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THE GENERAL TOTALLY POSITIVE MATRIX COMPLETION

PROBLEM WITH FEW UNSPECIFIED ENTRIES�

SHAUN M. FALLATy, CHARLES R. JOHNSONz, AND RONALD L. SMITHx

Abstract. For m-by-n partial totally positive matrices with exactly one unspeci�ed entry,
the set of positions for that entry that guarantee completability to a totally positive matrix are
characterized. They are the positions (i; j), i+ j � 4 and the positions (i; j), i+ j � m+ n� 2. In
each case, the set of completing entries is an open (and in�nite in case i = j = 1 or i = m, j = n)
interval. In the process some new structural results about totally positive matrices are developed.
In addition, the pairs of positions that guarantee completability in partial totally positive matrices
with two unspeci�ed entries are characterized in low dimensions.

Key words. totally positive matrices, matrix completion problems, partial matrix.

AMS subject classi�cations. 15A48

1. Introduction. An m-by-n matrix A is called totally positive, TP, (totally
nonnegative, TN,) if every minor of A is positive (nonnegative). A partial matrix is a
rectangular array in which some entries are speci�ed, while the remaining, unspeci�ed,
entries are free to be chosen from an indicated set (e.g., the real �eld). A completion
of a partial matrix is a choice of allowed values for the unspeci�ed entries, resulting
in a conventional matrix, and a matrix completion problem asks which partial ma-
trices have a completion with a particular desired property. The TP, TN matrices
arise in a variety of ways in geometry, combinatorics, algebra, di�erential equations,
function theory, etc., and have attracted considerable attention recently [1, 7, 9, 17].
There is also now considerable literature on a variety of matrix completion problems
[3, 4, 5, 6, 8, 12, 13, 14, 15]. Since total positivity and total nonnegativity are in-
herited by arbitrary submatrices, in order for a partial matrix to have a TP (TN)
completion, it must be partially TP (TN), i.e., every fully speci�ed submatrix must be
TP (TN). Study of the TN completion problem was begun in [14], where the square,
combinatorially symmetric patterns for which every partially TN matrix has a TN
completion were characterized under a regularity condition (that has been removed
in [6]).

Here, we begin the study of the TP completion problem, in the rectangular case
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without any combinatorial symmetry assumption. It should be noted that there are
important di�erences between the TP and TN completion problems. In the former,
there are stronger requirements on the data, but also much stronger requirements on
the completion. In practice, this di�erence is considerable, and for example, results
analogous to those in [14] are not yet clear in the TP case. Here in the TP case we
again focus on patterns, and ask for which patterns does every partial TP matrix have
a TP completion. In general, this appears to be a substantial and subtle problem. We
give a complete answer for m-by-n patterns with just one unspeci�ed entry, and even
here the answer is rather surprising and nontrivial. If minfm;ng � 4, then only 12
individual positions ensure completability: the upper left and lower right triangles of 6
entries each. If minfm;ng = 1; 2 or 3, then any single position ensures completability.
In order to prove these results several classical and some new (e.g., about TP linear
systems) facts about TP matrices are used. Patterns with two unspeci�ed entries are
also considered. An inventory of completable pairs when m;n � 4, and some general
observations are given. However, the general question of two unspeci�ed entries is
shown to be subtle: examples are given to show that the answer does not depend just
on the \relative" positions of the two entries.

The submatrix of an m-by-n matrix A lying in rows � and columns �, � �M =
f1; 2 : : : ;mg, � � N = f1; 2 : : : ; ng, is denoted by A[�; �]. Similarly, A(�; �) denotes
the submatrix obtained from A by deleting the rows indexed by � and columns indexed
by �. When m = n, the principal submatrix A[�; �] is abbreviated to A[�], and the
complementary principal submatrix is denoted by A(�). As usual, for � � N we let
�c denote the complement of � relative to N . An m-by-n matrix is TNk (resp. TPk)
for 1 � k � min(m;n), if all minors of size at most k are nonnegative (resp. positive).
It is well known that if A = [aij ] is an m-by-n TPk (TNk) matrix, then the m-by-n

matrix de�ned by ~A = [am�i+1;n�j+1] is also a TPk (TNk) matrix. We may refer to

the matrix ~A = [am�i+1;n�j+1] as being obtained from A by reversing the indices of
A.

We now present some identities, discovered by Sylvester (see [10]), for complete-
ness and clarity of composition. Let A be an n-by-n matrix, � � N , and suppose
j�j = k. De�ne the (n � k)-by-(n � k) matrix B = [bij ], with i; j 2 �c, by setting
bij = detA[� [ fig; � [ fjg], for every i; j 2 �c. Then Sylvester's identity states that
for each �; 
 � �c, with j�j = j
j = l,

detB[�; 
] = (detA[�])l�1detA[� [ �; � [ 
]:(1)

Observe that a special case of (1) is detB = (detA[�])n�k�1detA. Another very useful
special case which is employed throughout is the following. Let A be an n-by-nmatrix
partitioned as follows

A =

2
4 a11 aT12 a13

a21 A22 a23
a31 aT32 a33

3
5 ;

where A22 is (n� 2)-by-(n� 2) and a11; a33 are scalars. De�ne the matrices
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B =

�
a11 aT12
a21 A22

�
; C =

�
aT12 a13
A22 a23

�
;

D =

�
a21 A22
a31 aT32

�
; E =

�
A22 a23
aT32 a33

�
:

If we let ~b = detB, ~c = detC, ~d = detD, and ~e = detE, then by (1) it follows that

det

�
~b ~c
~d ~e

�
= detA22detA:

Hence, provided detA22 6= 0, we have

detA =
detBdetE � detCdetD

detA22
:(2)

We now state an important result due to Fekete (see, e.g., [1]), who gives a very
useful and appealing criterion (or characterization) of totally positive matrices. First
we need to de�ne the notion of the dispersion of an index set. For � = fi1; i2; : : : ; ikg �
N , with i1 < i2 < � � � < ik, the dispersion of �, denoted by d(�), is de�ned to be
k�1X
j=1

(ij+1 � ij � 1) = ik � i1 � (k � 1); with the convention that d(�) = 0 when � is

a singleton. The dispersion of a set � represents a measure of the \gaps" in the set
�. In particular, observe that d(�) = 0 whenever � is a contiguous (i.e., an index set
based on consecutive indices) subset of N .

Theorem 1.1. (Fekete's Criterion) An m-by-n matrix A is totally positive if and
only if detA[�; �] > 0, for all � � f1; 2; : : : ;mg and � � f1; 2; : : : ; ng, with j�j = j�j
and d(�) = d(�) = 0. In other words a matrix is totally positive if and only if the
determinant of every square submatrix based on contiguous row and column index
sets is positive.

