TheElectronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society. E L A
Volume 6, pp. 72-94, August 2000.

ISSN 1081-3810. http://math.technion.ac.il/iic/ela

A BI-CG TYPE ITERATIVE METHOD FOR DRAZIN-INVERSE
SOLUTION OF SINGULAR INCONSISTENT NONSYMMETRIC
LINEAR SYSTEMS OF ARBITRARY INDEX*

AVRAM SIDIf AND VLADIMIR KLUZNER?

Abstract. Consider the linear system Az = b, where b is a vector in CV, A € CNXN jg 5
singular matrix, and ind (A) = a is arbitrary. Here ind (-) denotes the index of a matrix. The Drazin-
inverse solution of this system is defined to be the vector APb, where the matrix AP is the Drazin
inverse of A. The Drazin-inverse solution of singular linear systems has been considered recently by
the first author within the context of extrapolation methods, when ind (A) is arbitrary. It has also
been considered within the context of Krylov subspace methods, when A is real symmetric (hence
ind (A) = 1 necessarily). In addition, semi-iterative methods have been developed for the cases in
which ind (A) = 1 and ind (A) > 1, assuming that the spectrum of A is real nonnegative. The
purpose of the present work is to develop a Bi-CG type Krylov subspace method suitable for the
general case in which A is not necessarily real symmetric, its index is arbitrary, and its spectrum
is not necessarily real. The method that is developed can be implemented via a 4-term recursion
relation independently of the size of ind (A) and produces APb in at most N — a steps. A detailed
error analysis for this method is provided and the results are illustrated with suitable numerical
examples.

Key words. Singular linear systems, Drazin-inverse solution, Krylov subspace methods, Lanc-
zos method, Bi-Conjugate Gradient algorithm.
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1. Introduction. Consider the linear system
(1.1) Az =b,

where A € CV*V is singular and ind (A) = a is arbitrary. Here ind (-) denotes the
index of a matrix, namely, the size of the largest Jordan block corresponding to its
zero eigenvalue. The purpose of this paper is to develop a Krylov subspace method of
the Bi-Conjugate Gradient (Bi-CG) type for computing the Drazin-inverse solution
of (1.1), namely, the vector APb, where AP denotes the Drazin inverse of A. For the
Drazin inverse and its properties, see, e.g., Ben-Israel and Greville [3] or Campbell
and Meyer [5].
We recall the following definition of the Drazin inverse of A: Let
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where P is nonsingular, Jy contains all the Jordan blocks of A corresponding to the
zero eigenvalues, and J; containing all the remaining Jordan blocks. Then,

b_p[O] 0 ],
wr G

We do not put any restrictions on the matrix A. Thus, A is not necessarily
Hermitian or Hermitian positive semidefinite. It can have any type of spectrum, in
addition to having an arbitrary index, as assumed above. Neither do we put any
restrictions on the linear system (1.1). This system may be consistent or inconsistent.
(Recall that in the case a > 1, APb is not necessarily a solution of Az = b even when
the latter is consistent.) We are only required to know a, the index of A.

The subject of Krylov subspace methods for computing APb has been treated in
a few papers. First, the method of Conjugate Gradients (CG) may be applied when
A is Hermitian positive semidefinite and (1.1) is consistent, see Kaaschieter [11].
It is shown in Sidi [15] that the method of Arnoldi [1], the method of Generalized
Conjugate Residuals (GCR) and the method of Lanczos [12] as well, can be applied
to non-Hermitian but consistent systems when the index a is unity, and error bounds
are given. In addition, [15] provides a complete convergence theory for these methods
and others in the presence of initial iterations via the Richardson iterative method.

The treatment of the singular inconsistent systems by Krylov subspace methods
has proved to be much harder, however. This is the case even for the simplest cases in
which a = 1. To date we are aware of the CG type methods of Calvetti, Reichel and
Zhang [4] that apply to Hermitian systems only. A recent work by Fischer, Hanke,
and Hochbruck [8] provides a class of methods similar to that of [4] and that applies
to the same problems.

A unified framework for the development of new Krylov subspace methods for
singular inconsistent systems has recently been proposed in Sidi [17]. It turns out
that the method we develop in the present work falls in this framework. We would
like to note that the recursive algorithm that we develop here and the accompanying
error analysis are completely new, however.

Finally, we mention the vector extrapolation methods developed in Sidi [16] for
treating the most general case of singular non-Hermitian inconsistent systems with
arbitrary index. This paper also contains a detailed convergence analysis for the
methods developed in it.

In the next section we give some technical preliminaries in which we describe some
of the basic requirements from the approximations z,, to APb. In Sections 3 and 4
we develop a Lanczos type method and derive a Bi-Conjugate Gradient (Bi-CG) type
algorithm for it that is motivated by the Bi-CG algorithm of Fletcher [9] that imple-
ments the method of Lanczos [12] for nonsingular systems. This algorithm, which we
denote the DBi-CG algorithm, involves 4-term recursion relations independently of
the size of ind (A). It is thus very economical both computationally and storage-wise.
In Section 5 we give a detailed error analysis for the method developed. Finally, in
Section 6 we give some numerical experiments with the new algorithm.

In view of the above, the present work seems to be the first to present a Krylov
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subspace method for singular non-Hermitian inconsistent linear systems with arbi-
trary index together with a recursive algorithm of finite length and an error analysis.

2. Theoretical preliminaries. Let zo be an arbitrary initial vector and ro =
b — Azg be the corresponding residual vector. Then, beginning with xg, we generate

a sequence of vectors z,, n = 1,2, ..., that will hopefully approximate APb via the
iteration
(2.1) Tn = T0 + gn—1(A)r0 = pn(A)T0 + gn—1(A)b ,

where ¢, _1()) is a polynomial of degree at most n — 1 and p,()\) is a polynomial
of degree at most n given by p,(A) = 1 — Ag,_1(A). We call p,()) the nth residual
polynomial since r, = b — Ax,, = p,(A)ro. Note that

(2.2) pa(0) = 1.

