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Abstract. Let A be a unital C�-algebra with involution � represented in a Hilbert space
H, G the group of invertible elements of A, U the unitary group of A, Gs the set of invertible
selfadjoint elements of A, Q = f" 2 G : "2 = 1g the space of reections and P = Q \ U . For
any positive a 2 G consider the a-unitary group Ua = fg 2 G : a�1g�a = g�1g, i.e., the elements
which are unitary with respect to the scalar product h�; �ia = ha�; �i for �; � 2 H. If � denotes
the map that assigns to each invertible element its unitary part in the polar decomposition, it is
shown that the restriction �jUa : Ua ! U is a di�eomorphism, that �(Ua \ Q) = P , and that
�(Ua \Gs) = Ua \Gs = fu 2 G : u = u� = u�1 and au = uag:
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1. Introduction. If A is the algebra of bounded linear operators in a Hilbert
space H, denote by G the group of invertible elements of A. Every T 2 G admits two
polar decompositions

T = U1P1 = P2U2

where U1; U2 are unitary operators (i.e. U�i = U�1i ) and P1; P2 are positive operators
(i.e hPi�; �i � 0 for every � 2 H). It turns out that U1 = U2, P1 = (T �T )1=2 and
P2 = (TT �)1=2. We shall call U = U1 = U2 the unitary part of T . Consider the map

� : G! U �(T ) = U

where U is the unitary group of A. If G+ denotes the set of all positive invertible
elements of A, then every A 2 G+ de�nes an inner product h ; iA on H which is
equivalent to the original h ; i; namely

h�; �iA = hA�; �i (�; � 2 H):
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Every X 2 A admits an A-adjoint operator X�A , which is the unique Y 2 A such
that

hX�; �iA = h�; Y �iA (�; � 2 H):

It is easy to see that X�A = A�1X�A. Together with the de�nition of �A one gets
the sets of A-Hermitian operators

Ah
A = fX 2 A : X�A = Xg = fX 2 A : AX = X�Ag;

A-unitary operators

UA = fX 2 G : X�A = X�1g = fX 2 A : AX�1 = X�Ag

and A-positive operators

G+A = fX 2 Ah
A \G : hX�; �iA � 0 8 � 2 Hg

As in the \classical" case, i.e. A = I , we get two polar decompositions for each T 2 G

T = V1R1 = R2V2

with Vi 2 UA, Ri 2 G+A, i = 1; 2 and as before V1 = V2 = V . Thus, we get a map

�A : G! UA ; �A(T ) = V ; T 2 G:

This paper is devoted to a simultaneous study of the maps �A (A 2 G+), the way
that

UA ; Gh
A ; G+A

intersect

UB ; Gh
B ; G+B

for di�erent A;B 2 G+ and the intersections of these sets with

Q = fS 2 A : S2 = Ig and PA = fS 2 Q : S�A = Sg

(reections and A-Hermitian reections of A). The main result is the fact that, for
every A;B 2 G+,

�AjUB : UB ! UA

is a bijection. The proof of this theorem is based on the form of the positive solutions
of the operator equation XAX = B for A;B 2 G+. This identity was �rst studied by
G. K. Pedersen and M. Takesaki [10] in their study of the Radon-Nykodym theorems
in von Neumann algebras. As a corollary we get a short proof of the equality

�A(Q \ UB) = PA

for every A;B 2 G+, which was proven in [1] as a C�-algebraic version of results of
Pasternak-Winiarski [8] on the analyticity of the map A 7! PMA , where PMA is the A-
orthogonal projection on the closed subspace M of H. We include a parametrization
of all solutions of Pedersen-Takesaki equation. The results are presented in the context
of unital C�-algebras.
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2. Preliminaries. Let A be a unital C�-algebra, G = G(A) the group of invert-
ible elements of A, U = U(A) the unitary group of A, G+ = G+(A) the set of positive
invertible elements of A and Gs = Gs(A) the set of positive selfadjoint elements of
A. Let Q = Q(A) = f" 2 G : "2 = 1g be the space of reections and