The next lemma (which may be of independent interest) proves to be very useful
for certain completion problems for TP matrices, and is no doubt useful for other
issues with TP matrices.

Lemma 1.2. Let A = [a1; a2 � � � ; an] be an (n � 1)-by-n TP matrix. Then, for
k = 1; 2; � � � ; n;

ak =
nX

i=1

16=k

yiai;(3)

has a unique solution y for which

sgn(yi) =

�
sgn(�1)i; if k is odd
sgn(�1)i�1; if k is even:
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Proof. If k = 1, (3) has solution

y = [a2; a3; � � � ; an]
�1a1

=
1

det[a2; a3; � � � ; an]

2
6664

det[a1; a3; a4; � � � ; an]
det[a2; a1; a4; � � � ; an]

...
det[a2; a3; � � � ; an�1; a1]

3
7775

and sgn(yi) = sgn(�1)i. If k > 1, then (3) has solution

y = [a1; a2; � � � ; ak�1; ak+1; � � � ; an]
�1ak

=
1

det[a1; � � � ; ak�1; ak+1; � � � ; an]

2
6666666666666664

det[ak; a2; a3; � � � ; ak�1; ak+1; � � � ; an]
det[a1; ak; a3; � � � ; ak�1; ak+1; � � � ; an]

...

...
det[a1; a2; � � � ; ak�2; ak; ak+1; � � � ; an]
det[a1; a2; � � � ; ak�1; ak; ak+2; � � � ; an]

det[a1; a2; � � � ; ak�1; ak+1; ak; ak+3; � � � ; an]
...

det[a1; a2; � � � ; ak�1; ak+1; � � � ; an�1; ak]

3
7777777777777775

and we see that if k is odd, sgn(yi) = sgn(�1)i while if k is even, sgn(yi) =
sgn(�1)i�1:

2. Main Results. In this section we consider the TP completion problem for
m-by-n patterns with just one unspeci�ed entry. We begin with a preliminary lemma
which is used throughout the remainder of the paper.

Lemma 2.1. Let

A =

2
6664

x a12 � � � a1n
a21 a22 � � � a2n
...

...
...

an1 an2 � � � ann

3
7775 ;

n � 2; be partial TP in which x is the only unspeci�ed entry. Then, if x is chosen so
that detA � 0, detA[f1; � � � ; kg] > 0, k = 1; � � � ; n� 1: (In particular, x > 0.)

Proof. The proof follows inductively using Sylvester's identity (2) for determi-
nants applied to the leading principal minors of A in decreasing order of size. For
example,

0 � detAdetA[f2; 3; : : : ; n� 1g]

= detA[f1; 2; : : : ; n� 1g]detA[f2; 3; : : : ; ng]

�detA[f1; 2; : : : ; n� 1g; f2; : : : ; ng]detA[f2; : : : ; ng; f1; 2; : : : ; n� 1g];
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and since A is partial TP we have that detA[f1; 2; : : : ; n�1g] > 0. If A is replaced by
A[f1; 2; : : : ; n�1g] in the above identity, then it follows that detA[f1; 2; : : : ; n�2g] > 0,
etc.

Theorem 2.2. Let A be an n-by-n partial TP matrix, n � 3, with x, the only
unspeci�ed entry, lying in the (s; t) position. If s+ t � 4 or s+ t � 2n� 2, then A is
completable to a TP matrix.

Proof. Throughout the proof A = A(x) = An(x) will denote an n-by-n partial TP
matrix with exactly one unspeci�ed entry x in the (s; t) position. For k = 1; � � � ; n�1;
let

Ak(x) = A[f1; � � � ; kg];
Bk(x) = A[f1; � � � ; kg; f2; � � � ; k + 1g];
Ck(x) = A[f2; � � � ; k + 1g; f1; � � � ; kg]; and
Dk(x) = A[f2; � � � ; k + 1g].

Case 1 (s; t) = (1; 1): Every minor which does not involve A[1; 1] is positive by
assumption. Furthermore A[1; 1] enters positively into every minor in which it is
involved. Hence, by making A[1; 1] large enough, we will obtain a TP completion of
A.

Case 2 (s; t) = (1; 2): Let F = A[f2; � � � ; n � 1g; f2; � � � ; ng] = [f1; f2; � � � ; fn�1]:

By Lemma 1.2 f1 =
Pn�1

i=2 yifi in which sgn(yi) = sgn(�1)i. Let Bn�1(xB) =

[b1; b2; � � � ; bn�1] in which xB is chosen so that b1 =
Pn�1

i=2 yibi: Thus, detBn�1(xB) =
0 and, by Lemma 2.1, detBk(xB) > 0; k = 1; 2; � � � ; n� 2; in particular, xB > 0. So

detAn�1(xB) = det[b0; b1; b2; � � � ; bn�2]

= det[b0;
n�1X
i=2

yibi; b2; � � � ; bn�2]

= det[b0; yn�1bn�1; b2; � � � ; bn�2]

= (�1)n�3yn�1 det[b0; b2; � � � ; bn�2; bn�1]

= jyn�1j det[b0; b2; � � � ; bn�2; bn�1]

> 0:

Applying Sylvester's identity (2) for determinants, we obtain detA > 0 and we can
continue to apply this identity to obtain:

detAk(xB) > 0; k = 2; � � � ; n� 2:

We can then increase xB (so as to make detBn�1(x) > 0) and obtain a TP completion
of A.