As is shown in Eiermann, Marek, and Niethammer [7], necessary and sufficient
conditions for the convergence of the sequence {z,} are that

(2.3) lim pD0)=0, i=1,...,a,
and
lim pP(N) =0, i=0,...k~1,

where \; are the nonzero eigenvalues of A and k; = ind (A — \;1).
The conditions in (2.3) will, of course, be satisfied if

(2.4) pD0)=0, i=1,...,a, foralln=0,1,...,

Our purpose is to design a recursive method to construct the vectors z,, n =
1,2,..., beginning with an arbitrary vector zy that will be of the form described
above, but with the corresponding polynomials p,,(\) satisfying (2.4) instead of (2.3),
in addition to (2.2).

Before going on it will be convenient to introduce some notation that has been
used before. We shall denote by II,, the set of all polynomials of degree at most n.
We shall also define

(2.5) 0 ={pell, : p0)=1, p?0)=0,i=1,...,a} .

That is to say, II2 is the collection of all polynomials of degree at most n that satisfy
(2.2) and (2.4). Thus, the polynomials p,(A) that we will be considering in the present
work are all in I19. Note that p,(A) = 1 is the only member of II? for n = 0,1,...,a.

Finally, we will work with the standard Euclidean inner product (z,y) = «*y, for
which (az, By) = @B(x,y) for any o, 8 € C and any z,y € CV. Also, (z,y) = (y, ).
We shall also write L y to mean (z,y) = 0. We shall denote by || - || both the vector
l>-norm and the matrix norm induced by it. That is, ||z|| = \/(z, z) and ||4|| = Omae,
the largest singular value of A.
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3. A Bi-CG type method and a preliminary algorithm. Let us pick zg
arbitrarily. By the fact that p,(A\) =1 for n =1,...,a (and hence ¢g,_1(\) = 0), we
have

(3'1) Tg=...=T1 =29 and r, =...=7r; =17¢ .

By (2.1) and by the fact that py41 € II9 4, 441 must be of the form

(3.2) Tot1 = Zo + pA®ro
so that
(33) Tot1 = b— Awa—i—l =T — pAa+1’r0 .

Now we need to determine p by imposing some suitable criterion. Let us pick a vector
Zo simultaneously with z¢ and define 7y = b — A*%o. Similarly , let us also set

(3.4) Fo=...=F1 =% and 7, =... =71 =79 .
Then our criterion will be that

(3.5) Fap1 L (A% 7

from which we can determine p as

((A*)**+'7 , o)
((A*¥)atlfy , Aotlrg) ’

(3.6) p=

assuming that the denominator does not vanish. As in Bi-CG, we now develop an
algorithm that computes simultaneously two sets of vectors {z,} and {Z,}. Analo-
gously to 441 and 7441, let us define #,41 and 7,41 by

(3-7)  Zawr = o + p(A7)"70 Fap1 = b— A*Faq1 = Fo — p(A")* o,
subject to the criterion

(3.8) Farr L A%pg .

As a result,

< (Aa+1T0 ) FO)
P A (AR

(3.9)

We now aim at obtaining the z,, and &, by 4-term recursion relations of the form

(310) Tnt1 = Tpn + wnA(xn - mnfl) + ,u/n(-rn - -’L'nfl) + Vn(mnfl - $n72) )
:z'n—i-l =&, + a)nA(ii'n - :Z'n—l) + p'n(-'in - i'n—l) + I)n(fn—l - in—2) )

for all values of the index a. We already know that the z,, can be obtained as in (3.10)
in the semi-iterative method of Climent, Neumann, and Sidi [6] for all a, and hope that
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this will be the case here too. Recalling that r,11 = b— Axpi1, Fne1 =b— A*Epya,
from (3.10) we obtain

(311) Tn4l = Tn + wnA(rn - 'rnfl) + p’n(rn - Tnfl) + Vn(rnfl - Tn72) ;
Tvn—l—l = 'Fn + wnA* (Tvn - Fn—l) + ﬂn(fn - fn—l) + Ipn(fn—l - fn—2) -
Defining

(3.12) Zn =Tp —Tn1 and 2, =F, — Fpn_1

for all n, we realize that (3.11) will become 3-term recursion relations for the z, and
Zn, namely,
(3.13) Znt1 = WnAzZp + pfinZn + VnZn-1 ,
Fni1 = OnA*Zn + finin + Unin_1 -
We also have two initial conditions, namely,

(3.14) 2e =0, 2,=0, and

1 < . g . 1
Zatl =Tat1 —Ta = —pA®Trg | Zay1 = Fag1 — Fa = —p(A%) g .

At this point we recall that sets of vectors {2441, 2at2, - - -} and {Zat1, Za+t2,- - -} that
satisfy recursion relations of the form given in (3.13) can be obtained by applying
the biorthogonalization process of Lanczos [12] to the Krylov subspaces {zg+1, AZq+1,
A%zq41, ...} and {Zaq1, A*Zay1, (A%)% %441, - . .}, where by biorthogonality of the vec-
tors z; and Z; we mean that

(315) (Zz ; Zj) =0 if 275] .

We also recall that this process is very economical in the sense that it requires a fixed
amount of memory, and the computation of each z, and Z, requires a fixed number
of arithmetic operations independent of n.

Let us now determine the 2, and Z,. We start with z,42. By the fact that z, =0
and Z, = 0 we have

(316) Za+2 = wa—i—lAza—i-l + Ba+1Za+1
Zot2 = Wat1 A% Za11 + flat1Za+41 -
Forming the inner products with the vectors Z,4+1 and z,41, and invoking (3.15), we
obtain one equation for wyy1 and pe41 and another for w,y1 and fig41:
(3.17) (Zat1 5 Azat1)wat1 + (Zat1 5 Zat1)fat1 =0,

(Za+1 , A% Za1)@at1 + (Zat1 5 Zat1)flat1 =0,

Obviously, we need to complement each of these equations with an additional condi-
tion so that we will be able to determine wgy4+1 and pe41 on the one hand and @g41
and fis+1 on the other. The additional conditions that we choose to impose are

(3.18) Far2 L Azgrr and r1aye L A% 2,41 -
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The way we invoke (3.18) is as follows: using (3.12) on the left-hand side of (3.16),
we first have:

(319) Ta+2 = Ta+1 + wa+1Aza+1 + Ma+1Za+1

Fat2 = Fat1 + Way1 A Za41 + flat1Zat1 -

We next take the inner product of the first equality in (3.19) with A*Z,11 and of the
second with Az,11 and invoke (3.18). The additional conditions then are

(3.20) (A"Za41, Tat1) + (A %041, AZat1)watr + (A" Zat1 , Zat1)ptat1 =0,
(Azat1 , Pat1) + (Azay1 , A% Zaq1)Wat1 + (AZat1 5 Zay1)flar1 = 0.

