n is even. Finally, consider the digraph H constructed in (b). Evidently the walks from vertex n-1 to n-3 can only have lengths equal to 2, or to $2 + n - 1 + c_1(n-1) + c_2 j$ for nonnegative integers c_1 and c_2 . It follows that there is no walk from n-1 to n-3 of length $(n^2 - 2n + 4)/2$, so that $exp(H) \ge (n^2 - 2n + 6)/2$. \Box

4. Eigenvalue Results. In this section we explore results on the multiplicities of eigenvalues of primitive stochastic matrices having large exponent. These complement eigenvalue results in [4]. Our first theorem gives conditions for a stochastic matrix with large exponent to have a multiple nonzero eigenvalue. This result, which is not restricted to k = n or k = n - 1, shows that a multiple nonzero eigenvalue must be negative with algebraic multiplicity 2.

THEOREM 4.1. Let A be a primitive, row stochastic n-by-n matrix with $n \ge 3$ and $exp(A) \ge \lfloor \omega_n/2 \rfloor + 2$. Let k and j be the two cycle lengths in D(A) with $n \ge k > j$. Then A has a multiple nonzero eigenvalue λ iff $\lambda = -r$, where r is the unique positive root of $kx^j + jx^k = k - j$. When this is the case, k is odd and j is even.

Proof. By Theorem 1 in [4], the characteristic equation of A is $z^n - \alpha z^{n-j} - (1 - \alpha)z^{n-k} = 0$, for some $\alpha \in (0, 1)$. Thus a nonzero eigenvalue satisfies

(2)
$$z^k - \alpha z^{k-j} - (1-\alpha) = 0$$

Note that 1 is always an eigenvalue, and (by Descartes' rule of signs) there is no other positive eigenvalue. Let $\lambda = \rho e^{i\theta}$ be an eigenvalue with $\rho > 0$ and $0 < \theta < 2\pi$. By differentiating, if λ is a multiple eigenvalue, then it also satisfies $\lambda^j = \alpha(k-j)/k$, giving $\rho^j = \alpha(k-j)/k$ and $\theta = 2\pi l/j$ for some positive integer l < j. Further differentiation shows that the algebraic multiplicity of λ is 2. By taking imaginary parts of the characteristic equation, $\rho^k \sin(k\theta) = \alpha \rho^{k-j} \sin((k-j)\theta)$. On substituting for ρ^j , this gives $(k-j)\sin(k\theta) = k\sin((k-j)\theta) = k\sin((k-j)2\pi l/j) = k\sin(k\theta)$. Thus $\sin(k\theta) = 0$, so that $\theta = \pi m/k$ for some positive integer m. Hence 2lk = mj, and since gcd(k, j) = 1 and j divides 2l, it must be that j = 2l. As a result $\theta = \pi, \lambda = -\rho$, j is even, k is odd and $\alpha = k\rho^j/(k-j)$. Substituting into (2) gives $k\rho^j + j\rho^k = k - j$. The converse is straightforward. \square

From the characteristic equation, a matrix satisfying the conditions of Theorem 4.1 has zero as an eigenvalue iff k < n, and its algebraic multiplicity is n - k.

The digraph characterizations in Sections 2 and 3 lead to results about the geometric multiplicities of eigenvalues of primitive, stochastic matrices with large exponent.

THEOREM 4.2. Let A be a primitive, row stochastic n-by-n matrix with $n \geq 3$ and $exp(A) \geq \lfloor \omega_n/2 \rfloor + 2$. If D(A) is Hamiltonian, then each eigenvalue of A is geometrically simple.

Proof. Let the length of the shorter cycle(s) in D(A) be $j \ge \lceil (n-1)/2 \rceil$ by Lemma 2.1. For $j \ge n/2$ take p = n - j + 1, and for j = (n-1)/2 take p = (n-1)/2. Then by Theorems 2.2 and 2.3, without loss of generality by permutation similarity $A = [a_{ij}]$ has the following form: $a_{1,n} = 1 - \alpha_1$; $a_{i,i-1} = 1 - \alpha_i$ for $2 \le i \le p$; $a_{i,i-1} = 1$ for $p + 1 \le i \le n$; $a_{i,i+j-1} = \alpha_i$ for $1 \le i \le p$; and all other $a_{ij} = 0$. Here α_i satisfy $0 < \alpha_1 < 1$ and $0 \le \alpha_i < 1$ for $2 \le i \le p$. Thus for all $j \ge \lceil (n-1)/2 \rceil$, A is an unreduced Hessenberg matrix. By deleting row 1 and column n, it can be seen that rank $A \ge (n-1)$ [7, Exercise 22, p. 274]. Similarly, rank $(A - \lambda I) = n - 1$ for each eigenvalue λ of A. This implies that each eigenvalue has geometric multiplicity one. \Box

As an example of the above eigenvalue results, consider the 3-by-3 row stochastic matrix A having k = 3 and j = 2 as in the proof of Theorem 4.2 with $\alpha_1 = \alpha_2 = 1/2$. Note that exp(A) = 4. The characteristic equation of A is $z^3 - \alpha z - (1 - \alpha) = 0$, with $\alpha = 3/4$; thus A has eigenvalues 1, -1/2, -1/2. Here -1/2 is an eigenvalue of algebraic multiplicity 2 (as predicted by Theorem 4.1), but geometric multiplicity 1 (as predicted by Theorem 4.2).