Case 3 (s; t) = (1; 3): Notice that it su�ces to show that there is x > 0 such that
each of

Ak(x); k = 3; � � � ; n;
Bk(x); k = 2; � � � ; n� 1; and
Gk(x) = A[f1; � � � ; kg; f3; � � � ; k + 2g], k = 1; � � � ; n� 2;
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has positive determinant since the determinants of these matrices comprise all of
the contiguous minors of A involving x. By Theorem 4.7 (in the appendix) there
exists an x > 0 such that Bn�1(x) 2 TPn�2 is singular. Therefore, since Bk(x),
k = 2; � � � ; n � 2, and Gk(x), k = 1; � � � ; n � 2, are submatrices of Bn�1(x) we have
detBk(x) > 0, k = 2; � � � ; n� 2; and detGk(x) > 0, k = 1; � � � ; n� 2: Let

F = A[f2; � � � ; n� 1g; f2; � � � ; ng] = [f1; f2; � � � ; fn�1]

and Bn�1(x) = [b1; b2; � � � ; bn�1]: By Lemma 1.2, f2 =

n�1X
i=1

i6=2

yifi in which sgn(yi) =

sgn(�1)i�1 and, since Bn�1(x) is singular and b1; b3; � � � ; bn�1 are linearly indepen-

dent, b2 =
n�1X
i=1

i6=2

yibi: Thus, if An�1(x) = [b0; b1; b2; � � � ; bn�2];

detAn�1(x) = det[b0; b1;

n�1X
i=1

i6=2

yibi; b3; � � � ; bn�2]

= det[b0; b1; yn�1bn�1; b3; � � � ; bn�2]

= (�1)n�4yn�2 det[b0; b1; b3; � � � ; bn�2; bn�1]

= jyn�2j det[b0; b1; b3; � � � ; bn�2; bn�1]

> 0:

By Sylvester's identity (2), it follows that detA = detAn(x) > 0 and detAk(x) > 0,
k = n� 2; � � � ; 3: By decreasing x, detBn�1(x) becomes positive and we obtain a TP
completion of A.

Case 4 (s; t) = (2; 2): Notice that it su�ces to show that there is an x > 0 such
that each of

Ak(x), k = 2; � � � ; n;
Bk(x), k = 2; � � � ; n� 1;
Ck(x), k = 2; � � � ; n� 1; and
Dk(x), k = 2; � � � ; n� 1;

has positive determinant since the determinants of each of these submatrices comprise
all of the contiguous minors involving x. By Theorem 4.7, there exists an xB > 0
(resp. xC > 0) such that Bn�1(xB) (resp. Cn�1(xC)) is singular and lies in TPn�2.
Without loss of generality assume xB = minfxB ; xCg. Thus, detBk(xB) > 0,
k = 2; � � � ; n� 2; and detCn�1(xB) � 0. Since

Bn�1(xB) =

�
� �

Dn�2(xB) �

�
;

we have that detDn�2(xB) > 0 and hence, by Lemma 2.1, detDk(xB) > 0,
k = 1; � � � ; n� 2. Now

Ck(xB) =

�
Ck�1(xB) �

� �

�
=

�
� �

Dk�1(xB) �

�
;
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k = n � 1; � � � ; 3: So we can apply Sylvester's identity (2) repeatedly to obtain
detCk(xB) > 0, k = 2; � � � ; n� 2.

We next show that detAk(xB) > 0, k = 2; � � � ; n. Let
F = A[f1; 3; � � � ; n� 1g; f2; � � � ; ng] = [f1; f2; � � � ; fn�1] and let

Bn�1(xB) = A(xB)[f1; 2; : : : ; n� 1g; f2; 3; : : : ; ng] = [b1; b2; � � � ; bn�1]:

By Lemma 1.2, f1 =
Pn�1

i=2 yifi in which sgn(yi) = sgn(�1)i and since Bn�1(xB) is

singular and b2; b3; � � � ; bn�1 are linearly independent, b1 =
Pn�1

i=2 yibi: Since
An�1(xB) = [b0; b1; � � � ; bn�2] we have

detAn�1(xB) = det[b0;
n�1X
i=2

yibi; b2; � � � ; bn�2]

= det[b0; yn�1bn�1; b2; � � � bn�2]

= (�1)n�3yn�1 det[b0; b2; � � � ; bn�2; bn�1]

= jyn�1j det[b0; b2; � � � ; bn�2; bn�1]

> 0:

It then follows from Sylvester's identity (2) that detA(xB) = detAn(xB) > 0
and since, for k = n� 1; � � � ; 3,

Ak =

�
Ak�1 �
� �

�
=

�
� Bk�1

� �

�
=

�
� �

Ck�1 �

�
=

�
� �
� Dk�1

�
;

we can repetitively apply Sylvester's identity (2) to obtain detAk(xB) > 0,
k = 2; � � � ; n� 1.

To show that detDn�1(xB) > 0, proceed as follows. Let

H = A[f1; � � � ; n� 1g; f3; � � � ; ng] =

2
6664

H1

H2

...
Hn�1

3
7775 :

By the row version of Lemma 1.2, H2 =

n�1X
i=1

i6=2

yiHi in which sgn(yi) = sgn(�1)i�1.

Since Bn�1(xB) =

2
6664

�1
�2
...

�n�1

3
7775 and �1; �3; � � � ; �n�1 are linearly independent,

�2 =

n�1X
i=1

i6=2

yi�i. Now
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Dn�1(xB) =

2
666664

�2
�3
...

�n�1
�n

3
777775

and hence

detDn�1(xB) = det

2
6666664

Pn�1
i=1

i6=2

yi�i

�3
...

�n�1
�n

3
7777775
= det

2
666664

y1�1
�3
...

�n�1
�n

3
777775
= y1 det

2
6664

�1
�3
...
�n

3
7775 > 0:

Now by decreasing xB detBn�1(x) and detCn�1(x) become positive and we obtain a
TP completion of A. If (s; t) = (2; 1) or (3,1), then A is completable to a TP matrix
by reversing the indices. Thus, A is completable to a TP matrix if s+ t � 4. And by
reversing the indices A is completable to a TP matrix if s+ t � 2n� 2.

Lemma 2.3. Let A be an m-by-n TP matrix. Then there exists a positive vector
x 2 Rn such that the augmented matrix [Ajx] is an m-by-(n+1) TP matrix. Similarly,

there exist positive vectors u; v; w such that [ujA],
h
A
v

i
, and

�
w
A

�
are all TP.

Proof. Consider a vector x = (x1; � � � ; xn)
T 2 R

n and the augmented matrix
[Ajx]. The idea of the proof is to choose the xi's sequentially so that
[Ajx][f1; � � � ; ig; f1; � � � ; n + 1g] is TP. Choose x1 > 0 arbitrarily. Choose x2 > 0
large enough so that [Ajx][f1; 2g; f1; � � � ; n+1g] is TP. This is possible since x2 enters
positively into each minor that contains x2. Continue this argument inductively. The
latter part follows by analogous arguments.

Lemma 2.4. Let A be an m-by-n partial TP matrix. Then there exist positive

vectors x; u; v; w such that [Ajx], [ujA],
h
A
v

i
, and

�
w
A

�
are all partial TP.

Proof. As before the idea is to choose the xi's sequentially. First choose x1 > 0
arbitrarily. Choose x2 > 0 large enough so that all fully speci�ed minors that involve
x2 are positive. Observe that such an x2 exists by Lemma 2.3. Continue this argument

inductively. The cases [ujA],
h
A
v

i
, and

�
w
A

�
follow analogously.