P = P (A) = Q \Gs = Q \ U = f� 2 G : � = �� = ��1g

the space of orthogonal reections, also called the Grassmann manifold of A.
Each g 2 G admits two polar decompositions

g = �u = u0�0 ; �; �0 2 G+ ; u; u0 2 U :

In fact, � = (gg�)1=2, u = (gg�)�1=2g, �0 = (g�g)1=2 and u0 = g(g�g)�1=2. A simple
exercise of functional calculus shows that u = u0. We shall say that u is the unitary
part of g. Observe that in the decomposition g = �u (resp. g = u�0) the components
�; u (resp. u, �0) are uniquely determined, for instance, if �u = �ou0, then ��10 � =

u0u
�1 is a unitary element with positive spectrum: �(��10 �) = �(�

�1=2
0 ��

1=2
0 ) =

�(�) � R
+. Then ��10 � = u0u

�1 = 1. The map

� : G! U given by �(g) = u (g 2 G)

is a �bration with very rich geometric properties (see [11], [2] and the references
therein). We are interested in the way that the 0 ��1(u) = G+u = uG+ intersect
the base space of a similar �bration induced by a di�erent involution. More precisely,
each a 2 G+ induces a C� involution on A, namely

x#a = a�1x�a:(1)

If A is represented in the Hilbert space H, then a 2 G+ induces the inner product
h; ia given by

h�; �ia = ha�; �i ; �; � 2 H:

It is clear that hx�; �ia = h�; x#a �i for all x 2 A and �; � in H. A is a C�-algebra with
this involution and with the norm k � ka associated to h; ia, kxka = ka1=2xa�1=2k, x 2
A. For each a 2 G+, consider the unitary group Ua corresponding to the involution
#a:

Ua = fg 2 G : g#a = g�1g = fg 2 G : a�1g�a = g�1g:

We shall study the restriction �
���
Ua

and the way that di�erent Ua; Ub are set in G.

Moreover, we shall also consider the a-hermitian part of G,

Gs
a = fg 2 G : g#a = gg = fg 2 G : a�1g�a = gg;

the a-positive part of Gs
a

G+a = fg 2 Gs
a : �(g) � R

+g
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and the intersections of these sets when a varies in G+. The reader is referred to [7]
and [5] for a discussion of operators which are hermitian for some inner product.

Observe that each a 2 G+ induces a �bration �a : G ! Ua with �bers homeo-
morphic to G+a . This paper can be seen in some sense as a simultaneous study of the
�brations �a, a 2 G+.

Let us mention that, from an intrinsic viewpoint, Ua can be identi�ed with U .
Indeed, consider the map 'a : A ! A given by

'a(b) = a�1=2ba1=2 (b 2 A):(2)

Then 'a(U) = Ua, 'a(G
s) = Gs

a and 'a(G
+) = G+a , since 'a : (A; �)! (A;#a) is an

isomorphism of C�-algebras. We are concerned with the way in which the base space
and �bers of di�erent �brations behave with respect to each other.

3. The polar decomposition. In [10], Pedersen and Takesaki proved a tech-
nical result which was relevant for their generalization of the Sakai's Radon-Nikodym
theorem for von Neumann algebras [11]. More precisely, they determined the unique-
ness and existence of positive solutions of the equation THT = K for H;K positive
bounded operators in a Hilbert space. We need a weak version of their result, namely
when H;K are positive invertible operators. In this case it is possible to give an
explicit solution.