THEOREM 4.3. Let A be a primitive, row stochastic n-by-n matrix with $n \ge 6$ and $exp(A) \ge \lfloor \omega_n/2 \rfloor + 2$. If the maximal cycle length in D(A) is n-1, then each

Digraphs with Large Exponent

eigenvalue of A is geometrically simple.

Proof. Since k = n - 1, $\lambda = 0$ is a simple eigenvalue of A. Let the length of the shorter cycle(s) in D(A) be $j \ge \lceil n/2 \rceil$ by Theorem 1.2. For simplicity, only the proof for the case j > n/2 is given, the case j = n/2 is essentially the same. For j > n/2, by Theorem 3.3, without loss of generality by permutation similarity $A = [a_{ij}]$, or its transpose, must have one of two forms corresponding to (a) or (b).

In case (a), without loss of generality n can be taken to replicate a vertex with outdegree 1. (This is because, by Lemma 3.1, n has either indegree or outdegree 1, so, if necessary, take A^T .) Let vertex n replicate vertex i where $n - 1 \ge i > n - j$. Consider the matrix $A - \lambda I$, where $\lambda \ne 0$ and the digraph of A is as in Theorem 3.3(a). Form B from $A - \lambda I$ by deleting the first row and the last column. Then B is block upper triangular with a (1, 1) block of order i - 2 and a (2, 2) block of order n - i + 1. Since the (1, 1) block is upper triangular with positive diagonal entries, it is nonsingular. The (2, 2) block has the first n - i diagonal entries positive, $-\lambda$ in each superdiagonal entry, and a 1 in the last row first column. Every other entry in the (2, 2) block has magnitude λ^{n-i} . As a result, B is nonsingular, so that $A - \lambda I$ has a submatrix of rank n - 1.

In case (b), $a_{i,i+j-1} = \alpha_i$ for $1 \leq i \leq n-j$; $a_{1,n-1} = \beta_1$; $a_{1,n} = 1 - \alpha_1 - \beta_1$; $a_{i,i-1} = 1 - \alpha_i$ for $2 \leq i \leq n-j$; $a_{i,i-1} = 1$ for $n-j+1 \leq i \leq n-1$; $a_{n,j-1} = \gamma_n$; $a_{n,n-2} = 1 - \gamma_n$; and all other $a_{ij} = 0$. Here the parameters satisfy: $0 \leq \alpha_1 < 1$; $0 < \beta_1 < 1$; $1 - \alpha_1 - \beta_1 > 0$; $0 \leq \alpha_i < 1$ for $2 \leq i \leq n-j$; and $0 < \gamma_n \leq 1$, such that A is primitive. Deleting row n and column n-1, the remaining submatrix of $A - \lambda I$ is upper Hessenberg, and has rank n-1 for all values of λ , because it has a unique nonzero transversal of length n-1 (from the subdiagonal and (1, n) entries of $A - \lambda I$).

Thus rank $(A - \lambda I) = n - 1$ for every eigenvalue λ of A, and the geometric multiplicity of each eigenvalue is one.

We close the paper with a class of examples to show that for $k \leq n-2$, a row stochastic matrix with large exponent can have an eigenvalue of large geometric multiplicity.

EXAMPLE 4.4. For a fixed n, take $k \leq n-2$ so that $\omega_k \geq \lfloor \omega_n/2 \rfloor + 2$. Select α such that $0 < \alpha < 1$, and form the primitive row stochastic n-by-n matrix A with nonzero entries as follows: $a_{1,k-1} = \alpha$, $a_{1k} = 1-\alpha$, $a_{i,i-1} = 1$ for $i \in \{2,3\} \cup \{5,\ldots,k\}$, $a_{4i} = 1/(n-k+1)$ for $i \in \{3\} \cup \{k+1,\ldots,n\}$, and $a_{i2} = 1$ for $i \in \{k+1,\ldots,n\}$. The digraph of A can be formed by starting from $D(W_k)$ and taking each of the vertices $k+1,\ldots,n$ replicating vertex 3. Since vertex 3 is replicated n-k times, there is a walk involving any of the vertices $k+1,\ldots,n$ in D(A) iff there is a corresponding walk involving vertex 3 in $D(W_k)$. Thus $exp(A) = exp(D(W_k)) = \omega_k \geq \lfloor \omega_n/2 \rfloor + 2$. Observe that since each of rows k+1 through n is a copy of row 3, A has nullity at least n-k. Further, from the statement after Theorem 4.1, the algebraic multiplicities of 0 coincide, with common value $n-k \geq 2$. The smallest example in this class has n = 9, k = 7 with other cycles of length 6. In this case, 0 is an eigenvalue of (algebraic and geometric) multiplicity 2.

REFERENCES

- L.B. Beasley and S. Kirkland. On the exponent of a primitive matrix containing a primitive submatrix. *Linear Algebra Appl.* 261:195-205, 1997.
- [2] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, 1991.
- [3] D. Huang. On circulant Boolean matrices. Linear Algebra Appl. 136:107-117, 1990.
- [4] S. Kirkland. A note on the eigenvalues of a primitive matrix with large exponent. Linear Algebra Appl. 253:103-112 (1997).
- [5] S. Kirkland and M. Neumann. Regular Markov chains for which the transition matrix has large exponent. Preprint, 1999.
- [6] M. Lewin and Y. Vitek. A system of gaps in the exponent set of primitive matrices. Illinois J. Math., 25:87-98, 1981.
- [7] G.W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.