Theorem 2.5. Let A be an m-by-n partial TP matrix with 3 � m � n and with
x, the only unspeci�ed entry, lying in the (s; t) position. If s+t � 4 or s+t � m+n�2,
then A is completable to a TP matrix.

Proof. If s + t � 4, we can apply Lemma 2.4 and obtain an n-by-n partial TP

matrix A1 =
h
A
B

i
in which the unspeci�ed entry x lies in the (s; t) position where

s+ t � 4. If s+ t � m+n� 2, we can apply Lemma 2.4 and obtain an n-by-n partial

TP matrix A2 =
h
C
A

i
in which the unspeci�ed entry x lies in the (s; t) position where
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s+ t � 2n� 2: In either case we can apply Theorem 2.2 to obtain a completion of A1
or A2 and hence one of A itself.

Theorem 2.6. Let A be a 2-by-n partial TP matrix with exactly one unspeci�ed
entry. Then A is completable to a TP matrix.

Proof. By reversing the indices we may assume without loss of generality that

A =

�
a1 a2 � � � ak�1 x ak+1 � � � an
b1 b2 � � � bk�1 bk bk+1 � � � bn

�
:

Since A is partial TP it follows that ai
bi
>

aj
bj

for i < j and distinct from k. Then, if

we choose x such that ak�1=bk�1 > x=bk > ak+1=bk+1, the resulting completion of A
is TP.

Lemma 2.7. Let A be a 3-by-4 partial TP matrix with exactly one unspeci�ed
entry. Then A is completable to a TP matrix.

This result simply follows from Theorem 2.5.

Theorem 2.8. Let A be a 3-by-n partial TP matrix with exactly one unspeci�ed
entry, n � 3. Then A is completable to a TP matrix.

Proof. By Fekete's criterion (see Theorem 1.1) it su�ces to prove the theorem
for n = 5: To see this, suppose the unspeci�ed entry in A is in column k. If a
value for the unspeci�ed entry can be chosen so that A[f1; 2; 3g; fk � 2; k � 1; kg],
A[f1; 2; 3g; fk � 1; k; k + 1g], and A[f1; 2; 3g; fk; k + 1; k + 2g] (if k = 1; 2; n � 1, or
n, then consider only the submatrices above that apply) are all TP, then it follows
that every contiguous minor of A is positive. Thus, by Fekete's criterion, A is TP.
Observe that in this case it was enough to complete the submatrix of A, namely
A[f1; 2; 3g; fk � 2; k � 1; k; k + 1; k + 2g], consisting of at most 5 columns. Hence,
we can assume n = 5. So suppose A is a 3-by-5 partial TP matrix with exactly
one unspeci�ed entry x. By Theorem 2.5 and Lemma 2.7, we need only consider the
case in which x lies in the (2,3) position. In this case there is xm > 0 such that
A(xm)[f1; 2; 3g; f2; 3; 4g] is singular and TP2 (by decreasing its (2,2) entry which is
the (2,3) entry of A, see Theorem 4.3). Let F = A[f1; 3g; f2; 3; 4g] = [f1; f2; f3].
Then f2 = y1f1 + y3f3 where sgn(y1) = sgn(y3) is positive by Lemma 1.2. Thus,
A(xm)[f1; 2; 3g; f2; 3; 4g] = [g1; g2; g3] in which g2 = y1g1 + y3g3 and so

detA(xm)[f1; 2; 3g] = det[g0; g1; g2] = det[g0; g1; y1g1 + y3g3]

= y3 det[g0; g1; g3] > 0:

Similarly,

detA(xm)[f3; 4; 5g] = det[g2; g3; g4] = y1 det[g1; g3; g4] > 0:

Since these two 3-by-3 minors and all 2-by-2 minors are positive, we can increase xm
and obtain a TP completion of A.

Lemma 2.9. There is a 4-by-4 partial TP matrix with the (1; 4) (or (4; 1)) entry
unspeci�ed that has no TP completion.

Proof. Consider the partial TP matrix
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A =

2
664

100 100 40 x
40 100 100 40
20 80 100 100
3 20 40 100

3
775 :

In order for the determinant itself to be positive, we must have x < �1144=14. Since
we must also have x > 0, we see that A is not completable to a TP matrix.

Lemma 2.10. There is a 4-by-4 partial TP matrix with the (2; 3) (or (3; 2)) entry
unspeci�ed that has no TP completion.

Proof. Consider the partial TP matrix

A =

2
664

1000 10 10 10
20 9 x 10
2 1 9 10
1 2 40 1000

3
775 :

For detA[f1; 2g; f3; 4g] to be positive we must have x < 1. But for
detA[f2; 3; 4g; f1; 2; 3g] to be positive we must have x > 199=3. Hence A has no TP
completion.

Theorem 2.11. (Main Result) Let A be an m-by-n partial TP matrix in which
4 � m � n and in which the only unspeci�ed entry lies in the (s,t) position. Any such
A has a TP completion if and only if s+ t � 4 or s+ t � m+ n� 2.

Proof. Su�ciency follows from Theorem 2.5. To prove necessity assume that
5 � s + t � m + n � 3. Notice that if an m-by-n matrix has this property, then
there is a 4-by-4 submatrix such that the (s; t) position of the matrix corresponds to
the (1,4), (4,1), (2,3), or (3,2) position of that submatrix. Without loss of generality,
assume that the (s; t) position of the matrix corresponds to the (1,4) position of the
submatrix. By Lemma 2.9 there is a 4-by-4 partial TP matrix with its only unspeci�ed
entry in the (1,4) position that has no TP completion. Using Lemma 2.4 and by the
preceding remarks, we can augment this matrix with positive rows/columns so that
we obtain an m-by-n partial TP matrix A whose only unspeci�ed entry lies in the
(s; t) position. Since the original matrix is a partial submatrix of A that has no TP
completion, A itself has no TP completion.

3. Further Discussion. For 3 � m;n � 4 we consider partial m-by-n TP
matrices with exactly two unspeci�ed entries. We note that completing a 2-by-n
partial TP matrix with two unspeci�ed entries follows easily from Theorem 2.6. In
the case when minfm;ng = 3 all such completable patterns have been characterized
in [3]. For example, all partial 3-by-3 TP matrices with exactly two unspeci�ed entries
are completable except for the following four patterns:

2
4 x ? x

? x x
x x x

3
5 ;

2
4 x x x

x x ?
x ? x

3
5 ;

2
4 x ? x
x x ?
x x x

3
5 ; and

2
4 x x x

? x x
x ? x

3
5 :
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Similarly, when m = 3 and n = 4, Table 1 contains the positions of the pairs of
unspeci�ed entries for which there is no completion in general. Observe that it is
su�cient to only consider the six entries (1,1) through (2,2) since the conclusions for
the remaining six entries follows by reversal of indices; see also [3].