Lemma 3.1 ([10]). If H;K are positive invertible bounded operators in a Hilbert

space, the equation

THT = K(3)

has a unique solution, namely T = H�1=2(H1=2KH1=2)1=2H�1=2:

Proof. Multiply (3) at left and right by H1=2 and factorize

H1=2THTH1=2 = (H1=2TH1=2)2:

Then we get the equation (H1=2TH1=2)2 = H1=2KH1=2: Taking (positive) square
roots and using the invertibility of H1=2 we get the result. 2

Returning to the map � : G! U , consider the �ber ��1(u) = f�u : � 2 G+g. In
order to compare the �bration � with �a, the following is the key result

Theorem 3.2. Let a 2 G+. Then, for every u 2 U the �ber ��1(u) intersects

Ua at a single point, namely a�1=2(a1=2uau�1a1=2)1=2a�1=2 � u: In other words, the

restriction �jUa : Ua ! U is a homeomorphism.

Proof. If g = �u 2 Ua then a�1g�a = g�1 is equivalent to a�1u�1�a = u�1��1;

so, after a few manipulations,

�a� = uau�1:(4)

By Pedersen and Takesaki's result, there is a unique � 2 G+ which satis�es equation
(4) for �xed a 2 G+, u 2 U , namely � = a�1=2(a1=2uau�1a1=2)1=2a�1=2: Thus,
(�jUa)

�1 : U ! Ua is given by

(�jUa)
�1(u) = a�1=2(a1=2uau�1a1=2)1=2a�1=2 � u(5)
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which obviously is a continuous map. 2
Let a 2 G+ and consider the involution #a de�ned in equation (1). It is natural

to look at those reections " 2 Q which are #a-orthogonal, i.e the so called #a-
Grassmann manifold of A. Let us denote this space by

Pa = f" 2 Q : " = "#a = "�1g = Q \ Ua = Q \Gs
a:

In [8], Pasternak-Winiarski studied the behavior of the orthogonal projection onto
a closed subspace of a Hilbert space when the inner product varies continuously.
Note that we can identify naturally the space of idempotents q with the reections
of Q via the a�ne map q 7! " = 2q � 1, which also maps the space of orthogonal
projections onto P . Based on [8], a geometric study of the space Q is made in [1],
where the characterization �(Pa) = P is given (proposition 5.1 of [1]). In the following
proposition we shall give a new proof of this fact by showing that the homeomorphism
�jUa : Ua ! U maps Pa � Ua onto P � U . Therefore the formula given in equation (5)
for the inverse of �jUa extends the formula given in proposition 5.1 of [1] for (�jPa)

�1,
since they must coincide on P .

Proposition 3.3. Let a 2 G+. Then �(Pa) = �(Q \ Ua) = P: Therefore

�jPa : Pa ! P is a homeomorphism.

Proof. By the previous remarks, we just need to show that �(Pa) = P . Observe
that if " 2 Q then � = �(") 2 P : in fact, if " = �� then " = "�1 = ��1��1; but,
since the unitary part of " corresponding to both right and left polar decompositions
coincide, we get ��1 = �. Then �� = ��1 = � and � 2 P . Thus, �(Ua \Q) � P .

Let � = (�jUa)
�1 : U ! Ua. Then by (5)

�(u) = a�1=2(a1=2uau�1a1=2)1=2a�1=2 � u:

In order to prove the result we need to show that if � 2 P then �(�) 2 Pa = Q \ Ua,
i.e. �(�) 2 Q. Indeed,

�(�)2 = a�1=2(a1=2�a�a1=2)1=2a�1=2�a�1=2(a1=2�a�a1=2)1=2a�1=2�

= a�1=2((a1=2�a1=2)2)1=2(a1=2�a1=2)�1((a1=2�a1=2)2)1=2a�1=2�:

Thus, applying the continuous functional calculus (see e.g. [9]) to the selfadjoint
element a1=2�a1=2, if f(t) = jtj = (t2)1=2 and g(t) = 1

t , t 2 R n f0g,

(��)2 = a�1=2f(a1=2�a1=2)g(a1=2�a1=2)f(a1=2�a1=2)a�1=2�

= a�1=2[f(a1=2�a1=2)]2g(a1=2�a1=2)a�1=2�

= a�1=2(a1=2�a1=2)a�1=2� = 1: 2

3.1. Positive parts. In order to complete the results on the relationship be-
tween polar decomposition and inner products, consider the complementary map of
the decomposition g = �u, namely

