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CHECKING NONSINGULARITY OF TRIDIAGONAL MATRICES�

ILAN BAR-ONy

Abstract. I. Bar-On, B. Codenotti, and M. Leoncini presented a linear time algorithm for check-
ing the nonsingularity of general tridiagonal matrices [BIT, 36:206, 1996]. A detailed implementation
of their algorithm, with some extensions to possibly reducible matrices, is further described in the
present paper.
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1. Introduction. The solution of systems of linear equations is a common task
in large scale scienti�c applications. An important aspect in these calculations is
the ability to verify numerical reliability of the computed solution [5]. For example,
suppose we want to solve the linear system Ax= f , and we compute a solution
that is backward stable, i.e., x̂ satis�es some slightly perturbed system Â = x̂f̂ .
Then, the actual (forward) error a�ecting x̂ may still be arbitrarily large when A is
closely singular. The closeness to being singular is therefore an important aspect to be
considered when choosing the \right" algorithm to solve a linear system [9]. However,
the notion of closeness to being singular requires more thought. For example, is the
upper bidiagonal matrix

U =

2
6664

1 �2
. . .

. . .

1 �2
1

3
7775

close to being singular or not? In the classical sense, the matrix is almost singular for
we can change the entry un;1 to �

1
2n�1 to get a singular matrix. However, this matrix

is clearly far from singular if we restrict the perturbations to its two main diagonals,
which contain the only non zero elements. Thus it is important to de�ne what is
meant by this concept. In the classical nomenclature, closeness to being singular is
determined by the singular values of the matrix being relatively small [7, 11]. The
existence of such singular values implies that relatively small perturbations in the
matrix elements would yield a singular matrix and vice versa. The computation
of the singular values of the matrix is quite a standard task in today's software
packages [1]. In this paper we consider the other approach to this problem, namely
the closeness to singularity with respect to the non zero elements of the matrix. This
problem in its generality has been shown to be NP-Hard [10]. However, for tridiagonal
matrices, it was recently shown that this could be solved in linear time; see [2]. In
the present work we proceed with a detailed description of this algorithm for the case
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of general tridiagonal matrices. As noted above, this is of importance for the sake
of the reliability of the computed solution, and for the decision on which algorithm
to choose for solving a corresponding tridiagonal system. For example, in [3, 4, 6]
we present a fast tridiagonal solver for systems with totally nonsingular coe�cient
matrices, a property which can be veri�ed using the algorithm we present in this
paper. Formally, given a tridiagonal matrix T and a non negative tridiagonal matrix
E � jT j, we de�ne the radius of nonsingularity to be

�(T;E) = sup
�
� jT = T + �T; j�T j � �E; det(T ) 6= 0

	
:

In sections 2 and 3 we give some necessary background for the problem. In section
4 we present the algorithm, and in section 5 some numerical examples are shown.

2. Notation. We denote a tridiagonal matrix T by

T =

2
66664

a1 c2

b2 a2
. . .

. . .
. . . cn
bn an

3
77775 ;

b1 = 0;

c1 = 0;

and T (bk; ak; ck). We consider the case where these coe�cients are not known exactly
as is usual in oating point scienti�c computations [5]. We can then denote the input
coe�cients by the set of tridiagonal matrices

T = T + �T; j�T j � T (�bk;�ak;�ck):

To simplify the discussion that follows we assume further that:
� No o�-diagonal coe�cient is exactly zero.
� The perturbations to the non zero coe�cients are bounded by

�̂j(�)j < �(�) < j(�)j;

with �̂ the precision by which we store the coe�cients in memory. For exam-
ple, �̂ � 10�16 in standard double precision.

� The perturbations to the non exact, but zero coe�cients, are at least as large
as the tiniest positive real number in the system, i.e., � 10�300.

Let us de�ne

�
(b)
k =

�bk
jbkj

; �
(a)
k =

�ak
jakj

; �
(c)
k =

�ck
jckj

;

for those coe�cients which are non zero, and �T = mink(�
(a)
k ; �

(b)
k ; �

(c)
k ). Then,

T = T + �T; j�T j � �TE; E = T (ek; dk; fk)

with

ek =
�bk
�T

; dk =
�ak
�T

; fk =
�ck
�T

:
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Note that �̂ � �T and that E � jT j. We may now de�ne the radius of non singularity
with respect to the non negative tridiagonal matrix E to be

�(T;E) = sup
�
� jT = T + �T; j�T j � �E; det(T ) 6= 0

	
:

Hence, if this number is relative large the matrix is far from being singular.