(1,1) None
(1,2) (2,1), (2,3), (3,1), (3,3)
(1,3) (2,2), (2,4)
(1,4) (2,3), (3,3)
(2,1) (1,2), (3,2)
(2,2) (1,3), (3,1), (3,3)

Table 1

We begin the 4-by-4 case with some observations that aid in the classi�cation of
the completable (and hence non-completable) pairs of unspeci�ed entries. Suppose
A is a partial TP matrix with exactly two unspeci�ed entries in positions (p; q) and
(s; t). The �rst observation concerns the case when either p = s or q = t, i.e., the
unspeci�ed entries occur in the same row or the same column. In this case A is always
completable to a TP matrix. The idea of the proof is as follows. By Theorem 2.11,
we know that the only unspeci�ed positions in a 4-by-4 partial TP matrix that do
not guarantee a TP completion are (1,4), (2,3), (3,2), and (4,1). Since either p = s or
q = t at least one of the positions (p; q) or (s; t) is not among the list of four \bad"
positions listed above. Without loss of generality assume that p = s. Then delete
the column that corresponds to the entry that is not in the above list, and complete
the remaining 4-by-3 partial TP matrix to a TP matrix (which follows from Theorem
2.8). Observe that now A is a partial TP matrix with only one unspeci�ed entry.
Since this remaining unspeci�ed entry is in a \good" position, it follows that we can
complete A to a TP matrix.

The next observation deals with the case when one of the unspeci�ed entries is in
the (1,1) (or (4,4)) position and the other unspeci�ed entry is in a \good" position,
i.e., satis�es one of the conditions in Theorem 2.11. Since the (1,1) (or (4,4)) entry
enters positively into every minor that it is contained in, it follows that we can specify
a large enough value for this entry so that A is a partial TP matrix with only one
unspeci�ed entry. Then A may be completed to TP matrix since the remaining
unspeci�ed entry is in a \good" position. We note here that this observation can be
extended in the general case as follows. If A is an m-by-n partial TP matrix with
exactly two unspeci�ed entries with one in the (1,1) (or (m;n)) position and the other
in a \good" position (as de�ned by Theorem 2.11), then A is completable to a TP
matrix. (The proof in this general case is identical to the proof in the 4-by-4 case.)

Finally, suppose the unspeci�ed entries occur in positions (p; q) and (s; t) where
either jp � sj = 3, or jq � tj = 3. Then A is completable to a TP matrix except in
the case when (p; q) = (1; 4) and (s; t) = (4; 1) (or vice-versa). First assume that
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(p; q) = (1; 4) and (s; t) = (4; 1), and consider the following example. Let

A(x; y) =

2
664

1 1 :4 x
:4 1 1 :4
:2 :8 1 1
y :2 :4 1

3
775 ;

see also [14]. Then it is easy to check that every fully speci�ed minor of A(x; y) is
positive. However,

detA(x; y) = �:0016� :008x� :328y � :2xy;

Hence detA(x; y) < 0 for x and y positive. On the other hand assume that (p; q) 6=
(1; 4) or (s; t) 6= (4; 1). Then since either jp� sj = 3, or jq � tj = 3 it follows that at
least one of the unspeci�ed entries is in a \good" position. Without loss of generality
assume that q � t and that q� t = 3. Hence q = 4 and t = 1. Now delete the column
of the unspeci�ed entry that is in a good position. By Theorem 2.8, we may complete
the remaining 4-by-3 matrix to a TP matrix. Now consider the 4-by-4 matrix A with
only one unspeci�ed entry. If we can show that A is a partial TP matrix, then we
are done, since the remaining unspeci�ed entry is in a \good" position. The reason
that A (with only one unspeci�ed entry) is partial TP is because since jq � tj = 3 all
of the fully speci�ed minors of A based on contiguous index sets are positive. Hence,
by Fekete's criterion, A is a partial TP matrix.

Using the above three observations the pairs of positions for the unspeci�ed entries
not ruled out are contained in Table 2.

(1,1) (2,3), (3,2)
(1,2) (2,1), (2,3), (2,4), (3,1), (3,3), (3,4)
(1,3) (2,1), (2,2), (2,4), (3,1), (3,2), (3,4)
(1,4) (2,2), (2,3), (3,2), (3,3)
(2,2) (1,3), (1,4), (3,1), (3,3), (3,4), (4,1), (4,3)
(2,3) (1,1), (1,2), (1,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,4)

Table 2

As before we only have to consider the six entries: (1,1), (1,2), (1,3), (1,4), (2,2),
and (2,3), since the class TP is closed under transposition and reversal of indices. In
fact the list in Table 2 can be even further re�ned as some of the above cases follow
from others by transposition and/or reversal of indices; see Table 3.

As we shall see all but one of the above (namely, the pair f(1,4), (3,2)g) pairs are
not in general completable. We begin by �rst ruling out the pairs that follow from the
pairs of non-completable entries in the 3-by-3 and 3-by-4 cases. For example, suppose
the unspeci�ed entries are in the (1,2) and (2,1) positions. There exists a 3-by-3
TP matrix with unspeci�ed entries in those positions that has no TP completion,

e.g.,

2
4 3 x 2

y 3 1
3 4 3

3
5. We can border this 3-by-3 partial TP matrix (by Lemma 2.4) to
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(1,1) (2,3)
(1,2) (2,1), (2,3), (2,4), (3,1), (3,3), (3,4)
(1,3) (2,2), (2,4), (3,1), (3,2),
(1,4) (2,2), (2,3), (3,2), (3,3)
(2,2) (3,3)
(2,3) (3,2), (3,4)

Table 3

obtain a 4-by-4 partial TP matrix that has no TP completion. Similar arguments can
be applied (using both the 3-by-3 and 3-by-4 results) to rule out the pairs: f(1,2),
(2,3)g, f(1,2), (3,1)g, f(1,2), (3,3)g, f(1,3), (2,2)g, f(1,3), (2,4)g, f(1,4), (2,3)g, f(1,4),
(3,3)g, f(2,2), (3,3)g, f(2,3), (3,2)g, f(2,3), (3,4)g. For the remaining cases we consider
examples of 4-by-4 partial TP matrices.