Forn=a+2, a+3,..., we can determine wy, fn, Vn, @n, fin, Uy in (3.13) by
imposing (3.15), i.e.

(2, Zn41) =0 and (z;, 2p41) =0, i=n—-1,n,
and the additional conditions
(3.21) Fpe1 L Az, and rppq L AYZ, .
The resulting equations are

(3.22) (21, Azp)wn+ (Gt 5, 2n_1)Vn =0,
(én ) Azn)wn + (én 3 zn)ﬂn =0 )
(A*Zn 5 rp) + (A%Z , Azp)wn + (A% 20, 20)ttin + (A%Z0 , 20 1)Vn =0,

(323) (zn—l ; A*Zn)d)n + (Zn—l , Zn—l)ﬂn =0 ;
(Zn ) A*én)(bn + (zn ; Zn)ﬂn =0,
(Azn 3 in) + (Azn ) A*én)a)n + (Azn ) én)pfn + (Azn ) én—l)p/n =0.

After picking z¢ and %o, the way we determine the vectors z,, &,, n =1,2,...,
is now clear. First, we have z, = z¢ and &, = £¢. Next, we compute z,4+1 and
Zar1 as in (3.2) with (3.6) and (3.7) with (3.9), respectively. With the help of these
we now have z,41 and Z,y1. Invoking the biorthogonality requirement in (3.15) and
adding the extra criterion in (3.18), we compute zg42 and Z,42 in (3.16) through
(3.17) and (3.20). This also enables us to compute z,42 and &,2. We now continue
with n =a+2,a+ 3,..., and compute z,4+1 and 2,41 as in (3.13) with the help of
the equations in (3.22) and (3.23), which are a result of the biorthogonality property
in (3.15) and the additional criterion in (3.21).

Needless to say, all the above will be true as long as the process can be continued,
i.e., as long as the wy, Wn, Vn, Wn, fin, Vn can be determined uniquely. Examining
the equations in (3.17), (3.20), (3.22), and (3.23), we see that a necessary condition
for the process not to fail is that (2; , z;) #0fori=a+1,a+2,..., in addition to
(3.15). We shall say more on the following Algorithm DBi-CG at the end of Section
4.
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We have shown above a way of constructing vectors z,, that can be obtained by a
4-term recursion relation of the form given in (3.10). From the way this construction
takes place it is clear that the amount of computing for each vector z,, is fixed, i.e.,
does not increase with n. In addition, the vectors that need to be stored in the
memory are fixed in number too. We have, however, not shown yet that these vectors
are of the form described in the previous section. Neither do we know anything
about their other properties. Finally, we have no knowledge about their quality as
approximations to APb. The algebraic properties of the x, are explored completely
in Theorem 3.2 that forms one of the most important developments of this work, after
the method that we have developed for computing the z,,.

The following lemma will be very useful in the proof of this theorem.

LEMMA 3.1. Let R; and S;, i =0,1,2,..., be matrices in CV*N and let u; =
Ryw, U; = Riw, v; = S;w and v; = S;w for all i, where w, w € CN. Assume that
SiR; = R;S; for all i and j, and S;T = TS; and R;T = TR; for all i, where T is
some matriz in CV*N . Then (uy, , T*0p) = (T , ) -

Proof. From the fact that the R; commute with the S; and that T commutes
with all the R; and S;, we have

(um , T*{}n) = (me ) T*S’:,w) = (w ’ R:,LT*S;H])
— (@, S*T*R%0) = (TSww , R:w) = (Top , m) . 0O

THEOREM 3.2. Assuming that we have generated the vectors x,, n = 0,1,...,
successfully as described above, we have the following:

(i) span{A®*tlrq A% 2pg .. A™rg} = span{zai1,2a42,- > 2n}
=span{zoy1, AZat1,---, A" 200} .
(ii) span{(A*)3T1ry, (A*)*F 25, ..., (A*)"Fo} = span{Zai1, Zat2, -+, 2n}
= span{Zg+1, A*Zq1,. ., (A¥)" 7971210} .
(iii) (2; , zn) =0 and (2;, 2,) =0, i=a+1,...,n—1.
(i) rn L span{Zg41,...,2,} and 7, L span{zey1,...,2n} -

(v) T = pp(A)re and ¥n = [pn(A)]*Fo, pu(X) € T .

(vi) zp = sp(A)ro and Z, = [sn(A)]*Fo, where sp(A) =pr(X) —pr-1(N) .

Proof. Part (vi) of the theorem is an immediate consequence of (3.12) and part
(v). Thus we need prove only parts (i) — (v). We will do this by using induction on
all five parts simultaneously.

We start with n = a + 1. For the proof of parts (i) and (i¢) it is enough to
observe that z,.1 = —pA®tiry and Z,.1 = —p(A4*)2*H17y, which follow from (3.1),
(3.3), (3.4), (3.7) and (3.12). There is nothing to prove for part (i7¢) when n = a+ 1.
Part (iv) is true as p and p are determined by actually imposing (3.5) and (3.8),
which means that r,41 L 2,41 and Fa41 L 2441 in view of parts (i) and (i). As
for part (v), we note that ro11 = pay1(A)re, where por1(A) = 1 — pAtl. We also
note that (A%*lrg , 7o) = (ro , (A*)% %) = ((A*)a*+1¥ , rg). Substituting this
in (3.9) and comparing the result with (3.6), we obtain p = p. This implies that
Fat+1 = [Pa+1(A)]*Fo. This proves part (v).