3. Nonsingularity. In Figure 3.1 we present a simple algorithm for checking
that a given irreducible tridiagonal matrix is nonsingular. The algorithm will work
properly provided there are no rounding errors in the computation.

d1 = a1; k = 2
DO
IF dk�1 6= 0 THEN
dk = ak �

bk
dk�1

ck
ELSE
k = k+1; dk = ak

END IF
IF k � n EXIT
k = k+1

END DO
IF (k = n ^ dn = 0) WRITE('Matrix is Singular')

Fig. 3.1. Algorithm for checking singularity of irreducible tridiagonal matrices.

However, as discussed in the previous section, the coe�cients are usually not
known exactly, and rounding errors further contribute to this problem. We therefore
consider the more general question of verifying the possible nonsingularity of the
matrices in

T = T + �T; j�T j � �E; �E = T (�bk;�ak;�ck);(3.1)

for some given parameters � and E � jT j.
Let us denote the input coe�cients by the range of closed intervals"

. . . Ck � [ck ��ck; ck +�ck]
Bk � [bk ��bk; bk +�bk] Ak � [ak ��ak; ak +�ak]

#
(3.2)

and the �rst possible diagonal pivots d1 by the closed interval D1 = A1. Then, we
can show that the kth diagonal pivot belongs to an extended closed interval of one of
the following forms:

D = [�; �]; or (�; �)(c) � fx � �; � � xg;

for some �1 < � � � <1, the interval D = [1], or

D = [�1; �] � fx � �g; or [�;1] � fx � �g:
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Viewed di�erently, they correspond to regular closed intervals on a Riemann circle
through the (x; z)-plane with radius 1

2 and center at (0;
1
2 ). The right half of the circle

correspond to the positive real axis, and the left half to the negative one. The south
pole (0; 0) is mapped to the origin and the north pole (0; 1) to in�nity. In this way,
we get a one-to-one correspondence with the extended real line with the above set of
intervals corresponding to regular closed intervals on this circle; see [8].

In summary, instead of computing dk we compute the set of possible values for
dk using

Dk =

�
ak �

bk
dk�1

ck;
bk 2 Bk; ck 2 Ck;

ak 2 Ak; dk�1 2 Dk�1;

�
;

where division by zero and in�nity are de�ned appropriately; see [2]. The set of
perturbed matrices (3.1) is nonsingular whenever 0 62 Dn.

4. Code description. We describe in this section the algorithm for checking
the nonsingularity of the set of interval matrices (3.1), for some given parameters

T;E; �. We assume here that � � 10�̂, where �̂ is the machine precision, and denote
the input coe�cients as in (3.2).

We begin with an overall description of the code. To represent the diagonals of
the original matrix, i.e.

ak 2 Ak = [a
(�)
k ; a

(+)
k ]; a

(�)
k = ak ��ak; a

(+)
k = ak +�ak;

we use the two real arrays a(�) and a(+) respectively. We have two options for the
interval of the product of the o�-diagonal elements. When bkck=0

bkck 2 [�Gk; Gk]; Gk = max(bkck); GZER(k) = .TRUE.(4.1)

The other alternative is that the product is of the same sign, i.e.

GPOS(k) =

�
.TRUE. if bkck > 0;
.FALSE. if bkck < 0:

(4.2)

Here, jbkckj 2 [gk; Gk] for

gk = (jbkj ��bk)(jck j ��ck); Gk = (jbkj+�bk)(jck j+�ck):(4.3)

Then, to describe the extended closed intervals that span the possible values for the
pivots dk 2 Dk, we use the following logical arrays together with the two real arrays
d(�) and d(+). We let

PZER(k)=.TRUE. represent Dk = [0];

and then

PNFY(k)=.TRUE.

LNFY(k)=.TRUE.; d
(+)
k

d
(�)
k ; RNFY(k)=.TRUE.

9>=
>; represent

8><
>:

Dk = [1];

Dk = [�1; d
(+)
k ];

Dk = [d
(�)
k ;1]:



ELA

Ilan Bar-On 15

Lastly, we let

INCL(k)=.TRUE.
INCL(k)=.FALSE.

�
denote

(
Dk = [d

(�)
k ; d

(+)
k ];

Dk = (d
(�)
k ; d

(+)
k )(c):

We also use SNG(k)=.TRUE. to note that the kth leading submatrix may become
singular, i.e., 0 2 Dk. This may be of interest for some other applications; see [3, 6].
We now proceed to compute dk as follows:
For k = 1 we let

PZER(k)=.TRUE. in case ak � 0.

Otherwise, Dk = [a
(�)
k ; a

(+)
k ] with INCL(k)=.TRUE.

Then, SNG(k)=.TRUE. in case 0 2 Dk.
We set PNFY(k), LNFY(k), RNFY(k) to .FALSE.

Then, for k = 2; : : : ; n we proceed iteratively as follows (leaving out some details such
as setting INCL(k), etc.).