1. (1,1), (2,3): Let

A =

2
664

x 1 1 1
2 :9 y 1
:2 :1 :9 1
:2 :2 4 100

3
775 :

Then A is a partial TP matrix. However, detA[f2; 3; 4g; f1; 2; 3g] > 0 if and
only if y > 6:3. But for y > 6:3, detA[f1; 2g; f3; 4g]< 0. Hence A has no TP
completion.

2. (1,2), (2,4): Let

A =

2
664

3:21 x 2 1
2:3 2:1 2 y
2:1 2 2 2
1 1 2 3

3
775 :

Then A is a partial TP matrix. However, A has no TP completion since
detA[f1; 2g] > 0, x < 2:931, and detA[f1; 3; 4g; f2; 3; 4g]> 0, x > 3.

3. (1,2), (3,4): Let

A =

2
664

3 x 2 1
2 2:1 2 2
1 2 2 y
:4 1 2 4

3
775 :

Then A is a partial TP matrix. However, A has no TP completion since
detA[f2; 3; 4g] > 0, y < 2:18, and detA[f1; 2; 3g; f1; 3; 4g]> 0, y > 3.

4. (1,3), (3,1): Let

A =

2
664

2:5 2 x 1
2 2 1:21 2
y 2 1:5 2:5
:3 2 3 10

3
775 :
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Then A is a partial TP matrix. However, A has no TP completion since
detA[f1; 2; 3g; f1; 2; 4g] > 0 , y > 1:75, and detA[f2; 3; 4g; f1; 2; 3g] > 0 ,
y < 1:725.

5. (1,3), (3,2): Let

A =

2
664

3 2 x 1
2 2 1:1 2
:3 y 1 2
1 5 4 10

3
775 :

Then A is a partial TP matrix. However, A has no TP completion since
detA[f2; 3; 4g; f1; 2; 3g] > 0 , y > 1:268, and detA[f1; 2; 3g; f1; 2; 4g] > 0 ,
y < 1:15.

6. (1,4), (2,2): Let

A =

2
664

10 2 3 x
3:3 y 2 1
2:1 2 2 2
1 1 2 3

3
775 :

Then A is a partial TP matrix. However, A has no TP completion since
detA[f2; 3; 4g] > 0, y > 3, and detA[f1; 2g; f2; 3g]> 0, y < 4=3.

The only pair remaining is f(1,4), (3,2)g. As we shall see, this pair is actually a
completable pair. However, the argument presented below is a little long and requires
a lemma (which provides a necessary and su�cient condition for the completability
of the (1,4) entry in a 4-by-4 matrix) which we now state and prove.

Lemma 3.1. Let A be a partial TP matrix with the (1,4) (or (4,1)) entry unspec-
i�ed, and let A(x) denote the matrix where x is a value that is speci�ed for the (1,4)
(or (4,1)) entry of A. Then A has a TP completion if and only if detA(0) > 0.

Proof. Observe that detA(x) = detA(0) � xdetA[f2; 3; 4g; f1; 2; 3g]. Thus it
is clear that A has no TP completion if detA(0) � 0. To verify that A can be
completed to a TP matrix in the case when detA(0) > 0 it is enough to show that
there exists an x > 0 such that detA(x) > 0, detA(x)[f1; 2; 3g; f2; 3; 4g] > 0, and
detA(x)[f1; 2g; f3; 4g] > 0, by Fekete's criterion. Note that such an x > 0 exists if

�detA(0)[f1; 2; 3g; f2; 3; 4g]

detA[f2; 3g]
< min

�
a13a24
a23

;
detA(0)

detA[f2; 3; 4g; f1; 2; 3g]

�
:

Now observe that by Sylvester's identity (2)

detA(0)[f1; 2; 3g; f2; 3; 4g] =

=
detA[f1; 2g; f2; 3g]detA[f2; 3g; f3; 4g]� detA[f2; 3g]a13a24

a23

>
�detA[f2; 3g]a13a24

a23
;

or

�detA(0)[f1; 2; 3g; f2; 3; 4g]

detA[f2; 3g]
<

a13a24
a23

:
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Similar arguments show

�detA(0)[f1; 2; 3g; f2; 3; 4g]

detA[f2; 3g]
<

detA(0)

detA[f2; 3; 4g; f1; 2; 3g]
:

This completes the proof.
We are now in a position to prove that the pair f(1,4), (3,2)g is a completable

pair.
Proposition 3.2. Let A be a 4-by-4 partial TP matrix with the (1,4) and (3,2)

entries unspeci�ed. Then A may be completed to a TP matrix.
Proof. Let

A =

2
664
a11 a12 a13 x
a21 a22 a23 a24
a31 y a33 a34
a41 a42 a43 a44

3
775 :

First choose y such that A[f2; 3; 4g; f1; 2; 3g] is singular but TP2 (such a y exists by
Theorem 4.3 and is unique). Write A[f2; 3; 4g; f1; 2; 3; 4g] = [a1; a2; a3; a4], where ai
is the ith column of A[f2; 3; 4g; f1; 2; 3; 4g] (i = 1; 2; 3; 4). Then by applying Lemma
1.2 to A[f2; 3g; f1; 2; 3g] and A[f3; 4g; f1; 2; 3g] we have that a2 = �1a1+�3a3, where
�1; �3 > 0. We claim that all minors of A[f2; 3; 4g; f1; 2; 3; 4g] are positive except, of
course, A[f2; 3; 4g; f1; 2; 3g]. The 2-by-2 minors are easily veri�ed to be positive. For
the 3-by-3 minors consider A[f2; 3; 4g; f1; 2; 4g], for example. Observe, that

detA[f2; 3; 4g; f1; 2; 4g] = det[a1; a2; a4] = �1 det[a1; a1; a4] + �3 det[a1; a3; a4]

= �3 det[a1; a3; a4] > 0:

Similarly, all the minors of A[f1; 2; 3; 4g; f1; 2; 3g] are positive except for
A[f2; 3; 4g; f1; 2; 3g]. Since detA[f2; 3; 4g; f1; 2; 3g] = 0 and A is partial TP it follows
that for any value of x, detA > 0. Moreover, we can increase y a small amount so
that detA[f2; 3; 4g; f1; 2; 3g]> 0, all other fully speci�ed minors of A are positive, and
detA > 0 when x = 0. Hence by Lemma 3.1 we can complete A to a TP matrix.

Table 4 contains a complete list of all non-completable pairs for a 4-by-4 partial
TP matrix.