To complete the induction basis we next need to verify that the assertions above
are true also for n = a + 2. The reason for this is that the z; and Z; with the
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smallest k that can be computed by using the recursion relations in (3.13), are z442
and Z,4o as is clear from the initial conditions given in (3.14). The truth of parts
(7) and (4¢) is obvious from (3.16). The validity of part (¢i¢) is immediate as z,y2
and Z,42 are constructed such that z,y2 L Zg41 and Z,42 L 2441 explicitly. As
for part (iv), we proceed as follows: from the fact that ro42 = req1 + 2442 and
Ta+1 L Zot1 and zg42 L Zg41 it follows that ro4o L Zg41. Also reqo L A*Za41.
But since z,y2 € span{Z,i11, A*Z,411}, we see that roy2 L Z,42 as well. Thus
Tat2 L span{Z,i1, Za42}. An analogous argument leads to the conclusion that
Fate L span{zgt1, Zet2}. Finally, for the proof of part (v), we start by taking
the complex conjugate of the equations in (3.17) and (3.20) that involve only wg11
and p441. This gives the system

(Aza-‘rl ) 2a+1)wa+1 + (za+1 , 2a+1)ﬂa+1 =0,
(Tav1 , A%Zay1) + (Azaqr , A" Zay1)War1 + (a1 s A% Zaq1)llar1 =0 .

This system can also be written as

(Za41 5 A"Zay1)Wart + (Zat1 5 Zat1)Tar1 =0,
(Tat1 , A%Zay1) + (Azaq1 , A% Zoy1)War1 + (AZat1 , Zay1)lar1 =0 .

Finally, by the fact that r,41, Fat+1, 2e+1 and Z,11 are as in parts (v) and (vi),
and by Lemma 3.1, we have that (ro41 , A*Z4141) = (Azay1 , Tat1) in the second
equation above. Thus, W11 and 41 satisfy the same equations as wy41 and fig41-
Consequently, We1+1 = War1 and fig+1 = flg+1- This, together with the fact that part
(v) holds for ro41 and 7,41, implies that part (v) holds for r,42 and 7,12 as well.
Part (vi) again follows from part (v).

Let us now assume that the assertions of the theorem are true for n > a + 2 and
show that they are true for n + 1 as well. The truth of parts (i) and (i4) is obvious
from (3.13). For part (iii) we need to show that (2,41, %) =0 and (Z,41 , 2;) =0
fori =a+1,...,n. We already have that these hold for i = n and ¢ = n — 1 by
the way 2,41 and Z,; are constructed. By the induction hypothesis it is clear that
(Zi , Znt1) = wn(Zi, Azy) and (25, Zny1) = On(z , A*Zy) fori=a+1,...,n—2.
But (2, Az,) = (A*3; , z,) = 0 and (2; , A*2,) = (4%, 2,) = 0 for 1 =
a+1,...,n—2, by A*2; € span{Z,41,...,2,1} and Az; € span{zg41,..-,2n1},
and by the induction hypothesis. This completes the proof of part (ii7).

For part (iv) we need to show that (rp4+1 , %) = 0 and (Fy1 , 2i) = 0,0 =
a+1,...,n+ 1. From the fact that r,41 = zp41 + 7, from (2,41 , %) = 0,
i=a+1,...,n, which we have just shown, and from the induction hypothesis that
(rn, 2)=0,i=a+1,...,n, we already have that (r,41, %) =0,i =a+1,...,n. We
also have (rp41 , A*Z,) = 0, which, by the fact that A*Z, € span{Zs+1,...,%Zn+1},
implies that (r,4+1 , Z,4+1) = 0. An analogous argument applies to 7p41. This
completes the proof of part (iv).

For the proof of part (v) we start by taking the complex conjugate of the equations
in (3.22). After also invoking (u , Av) = (A*u , v) in appropriate places we obtain

(Azn ; anl)w_n‘f' (znfl ; anl)m =0 ;
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(2n , A*Zp)wn + (2n 5 Z0)Bn =0,
(s A*50) + (Azn 5 A*2)00 + (Azn 5 5n)m + (Znt » A*2)7m = 0.

Now by Lemma 3.1 we have (Az, , Zn-1) = (2n_1, 4*2,), (rn, A*2,) = (Azn , ),
and (zp—1 , A*2,) = (Az, , Z,—1). When we substitute these in the equations
above, we realize that these equations become identical to the equations in (3.23),
that involve @y, fi, and ©,. This, of course, means that @, = Wy, fi, = &, and
Up = Up. This along with (3.11) and the induction hypothesis proves that part (v)
holds for r, 41 and Fpy1.

This completes the proof of the theorem. O

REMARK 3.3. From (3.1), (3.2), and (3.12) it is clear that z, is as in (2.1).
In other words, , € zo + K,—, with K,,_, = span{A%rg, A% lry, ..., A" 1rg}.
From this and from part (iv) of the theorem it is seen that the method we
have developed is characterized by the additional condition that r, L L, , =
span{(A*)a*t15, (A*)*+ 25, ..., (A*)%}. Here K,—, and L,_, serve as right and
left subspaces of a suitable projection method for Az = b with A singular and
ind (A) = a. This condition can also be expressed in the equivalent form A%r, L
span{A*Fy, (A*)?7, ..., (A*)" "% }. Precisely this puts DBi-CG in the unified frame-
work of Sidi [17].

In summary, we have devised a Lanczos type method for the Drazin-inverse solu-
tion in which z,, € ¢ + K,,—, such that r,, = b— Ax,, L £,,_, with 79 = b— A*%g and
Zo arbitrary. We have also provided a recursive algorithm for it whose length is fixed
and independent of a. In the next section we refine this algorithm in an appropriate
fashion.

4. The DBIi-CG algorithm. In this section we will make use of the devel-
opments in the previous section, including Theorem 3.2, to devise a Bi-CG type
algorithm for the vectors x,,. We recall that the x,, and &, satisfy 4-term recursion
relation

(41) Tnt+1 = Tp + wnA(wn - xnfl) + ,U'n(xn - xnfl) + Vn(mnfl - $n72) )
:i'n—i-l =&, + w_nA* (i'n - in—l) + ,u/_n(j'n - jjn—l) + m(s\én—l - i'n—2)

with appropriate initial conditions on x, = xg, Tat1, Tet2 and &, = To, Tat1, Lat2-
Here we have already invoked Theorem 3.2 to replace &y, fin, Vn by Wn, fn, Vn,
respectively. Defining

V,
(4.2) dp = A(@n — Tn1) + 22 (2 — Tpo1) + (@t — Tos) 5
W, Wn
7 * [~ ~ m - “ W -« "
dp = A"(&n —Tp-1) + w—(xn —&p_1) + w:(xnfl —&n_2) ,

we obtain from (4.1) that the iterates z,, and &, of our method satisfy

(4.3) Tnt1 — Tn = wWndp ,

j:n+1 —Ip = w_ndn )
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and consequently,

Tpt1 =b—Axpp1 =1y — wpAd,
’I'"n+]_ = b - A*.CE"_’_l = fn - w_nA*dn B

Defining

(4.4) vp = Ad,, and o, = A*d, ,
and recalling (3.12), we obtain

(4.5) Znt1 = —wnp and Zpi1 = —Wnlp .