�+ : G! G+ ; �+(g) = (gg�)1=2 ; (g 2 G):
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Of course, there is another \complementary map", namely g 7! (g�g)1=2 correspond-
ing to the decomposition g = u�0. We shall see that for every a 2 G+, the restriction

�+jG+a : G+a ! G+

is a homeomorphism. Indeed, given � 2 G+, consider the polar decomposition a� =
�u, with � 2 G+ and u 2 U . Then a�1� = �u�, so �+(a�1�) = � and a�1� 2 G+a ,
since a�1(a�1�)�a = a�1� and the spectrum �(a�1�) � R

+. Note that

(�+jG+a )
�1(�) = a�1�+(a�);

which is clearly a continuous map. An interesting rewriting of the above statement is
the following:

Proposition 3.4. If A is a unital C�-algebra and a; � 2 G+, then there exists a

unique u 2 U such that a�u 2 G+:

Proof. Indeed, if g = (�+jG+a )
�1(�) 2 G+a and u = �(g), then �u = g 2 G+a means

exactly that a�u 2 G+. 2

It is worth mentioning that x 2 G is the unique positive solution of Pedersen-
Takesaki equation xax = b if and only if a1=2xb�1=2 2 U . Changing a; b by a2; b�2

respectively, we can write Lemma 3.1 as follows:

Proposition 3.5. If A is a unital C�-algebra and a; b 2 G+, then there exists a

unique x 2 G+ such that axb 2 U :

3.2. Products of positive operators. The map � : G+ �G+ ! U given by

�(a; b) = axb = a(a�1(ab2a)1=2a�1)b = (ab2a)1=2a�1b; a; b 2 G+;

is not surjective: in fact, the image of � consists of those unitary elements which can
be factorized as a product of three positive elements. On one side �(a; b) = axb 2 U
is the product of three elements of G+. On the other side, if axb 2 U then by
Pedersen-Takesaki's result x is the unique positive solution of xa2x = b�2.

It is easy to show that �1 2 U can not be decomposed as a product of four positive
elements. See [12] and [13] for a complete bibliography on these factorization prob-
lems. See [3] for more results on factorization of elements of G and characterizations
of Pn = fa1 : : : an : ai 2 G+g, at least in the �nite dimensional case.

3.3. Parametrization of the solutions of Pedersen-Takesaki equations.

Given a; b 2 G+, denote by m = jb1=2a1=2j = (a1=2ba1=2)1=2. Then the set of all
solutions of the equation xax = b is

fa�1=2 m " a�1=2 : " 2 Q and "m = m"g:

In fact, xax = b if and only if (a1=2xa1=2)2 = m2 and the set of all solutions of x2 = c2

for c 2 G+ is fc" : "2 = 1 and "c = c"g: The singular case, which is much more
interesting, deserves a particular study that we intend to do in a forthcoming paper.
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4. Intersections and unions. For any selfadjoint c 2 A we shall consider the
relative commutant subC�-algebra

Ac = A \ fcg0 = fd 2 A : dc = cdg

and denote by U(Ac) = Ac \ U , the unitary group of Ac and, analogously Gs(Ac),
G+(Ac), Q(Ac) and P (Ac).

The space Gs has a deep relationship with Q (in [4] there is a partial description
of it). Here we only need to notice that the unitary part of any c 2 Gs also belongs
to P . Indeed, if �� is the polar decomposition of c, then �� = c = c� = ���. By
the uniqueness of the unitary part, � = �� = ��1 2 P . Observe also that �� = ��.
Moreover, since � = jcj = (c2)�1, then � = f(c) where f(t) = t jtj. So �c = c�.