(1,1) (2,3)
(1,2) (2,1), (2,3), (2,4), (3,1), (3,3), (3,4)
(1,3) (2,2), (2,4), (3,1), (3,2),
(1,4) (2,2), (2,3), (3,3)
(2,2) (3,3)
(2,3) (3,2), (3,4)

Table 4

For larger values of m and n, a complete classi�cation of all possible pairs of
completable entries seems to be di�cult and remains open.
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We close this section we some �nal remarks on other general patterns that yield
a TP completion. Recall that the (1,1) and (m;n) can be increased without bound
in a TP matrix and preserve the property of being TP. This fact proves that the
following pattern always has a TP completion. Let A be a partial TP matrix whose
unspeci�ed entries have the following property: if aij =?, then either ast =?, for s � i
and t � j or ast =?, for s � i and t � j. For example, suppose A is a partial TP
matrix such that if aij =?, then ast =?, for s � i and t � j, Then begin completing A
by choosing a value for the bottom rightmost unspeci�ed entry large enough so that
the fully speci�ed submatrix below and to the right is TP, and continue this process
by moving to the left until the entire row has been completed. Repeat this process by
moving one row up and continue. Observe that at each stage in this process there is
always a choice for the unspeci�ed entry since it occurs in the \(1,1)" position of the
submatrix that is to be completed. Finally, in [16] it is shown that one can always
insert a row or a column into a TP matrix and remain TP.

4. Appendix: Single Entry Perturbations of Totally Positive matrices.

It is not di�cult to prove that if we increase the (1,1) or the (m;n) entry of anm-by-n
totally nonnegative (positive) matrix, then the resulting matrix is totally nonnegative
(positive). We wish to investigate further which entries of a totally nonnegative
(positive) matrix may be perturbed (i.e., increased or decreased) so that the result is
a totally nonnegative (positive) matrix. These issues have already been addressed for
other positivity classes of matrices, for example, if A is an n-by-n positive semide�nite,
M -, P -, or inverse M -matrix, then A + D (D a nonnegative diagonal matrix) is a
positive semide�nite, M -, P -, or inverse M -matrix, respectively; see [10, 11]. Recall
that Eij denotes the n-by-n (i; j)th standard basis matrix, i.e., the matrix whose
(i; j)th entry is 1 and whose remaining entries are zero. Suppose A is an n-by-n
matrix. Then det(A� tE11) = detA� tdetA(f1g). Therefore, if detA(f1g) 6= 0, then
det(A� tE11) = 0, when t = detA=detA(f1g). Consider the following lemma.

Lemma 4.1. Let A be an n-by-n totally nonnegative matrix with detA(f1g) 6= 0.
Then A� xE11 is totally nonnegative for all x 2 [0; detA=detA(f1g)].

Proof. Firstly, observe that for every value x 2 [0; detA=detA(f1g)], det(A �
xE11) � 0. Recall that A admits a UL-factorization (see [1]) into totally nonnegative
matrices. Partition A as follows,

A =

�
a11 aT12
a21 A22

�
;

where a11 is 1-by-1 and A22 = A(f1g). Partition L and U conformally with A. Then

A =

�
a11 aT12
a21 A22

�
= UL

=

�
u11 uT12
0 U22

��
l11 0
l21 L22

�

=

�
u11l11 + uT12l21 uT12L22

U22l21 U22L22

�
:
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Note that if l11 = 0, then L, and hence A, is singular. In this case the interval for
x is degenerate, and x = 0 is the only allowed value for x. The desired result is
trivial. Thus we assume that l11 > 0. Consider the matrix A � xE11, with x 2
[0; detA=detA(f1g)]. Then

A� xE11 =

�
u11l11 + uT12l21 � x uT12L22

U22l21 U22L22

�

=

�
u11 �

x
l11

uT12
0 U22

��
l11 0
l21 L22

�
= U 0L:

To show that A�xE11 is totally nonnegative it is enough to verify that u11�x=l11 � 0.
Since if this was the case it follows that U 0 is totally nonnegative and as L is totally
nonnegative by assumption, we have that their product, A� xE11 is totally nonneg-
ative. Since l11 > 0 and detA(f1g) > 0, it follows that L and U22 are nonsingular.
Hence 0 � det(A � xE11) = (u11 � x=l11)detU22detL, from which it follows that
u11 � x=l11 � 0.

Note that a similar result holds for decreasing the (n; n) entry. We can extend
the previous result for the class TP as follows.

Theorem 4.2. Let A be an n-by-n totally positive matrix. Then A � tE11 is a
TPn�1 matrix, for all t 2 [0; detA=detA(f1g)].

Proof. Following the proof of Lemma 4.1 we can write

A� tE11 =

�
u11 �

t
l11

uT12
0 U22

� �
l11 0
l21 L22

�
= U 0L;

where U 0 = U � ( t
l11

)E11, and both U;L are triangular TP matrices; see [1]. Observe
that u11l11 = detA=detA(f1g). If u11 � t=l11 > 0, then U 0 and L are triangular
TP matrices and hence A � tE11 is TP. So consider the case u11 � t=l11 = 0, or
equivalently, det(A � tE11) = 0, or t = detA=detA(f1g). Let B = A � tE11. Ob-
serve that B[f1; 2; : : : ; ng; f2; 3; : : : ; ng] and B[f2; 3 : : : ; ng; f1; 2; : : : ; ng] are TP ma-
trices since A is TP. Thus the only contiguous minors left to verify are the leading
contiguous minors of B. Consider the submatrices B[f1; 2; : : : ; kg] for 1 � k < n.
Then detB[f1; 2; : : : ; kg] = detA[f1; 2; : : : ; kg]� tdetA[f2; : : : ; kg]: This minor is pos-
itive if and only if detA[f1; 2; : : : ; kg] > tdetA[f2; : : : ; kg], which is equivalent to
detA[f1; 2; : : : ; kg]detA(f1g) > detAdetA[f2; : : : ; kg], an example of a Koteljanskii
inequality (see [11]). The only issue left to settle is whether or not equality holds for
the above Koteljanskii inequality. We claim here that for a TP matrix every Koteljan-
skii inequality is strict. Suppose to the contrary, i.e., assume there exist two index sets
� and � such that detA[� [ �]detA[� \ �] = detA[�]detA[�]. For simplicity, we may
assume that �[� = N , otherwise replace A by A[�[�] in the following. By Jacobi's
identity (see [10]) we have detA�1[(�[�)c]detA�1[(�\�)c] = detA�1[�c]detA�1[�c].
Let B = SA�1S, for S = diag(1;�1; � � � ;�1). Then B is TP and the above equation
implies detB = detB[�c]detB[�c]. By a result in [2], B is reducible, which is nonsense
since B is TP. Thus A � tE11 is TPn�1, by Fekete's criterion. This completes the
proof.