Substituting (4.3) in (4.2) and letting

Op = Bn and Tn = YnWn—2
Wn WnWn—1
we realize that
(46) dn = wnfl(Adnfl + 5ndn71 + ’Yndn72) 3

dn = wn—l(A*dn—l + Edn—l + W_ndn—2) .
Let us now compute the coefficients d,,, v, and wy,: from (3.22) we obtain

_bBn . (En, Azn) (A*%n , 2n)

5y = Hn = U G
_ (=i A1, —Wn-1Vn-1)
(_wnfl'ﬁnfl ) _wnflvnfl)
A*Vp,_ _
:_( V'Un 1, Un 1)7 nZa—|—1,
(/Unfl ) (Unfl)
VnWn—2 (Zn—l , Azn)wn—2
Yn = = —
WnWn—1 (zn—l > zn—l)wn—l
_ _ (_wn—2'ﬁn—2 s wn—lAvn—l)wn—Z
(_wn—277n—2 ; _wn—2vn—2)wn—1
Op—2 5, AUp_
— Oz, Avn) 1), n>a+2.

(ﬁn—Q ) Un—2)

From Theorem 3.2 part (iv) we have r,y1 L Z,41. Thus, 7,41 L 9,. Recalling that
Tntl = T + Znt1 = T'p — WpUy,, We obtain

(ﬁn ) rn) - (6n ) Un)wn =0.

Hence
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The only thing we have to do now is to define a recursion for v,, and o,,. Substituting
(4.6) in (4.4) we obtain:

Un = wn—l(AUn—l + 6nvn—1 + 'ann—Z) ,

Op = Wn_1(A*Vp—1 + 0nln—1 + VnUn-2) -

Combining all the above we can now give the following algorithm that we denote
the DBi-CG. Here are the steps of this algorithm:
ALGORITHM 4.1.
Step 1. Pick xo and &g arbitrarily, compute ro = b — Axg, 7o = b— A*Ey, and set
Tq = X0, Ta =T0, Va1 = A%, Vg1 = (A*)%, Wa—1 =1

n=a;
Step 2. while ||residual|| > tolerance do
begin
A*Y,_ _
ifn2a+1then6n:=—( Un—1, Un 1), else 6, :=0;
(Un—l ) 7}n—l)
On—2 , A n—
ifn2a+2then'yn::—(q}v2—vl), else v, :=0;
(Un—2 3 vn—2)
dy = wn—l(vn—l +0pdn-1 + ’Yndn—2) 3
Up = wn—l(Avn—l + 0pUn_1 + 'ann—Z) 5
U 1= wn—l(A*'Dn—l + Eﬁnfl + 'Y_n'ﬁn72) 3
Wy 1= (7:)71 ) Tn) :
(On 5 vn)
Tnt1l = Tp — Wplp ;
Tp4+1 = Ty + wndn 5
n:=n+1
end;

It is obvious that we do not need #g, but we need to pick 7y. In addition, we can
pick 7y arbitrarily.

From the steps of Algorithm DBi-CG it is clear that the process will continue as
long as (0, , v,) # 0 and (0, , r,) # 0, which together guarantee that w,, is well
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defined and w, # 0. That w, # 0 as long as z, is not the solution is obvious as we
need rp41 # Ty and T,41 # T, in this case. It is seen that problems will arise when
(Dn , vn) & 0and/or (0, , m,) = 0, which are known as “breakdowns” in the literature
of the Lanczos method and Bi-CG. A few approaches to overcome these problems,
among those the look-ahead strategies, have been suggested in the past and references
to them can be found in , e.g., [2]. As mentioned in [2], sometimes breakdowns can
be satisfactorily avoided by a restart at the iteration step immediately before the
breakdown step. We shall not pursue this subject here any further.

5. Error analysis for DBi-CG. In this section we will present error analysis
for the vectors z,, obtained by the DBi-CG method for two different cases: (i) A
Hermitian and (ii) A non-Hermitian.

Let R(B) and N (B) stand, respectively, for the range and null space of a matrix
B. Then it is known that CV = R(A%) ® N (A?) and that every vector z € CV can
be written in the form z = 2 + Z, where 2 € R(A%) and Z € N(A%) and they are
unique. Furthermore, the Drazin-inverse solution of Az = b, namely, the vector APb
is in R(A%).

We first recall Theorem 4.3 of Sidi [17] concerning the finite termination of Krylov
subspace methods in general and DBi-CG in particular, for the Drazin-inverse solution
of singular systems Az = b.

THEOREM 5.1. Let kg = %o + Zo, where &g € R(A%) and o € N(A%). Then,
for some integer ng < dimR(A®) +a < N, we have T,, = APb+ & and equivalently
A%rp, =0.

5.1. Error analysis for DBi-CG applied to singular inconsistent Her-
mitian linear systems. We shall first look at the case in which the matrix A is
Hermitian semidefinite or indefinite, for which ind (A) = 1 necessarily. Since A* = A
now, the DBi-CG algorithm assumes the following simple form, provided we also pick
i’o = Xg-

ALGORITHM 5.2.