Theorem 4.1. Let A a unital C�-algebra and a 2 G+. Then

Ua \Gs = P (Aa) = fu 2 P : au = uag:

Proof. By the previous remarks, if b 2 Gs\Ua and b = �� is its polar decomposition,
then � 2 P and ���1 = a�1��a. Using that �� = �� we get easily

��1a��1 = �a� = �a�:

By the uniqueness of the positive solution, � = ��1 and, since � 2 G+, this means
that � = 1. Thus a = �a� and then � 2 P (Aa). Conversely, if � 2 P (Aa), then
� 2 Ua, since a

�1��a = a�1�a = � = ��1. 2
Remark 4.2. Let a 2 G+. Then easy computations show that
1. Ua \ U = U \ Aa = U(Aa).
2. Gs

a \Gs = Gs \ Aa = Gs(Aa).
3. G+a \G+ = G+ \ Aa = G+(Aa).
4. Ua \G+ = f1g.

We shall give two proofs of item 4:
First proof: �(G+) = f1g but � restricted to Ua is one to one.
Second proof: if x 2 Ua \G

+, then its spectrum �(x) � S1 \ R+ = f1g; on the other
side, x is normal with respect to the involutions #a, so x is a normal element such
that �(x) = f1g and it must be x = 1.

Let b 2 G+. Recall that the map 'b de�ned in (2) changes the usual involution
by #b and also all the corresponding spaces (e.g 'b(G

s) = Gs
b).

Lemma 4.3. Let b 2 G+. Then for any c 2 G+, if d = b�1=2cb�1=2,

'b(Ud) = Uc; 'b(G
s
d) = Gs

c; and 'b(G
+
d ) = G+c

Proof. Notice that Ud = 'd(U), so 'b(Ud) = 'b � 'd(U). But 'b � 'd = 'c � Ad(u
�)

where u = �(d1=2b1=2), since c = jd1=2b1=2j2 and d1=2b1=2 = uc1=2. As Adu�(U) = U
( and the same happens for Gs and G+), we get 'b(Ud) = Uc and the other two
identities. 2

Then we can generalize the results above for any pair a; b 2 G+ instead of a and
1:

Corollary 4.4. Let a; b 2 G+ and c = b�1=2ab�1=2. Then
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1. Ua \Gs
b = 'b(Uc \Gs) = b�1=2(P (Ac))b

1=2.

2. Ua \ Ub = 'b(Uc \ U) = b�1=2U(Ac)b
1=2:

3. Gs
a \Gs

b = 'b(G
s
c \Gs) = b�1=2Gs(Ac)b

1=2.

4. G+a \G+b = 'b(G
+
c \G+) = b�1=2G+(Aa)b

1=2.

5. Ua \G+b = 'b(Uc \G+) = f1g.
Proof. Use Proposition 4.1, Remark 4.2 and Lemma 4.3. 2
In the following proposition we describe the set of elements of A which are unitary

(resp. positive, Hermitian) for some involution #a (a 2 G+). We state the result
without proof.

Proposition 4.5. If A is a unital C�-algebra, the following identities hold:

[

a2G+

Ua =
[

g2G

g Ug�1 =
[

a2G+

a Ua�1;

[

a2G+

G+a =
[

g2G

g G+g�1 =
[

a2G+

a G+a�1 = G+G+;

where G+G+ = fab : a; b 2 G+g and

[

a2G+

Gs
a =

[

g2G

g Gsg�1 =
[

a2G+

a Gsa�1 = GsG+ = G+Gs:

The following example shows that there is no obvious spectral characterization of
these subsets of G: if x is nilpotent, then 1 + x does not belong to any of them but
�(1 + x) = f1g � R;R+ and the circle S1.

4.1. Final geometric remarks. All subsets of A studied in this paper have a
rich structure as di�erential manifolds. The reader is referred to [6] and [2] for the case
of U and to [4] (and the references therein) for Q;P;Gs and G+. The map 'a de�ned
in equation (2) is clearly a di�eomorphism which allows to get all the information on
Ua; G

s
a; G

+
a from that available on U ; Gs; G+, respectively. The main results of the

paper say that the map � is a di�eomorphism between Ua and U , Pa and P and so
on.
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