ELA

18 S.M. Fallat, C.R.. Johnson and R.L. Smith

An obvious next question is what other entries can be increased/decreased to the
point of singularity so that the matrix is TPn�1. As it turns out decreasing the (2,2)
entry of a TP matrix results in a TPn�1 matrix.

Theorem 4.3. Let A be an n-by-n totally positive matrix. Then A � tE22 is
TPn�1 for all t 2 [0; detA=detA(f2g)].

Proof. Using the fact that all Koteljanskii inequalities are strict it follows that
all of the leading proper principal minors of A � tE22 are positive. Consider the
submatrix B = (A� tE22)[f1; 2; : : : ; ng; f2; 3; : : : ; ng]. To show that B is TP we need
only consider the contiguous minors of B that involve the �rst and second row and �rst
column, all other minors are positive by assumption. Let C denote such a submatrix
of B. To compute detC, expand the determinant along the second row of C. Then
detC = (�1)1+2(�t)detC(f2g; f1g) + detA[�; �]; where detA[�; �] is some minor of
A. Thus detC is a positive linear combination of minors of A, and hence is positive.
Therefore B is TP. Similar arguments show that (A � tE22)[f2; : : : ; ng; f1; 2; : : : ; ng]
is TP. This completes the proof.

A similar fact holds for decreasing the (n� 1; n� 1) entry of a TP matrix. The
next result follows directly from Theorems 4.2 and 4.3.

Corollary 4.4. If A is an n-by-n totally positive matrix and i 2 f1; 2; n�1; ng,
then A� tEii is TPn�1 for all t 2 [0; detA=detA(fig)].

Corollary 4.5. Let n � 4. If A is an n-by-n totally positive matrix and
1 � i � n, then A� tEii is TPn�1 for all t 2 [0; detA=detA(fig)].

According to the next example we cannot decrease any other interior main diag-
onal entry (in general) of a TP matrix and stay TPn�1.

Example 4.6. Consider the following matrix.

A =

2
66664

100 10 7=5 2 1
22 5 2 3 2
3 1 1:01 2 3
1 1 2 5 12
1=2 2 5 15 50

3
77775 :

Then A is a totally positive matrix with detA=detA(f3g) � :03. However,

detA[f1; 2; 3g; f3; 4; 5g]

detA[f1; 2g; f4; 5g]
= :01:

Thus for t 2 (:01; :03], det(A� tE33)[f1; 2; 3g; f3; 4; 5g]< 0, and hence A� tE33 is not
TP4.

Note that this example can be embedded into a larger example by bordering
the matrix above so as to preserve the property of being TP (using Lemma 2.3, for
example).

Up to this point we have only considered decreasing a single diagonal entry, and
obvious next step is to consider increasing or decreasing o�-diagonal entries in a TP
matrix. We begin our study of perturbing o�-diagonal entries by considering the (1,2)
entry.

Theorem 4.7. Let A be an n-by-n totally positive matrix. Then A + tE12 is
TPn�1 for all t 2 [0; detA=detA(f1g; f2g)].
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Proof. Since the (1,2) entry of A enters negatively into detA we increase a12 to
a12+detA=detA(f1g; f2g) so that det(A+ tE12) = 0, where t = detA=detA(f1g; f2g).
Observe that the submatrix (A+ tE12)[f2; : : : ; ng; f1; 2; : : : ; ng] is equal to
A[f2; : : : ; ng; f1; 2; : : : ; ng] and hence is TP. Moreover,
(A+ tE12)[f1; 2; : : : ; ng; f2; : : : ; ng] is TP since we have increased the \(1,1)" entry of
a TP matrix. The only remaining minors to verify are the leading principal minors
of A+ tE12. Observe that for t 2 [0; detA=detA(f1g; f2g)];

0 � det(A+ tE12)detA[f2; 3; : : : ; n� 1g]

= det(A+ tE12)[f1; 2; : : : ; n� 1g]detA[f2; 3; : : : ; ng]

�det(A+ tE12)[f1; 2; : : : ; n� 1g; f2; : : : ; ng]detA[f2; : : : ; ng; f1; 2; : : : ; n� 1g];

follows by Sylvester's identity (2). Hence det(A + tE12)[f1; 2; : : : ; n � 1g] > 0. Re-
placing A+ tE12 by (A+ tE12)[f1; 2; : : : ; n� 1g] in the above identity yields det(A+
tE12)[f1; 2; : : : ; n� 2g] > 0 and so on. This completes the proof.

Corollary 4.8. If A is an n-by-n totally positive matrix and (i; j) = (2; 1),
(n� 1; n), or (n; n� 1), then A+ tEij is TPn�1 for all t 2 [0; detA=detA(fig; fjg)].

Unfortunately, this is all that can be said positively concerning increasing or
decreasing o�-diagonal entries. Consider the following example.

Example 4.9. Let

A =

2
664

13 33 31 10
132 383 371 120
13 38 37 12
1 3 3 1

3
775 :

Then detA=detA(f1g; f3g) = 1 and detA[f1; 2g; f3; 4g]=a24 = 1=12: Thus for
t 2 (1=12; 1], det(A� tE13)[f1; 2g; f3; 4g]< 0. Thus A� tE13 is not TP3.

For the (2,3) entry of a TP matrix consider the following example. Let

A =

2
664

1 12 111 100
3 37 344 310
3 37 356 321
1 13 123 112

3
775 :

Then detA=detA(f2g; f3g) = 1=3 and detA[f1; 2g; f3; 4g]=a44 = 1=10: Thus for
t 2 (1=10; 1=3], det(A+ tE23)[f1; 2g; f3; 4g]< 0. Thus A+ tE23 is not TP3.

Finally, of the case of the (1,4) entry we have the following example. Let

A =

2
664

1 2 3 1
3 7 11 4
3 8 14 6
1 3 6 4

3
775 :

Then detA=detA(f1g; f4g) = 1 and detA[f1; 2g; f3; 4g]=a23 = 1=11: Thus for
t 2 (1=11; 1], det(A+ tE14)[f1; 2g; f3; 4g]< 0. Thus A+ tE14 is not TP3.
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As in the case of the diagonal entries these three examples above can be embedded
into a larger TP matrix (using Lemma 2.3) to show that in general there are no other
o�-diagonal entries that can be increased/decreased (until the matrix is singular) and
the resulting matrix lie in the class TPn�1.
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