Step 1. Pick xq arbitrarily, compute ro = b — Axo, and set
1 = Xg, T1 = To, Vo =A7‘0, Wy = 1 5

n=1;
Step 2. while ||residual|| > tolerance do
begin
Avy,_ _
if n > 2 then 6, := —M, else 6, :=0;

(/Unfl ) 'Unfl)

_o, Av,_
if”Z3th€"7ni=—%, else vp =0 ;
n— ) n—

dy == wn—l(vn—l + 5ndn—1 + 'Yndn—Q) 3

Vp 1= wnfl(AUnfl +0pvn_1 + ’annf2) )
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,_ (v , Tn) .
Wp 1= —————=<

(Un 5 vn)

Prgl i= Tp — WnUp ;
Tptl = Tp + wrdp 5

n:=n+1

end;
Obviously, there are no breakdowns in this algorithm as (v,,v,) > 0 for all n
except when v, = 0.
We also note that this algorithm is identical to the Conjugate Residual type
algorithm of Calvetti, Reichel, and Zhang [4] up to scaling.
The following is a direct consequence of Theorem 3.2.
THEOREM 5.3.

1. (Ui7vj)=07 275.7

2. span{dl,.._,dn}=span{A7-07___7AnT0}7 n> 1
3. (Alrg , 1) =0, 2<i<j
4. (vi, r;)=0, 1<i<j—1

The error analysis for the case of Hermitian inconsistent linear systems has been
given in the paper by Calvetti, Reichel, and Zhang [4]. We shall state it in the
following lemma.

LEMMA 5.4. Denote the semi-norm

l2ll' = (A2 , 42)'/? = || 42|,  zeCV.

Let R(A) denote the range of A and let N(A) denote the null space of A. Let xy =
%o + Zo, where g € R(A) and g € N(A). Then the iterate x,, determined by the
above algorithm satisfies

e = G+ 20l < 6= ol min | max (1= Xu()] .

where § denotes the Drazin-inverse solution of (1.1) and o(A) is the spectrum of A.
We also bring here the convergence rate for the case in which the spectrum of A
is nonnegative:

(5.1) o(A) c{0}U[c—d, c+d], 0<d<ec.
LEMMA 5.5. Denote

(5.2) x = exp[— cosh™ ' (¢/d)] = # <1l.

Then

i M| <2(k ! = nM1 1 - 0 .
i | max [p(M)| < 2(x k)nk"[L +0(1)] as n — oo
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Proof. The proof is given in the paper by Hanke and Hochbruck [10]. O
From these lemmas and by the fact that

min max |1 — Mu())| < min  max |p())]
u€ll, 2 A€o (A)\{0} pellf A€[c—d,c+d]

and by the assumption that A is Hermitian, there holds
llzn — (3 + Zo)||" < 2|18 — @o|'(k™ = K)n&™[1 +0(1)] as n — oo .

5.2. Error analysis for DBi-CG applied to singular non-Hermitian lin-
ear systems. We now consider the DBi-CG algorithm applied to the consistent or
inconsistent linear system Az = b, where A € CN*N is a non-Hermitian singular
matrix of index a. The error analysis we are about to present is inspired by the works
of Saad [13] and [14].

With the vectors 79 and 7 as before, define the N x (n — a) matrices V,,_, and
Wn_a by

Vn—a = [AaTO | Aa+1T0 | . | A”_lro]
and
Waca = A7)0 | (A7)0 || (A7)"Fo]

As before, the span of the columns of V,,_, (respectively W, _,) will be denoted by
Kn—q (respectively £,,—,).

In the sequel we assume that the matrices V,,—, and W,_, have full (column)
rank and satisfy

(5.3) det (W;_aVn_a) #0,
and
(5.4) det (W:_GAVn_a) #0.

Now the method we developed in Section 3 is a projection method onto K,
and orthogonal to £, _,: it obtains an approximate solution z,, to the Drazin-inverse
solution of the singular system Az = b that belongs to xg + K, _, and satisfies the
orthogonality relations

(5.5) rpn=b—Ax, L L, ..
It is more convenient to write x,, in the form
Tpn = To + Un , Up € Kp—a -
The condition in (5.5) then implies
(5.6) ro — Aup L Lo -
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Thus, u,, is an approximation to the Drazin-inverse solution of the singular system

(57) Au = To -
Writing
(5.8) Un = Vn_ay ,

it is immediate that y must satisfy the (n — a) x (n — a) linear system
Wy_o(ro — AVpoy) =0,

which, by (5.4), has a unique solution for y that is given by
= (W;_GAVn—a)AWn*_aTo .

Noting that ro = 7o + 7o, where 79 € R(A%) and 7y € N (A4%) and they are unique,
and that

Wy_aro = ((A*)2[A*Fg | (A%)%F0 |...| (A*)"~7]) " ro
= [A*Fo | (A*)%Fo |...| (A*)""70]* A%rg
=[A*fo|<A*>2V| | (A" 5] A%
= ((A")[A*Fo | (A*)*F0 |...| (A*)"%R]) o = Wi _ 70 ,

we realize that y is given by
(59) Y= (W:—aAV"*a)_lwrt—arAO

Let zo = o + Zo, where 9 € R(A?) and %y € N(A?), and let @ be the Drazin-
inverse solution to (5.7), i.e., & = APrq. Denote also § = APb. Thus, 4 = 5 — Zo.

Let P, be the orthogonal projector onto the subspace K, _,. In the following
lemma we study the error z,, — (§ + Zo) in terms of the distance

(5.10) en = I~ Pl ; a=4—3o,

where || - || denotes the Euclidean norm.
LEMMA 5.6. The distance ||(I — P,)dl|| between 4 and the Krylov subspace Kp—q
satisfies

(5.11) (T = Pn)all = in llp(A)(Z0 — S)II -

Proof. It is known that
I—P,)il = -
I = Pa)all = mpin fla—ul

= min u—q(A)A%r
i la— g(4) 4%

= min ||a—q(A)Aa+lﬁ||

= min || (I—A*g(A)) il = min [[p(A) (& — 3| -
Jemin I q(4)) ll = min [lp(4) (G0 — 3
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Here we have used the facts that A%rg = A%, and A%+t1g = A%. O

We now turn to the error analysis of our method. We will need an interpretation
of the method in terms of operator equations. Let us define the operator @), onto
7o + Kpn_o and orthogonal to £,,_, by

Qrr €ETo+Kpn—gandz —Qpzr L Ly, -
LEMMA 5.7. The matriz representation of Q,, in the standard basis in CN is

Qn = o+ Voo (Wi_oVaa) " Wi (x — o) -

Proof. We have by definition of @,
(5.12) Qnr =70+ Vp_oy and W, _ (2 —Qnx)=0.
Hence

Wi o= Wi \Qua =W,

n

rAO + W;:favnfay )

from which we obtain
(5.13) y=(Wr Vaia)  Wr  (x— o) -

Substituting (5.13) in (5.12), the result follows. O
LEMMA 5.8. @, is a projector onto 7o + Kp—q-
Proof.

Q22 = Qu(Qn2) = 7o + Vaca (W Vaa) Wi o(Qn — 7o)
= o+ Voo (Wi—aVa-a)~ Wiia (Vama (Wi—iVa-a) ' Wii_ (@ = o))
=iy + Ve (WieaVasa) ™ (WazoVaca) (WisaVaa) ™ Wil = 7o)
=70+ Vaa (W;—aVn—a)_l Wh_o(® —70) = Qnz . o

Note that the vector @, is uniquely defined only when (5.3) holds.
Let us now define the operator A,, by

A, = QrAP, .
We then have the following result.
LEMMA 5.9. The problem
(5.14) U € Kp_a and 79— A,u=0

has as its unique solution the vector u,, defined following (5.5).
Proof. 1t is sufficient to express the problem (5.14) in matrix notation. Since
u € Kn_q, it can be written as

(515) u = anay .
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Furthermore, P,u = u. Thus from (5.14) we obtain
To — Apu = o — QAP u =79 — QrAu
= 7o = (o + Vama (Wi—aVama) ™ Wii—a(Au — o))
= Voo (Wi oVama) " (Wiafo = Wi, AVnay) = 0.
The columns of matrix V,,_, are linearly independent , hence
Wi _afo =Wy _oAVn oy =0,
which yields

(5.16) y= (Wi oAV o) Wi, 7

n—a'0 -

This means that the problem (5.14) has a unique solution. The proof is completed
by realizing that the solution given in (5.15) and (5.16) is identical to that given in
(5.8)-(5.9). O

We shall refer to the problem (5.14) as the “approximate problem”. What Lemma
5.9 shows is that the method described in Section 3.2 amounts to replacing the problem
(5.7) by the “approximate problem”. Our next task is to give a bound for the residual
of 4 for problem (5.14). This is considered in the next lemma.

LEMMA 5.10. Let e be as in (5.10) and define

(5.17) O = |QnA(I — Pl -
Then the Drazin-inverse solution 4 for the problem (5.7) satisfies

|fo — Apdi|| < bnen, .

Proof. Since 7o belongs to 79 + K,,_, and since @,, is a projection operator onto
7o + Kn_q, one can see that 7o = @Q,70. Using this fact and the fact that Ad = 7o,
we realize that

TAO - Ana = Qn”A'O - QnAPna = Qn(rAO - APnﬂ)
= Qn(Al — AP,4) = QLA — Py)d
= QuA(I - P)(I - Py .
The result now follows. 0
LEMMA 5.11. The operator A,|x

space Kp—q, is invertible.
Proof. We have to show that the equation

.., namely, the restriction of A, to the sub-
(5-18) (An|lCn_a)u =fo+v, v€Ku,
has a unique solution u € K,,_,. Since u,v € K,,_,, we have

u="V, o,z and v=V, .y, y,z2 € C"% .
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Invoking the definitions of A, and @, (5.18) becomes
Fo + Vara W Vi_a) "W (APyu — 7o) = 7o + Vi_ay -

Recalling that the columns of V,,_, are linearly independent, we realize that the last
equation is equivalent to

(5.19) (W Vo) *Wr_ (APyu—7o) =y .

Multiplying both sides of (5.19) by W__V,,_, and using the fact that P,u = u we
obtain

Wi _oAVin_oz =W, _ o+ W _ Va_ay -

Since Wy_, AV, _, is invertible by (5.4), a unique solution for z exists. This completes
the proof. O

THEOREM 5.12. Lete and 0,, be as defined in (5.10) and (5.17) respectively, and
let kn = ||(Anlk,._.) " tll- Then the error x, — (8§ + &o) satisfies

(5-20) llzn = (3 + Zo) | < (1+6747)" en -
Proof. By Lemma 5.9 and Lemma 5.11 we have that u, = (4,|c,_.) " '7o. Re-
calling that Ppu, = uy by the fact that u, € K,—, we obtain

P, (up — @) =up — Pri
= (Anlk,_.) "o — (Anlk,_.) Podl] -

Next, since P, € Ko and P2 = P,, we have (Au|x,_,)Pnl = APrii = Apna.
Therefore,

Po(un — 1) = (Anlk,_,) (o — Ana) .
Using Lemma 5.10, we realize that
[|Pr(ty, — 0)|| < KnBnén -
Writing
U —up =1— Ppup = — P)l + Pp(th — uy)

and observing that the two vectors on the right-hand side of the above equation are
orthogonal (by the fact that P, and also I — P,, are orthogonal projectors), we obtain

lun = all* = (I = Pa)all? + (| Pa(@ — un)|” < €5 + K705e7 -
Hence, recalling also that x,, = z¢ + un,

|7 = (8 + Zo)l| = [|lzo + un — 5 — Zo|
= ||un — (8 — #0)|| = [Jun —al| < (1 + k262)"%¢,, . 0
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Now #6,, can be bounded through 6,, < ||Qx||||A]| since ||[I — P,|| = 1 by the fact
that I — P, is an orthogonal projector. Therefore, 0,5, < ||QnllllAlll(Anlx,_.) 7 |-
That is, 0,y plays the role of a condition number for the “approximate problem”.
Thus, Theorem 5.12 implies that, as long as the “approximate problem” is not too
badly conditioned, the error z,, — (§ + &) is of the order of e, = ||(I — P,)4|.

As far as €, is concerned, we have the following result that can be proved in
exactly the same way as Theorem 6.1 of Sidi [17].

THEOREM 5.13. Choose Q) to be a closed domain that contains o(A)\ {0} but not
A =0, such that its boundary is twice differentiable with respect to arclength. Denote
by ®(\) the conformal mapping of the exterior of Q onto the exterior of the unit disk
{w: |w| >1}. Then

en < Kna+2(ic—1)pn ,

where K > 0 is some constant independent of n, k= max{k; : k; = ind(A —
AT, Aj €0(A)\ {0}}, and and p =1/|9(0)| < 1.
This theorem shows that ,, ultimately tends to 0 exponentially in n.

6. Numerical examples. We tested the numerical properties of the DBi-CG
method for the examples taken from the paper by Climent, Neumann, and Sidi [6].
The algorithm developed in Section 4 was used to compute the eigenprojection Z4 :=
I—AAP onto the eigenspace of A corresponding to the zero eigenvalue of three singular
matrices whose index exceeds 1.

By Theorem 5.1 there exists a smallest integer ng < dimR(A%) +a < N, for
which z,, = § + Zo, provided det(W} _,AVn,—q) # 0. Thus, if we take b = 0, then
5= APb =0, and

Tpy = 3o = (I — AAP)z .

Now, if we choose g as the ith column of I, the vector (I — AAP)z, is the ith
column of the eigenprojection Z4. Using DBi-CG and stopping when w, = 0 or
|Tnr1 — znllco < 10~15
1z |oo
iterations. (In all these examples N varies between 6 — 8.)
We have also considered the solution of the Poisson equation

, we have obtained exact eigenprojections Z4 in at most NV

82 62
(@ + 6—y2) u(z,y) = f(z,y)
on the unit square
Q=00,1]1x1[0,1]={(z,y): 0<z<1,0<y<1}

with Neumann boundary conditions

%u(w,y) =¢(z,y) on N .
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This problem was also considered by Hanke and Hochbruck [10] for testing the Cheby-
shev type semi-iterative method that was developed there.
First, we replace €2 by the uniform grid

where h = 1/M. Thus we obtain a grid which contains M + 1 rows and M + 1 points
in each row, hence a total of (M +1)? points. Next, we discretize the Laplace operator
and the boundary conditions with central differences in the standard way. Finally, we
take M to be an odd integer and arrange the grid points using the red-black ordering.
As aresult, we end up with the following (M +1)% x (M +1)? nonsymmetric coefficient
matrix A:

41 O ... ... ... ... .. O|Th -2 O ... ... ... ... O

o ar . -1 1 -1 O

o I T -I O
O -I T» -I O
o)

: .4 o | o -I T -I

O ... . ... .. .. 0 4|0 .. .. ... .. 0 -2 T
T 20 0 ... .. .. ... o4 o0 ... ... ... .. o
I Tn -I O o ar :

0O -1 T -I O

o I T -I O
o)

: o I T -I|°: “.o4 0
Lo ... .. .. .. 0 =2 Ti\|O ... .. ... .. .. O 4|
where

T2 0 0 7
-1 -1
T = 0
-1 0
0 0 =1 —1 |, arm
X M

and
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-1 -1 0 ... 0 T
0 -1
T = 0
: . -1 -1
L0 e 0 =2 |y wn
2 2
and I and O are, respectively, the 2 x 2 jdentity and zero matrices. Note that

A is singular with a one dimensional null space spanned by the vector e = [1---1]T.
Even if the continuous problem has a solution, the discretized problem need not be
consistent. In the sequel we consider only the Drazin-inverse solution of Az = b for
arbitrary b, not necessarily related to f and ¢.

We first construct a consistent system with known solution § € R(A) via § = Ay,
where y = [0--- 0 1]7. Then we perturb A3, the right-hand side of Az = A§ = b,
with a constant multiple of the null space vector e. In this way we end up with an
inconsistent system with Drazin-inverse solution §. For this example our perturbation

1511
51k

amounts to one percent in norm, i.e., = 0.01. The initial vector xq is the zero

vector.

In our numerical experiments we took M = 63. Therefore, the number of un-
knowns is 4096. With M = 63 the solution we are looking for is the vector §, whose
components are zeros except

82016 = —1, 82047 = —1, 32048 = =2, 34006 = 4 .

|zn+1 = Znllo <2x 109

] , after 230 iterations we
x'ﬂ oo

Using DBi-CG and stopping when

obtain the following results:

n Tn,2016 Tn,2047 Tn,2048 Tn,4096

10 | -1.010098531489 | -1.0222184392605 | -2.030941821045 | 3.9681647141065
50 | -1.000219129362 | -0.9994840140640 | -1.999193023834 | 4.0008989000809
100 | -1.000006579682 | -0.9999900670946 | -1.999983487480 | 4.0000185531542
150 | -1.000001210051 | -0.9999979782034 | -1.999996693250 | 4.0000037089364
200 | -1.000000176275 | -0.9999997734417 | -1.999999589236 | 4.0000004580209
230 | -0.999999977161 | -0.9999999353241 | -1.999999922886 | 4.0000000816397

All our computations in this section have been performed in FORTRAN 77 using
double-precision arithmetic.

7. Conclusions. In this work we have developed a Krylov subspace method of
the Bi-Conjugate Gradient (Bi-CG) type for computing the Drazin-inverse solution of
singular linear system Az = b, A € CV*¥ . We have not put any restrictions on the
matrix A. Thus, A is not necessarily Hermitian or Hermitian positive semidefinite,
and can have any type of spectrum. In addition, it can have an arbitrary index.
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Neither have we put any restrictions on the system Az = b. This system may be
consistent or inconsistent. We are only required to know a, the index of A. In this
method the approximation to APb, the Drazin-inverse solution of Az = b, is of the
form z,, = g+ gn—1(A)rg, where x is the initial vector, rg = b— Axzg, and g,—1(A) is
a polynomial of degree at most n— 1, and the polynomial p,(\) = 1—Ag,—1(\) € 1,
with TI2 as defined in (2.5). It follows a posteriori that the coefficients of g,_1()\)
are determined by requiring that A%r,, where r, = b — Ax,, be orthogonal to the
(n —a)-dimensional subspace W = span{t, A*t,...,(A*)" 2 1t} where t is a suitable
vector. After showing the relevance and theoretical validity of this approach, we have
given a detailed error analysis for the above method in both Hermitian and non-
Hermitian cases. Finally, we have presented some numerical experiments with the
new algorithm.

The present work seems to be the first to present a Krylov subspace method for
singular non-Hermitian consistent or inconsistent linear systems with arbitrary index.
One important achievement of this work is the development of a recursive algorithm
of fixed length independently of the size of the index of A.
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