4.1. The simple cases. The �rst simple case is when Dk�1 = [0], that is when
PZER(k-1)=.TRUE. Here, either GZER(k)=.TRUE., see (4.1), and then the matrix
could clearly become singular. Otherwise, we get Dk = [1] so PNFY(k) is set to
.TRUE. This leads us to the second simple case which is Dk�1 = [1]. Clearly, here,
we can apply the same steps as we did for k=1 above.

4.2. The case of a regular closed interval. This is when INCL(k-1)=.TRUE.
so that Dk�1 is one of the following.

1. Totally negative [�Mk�1;�mk�1], or totally positive [mk�1;Mk�1].
2. Totally nonpositive [�Mk�1; 0] or totally nonnegative [0;Mk�1].
3. Both positive and negative [�Lk�1;Mk�1].
To construct Dk we assume �rst that GZER(k)=.FALSE.
1. For GPOS(k) as de�ned in (4.2), let

POS = ((d
(+)
k�1 < 0) ^ :GPOS(k)) _ (GPOS(k) ^ (0 < d

(�)
k�1)):(4.4)

Then,

dk =

8<
:

ak � j bkck
dk�1

j; if POS;

ak + j bkck
dk�1

j; if :POS:

We can then use gk; Gk as de�ned in (4.3) to conclude that

Dk =

(
[a

(�)
k � Gk

mk�1

; a
(+)
k � gk

Mk�1

]; if POS;

[a
(�)
k + gk

Mk�1

; a
(+)
k + Gk

mk�1

]; if :POS:
(4.5)

2. Similarly, let

POS = ((d
(+)
k�1 = 0) ^ :GPOS(k)) _ (GPOS(k) ^ (0 = d

(�)
k�1)):(4.6)
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Then,

Dk =

(
[�1; a

(+)
k � gk

Mk�1

]; if POS;

[a
(�)
k + gk

Mk�1

;1]; if :POS;
(4.7)

follows from (4.5) above.
3. Finally, we deduce that

Dk�1 = [�Lk�1; 0] [ [0;Mk�1];

and therefore can apply the previous result. Then,

Dk =

(
[�1; a

(+)
k � gk

Lk�1
] [ [a

(�)
k + gk

Mk�1

;1] if :GPOS;

[a
(�)
k + gk

Lk�1
;1] [ [�1; a

(+)
k � gk

Mk�1

] if GPOS,

and

Dk =

(
(a

(+)
k � gk

Lk�1
; a

(�)
k + gk

Mk�1

)(c); if :GPOS;

(a
(+)
k � gk

Mk�1

; a
(�)
k + gk

Lk�1
)(c); if GPOS,

(4.8)

with INCL(k)=.FALSE.
For GZER(k)=.TRUE. we get similarly

Dk = [a
(�)
k �

Gk

mk�1
; a

(+)
k +

Gk

mk�1
];

for case (1) above, and otherwise the whole line.

4.3. The case of an interval with one end at in�nity. As in the previous
section, we now have that LNFY(k-1) or RNFY(k-1) are .TRUE. so that the interval
Dk�1 is either

1. Totally negative [�1;�mk�1], or totally positive [mk�1;1].
2. Totally nonpositive [�1; 0], or totally nonnegative [0;1].
3. Both positive and negative [�1;mk�1] or [�mk�1;1].
To build the interval Dk, we follow the same steps as before. Let,

POS = ( LNFY(k-1) ^ :GPOS(k) ) _ ( GPOS(k) ^ RNFY(k-1) ).

Then, for GZER(k)=.FALSE., we get
1. From the analysis in (4.5)

Dk =

(
[a

(�)
k � Gk

mk�1

; a
(+)
k ]; if POS;

[a
(�)
k ; a

(+)
k + Gk

mk�1

]; if :POS:
(4.9)

2. Similarly from that in (4.7)

Dk =

(
[�1; a

(+)
k ]; if POS;

[a
(�)
k ;1]; if :POS:
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3. Finally, (4.8) implies

Dk =

(
(a

(+)
k ; a

(�)
k + gk

mk�1

)(c); if POS,

(a
(+)
k � gk

mk�1

; a
(�)
k )(c); if :POS,

(4.10)

with INCL(k)=.FALSE.
Clearly, for GZER(k)=.TRUE. we get the same results as before.

4.4. The case of the complement interval. Here INCL(k-1)=.FALSE., so
the interval now spans the complement to the pivot's value. Similarly, to what we
did before, we now consider the corresponding open intervals that are

1. Totally negative (�Mk�1;�mk�1), or totally positive (mk�1;Mk�1).
2. Totally nonpositive (�Mk�1; 0) or totally nonnegative (0;Mk�1).
3. Both positive and negative (�Lk�1;Mk�1).

We then construct Dk, assuming �rst GZER(k)=.FALSE., as follows.
1. Here, since

Dk�1 =

�
[�1;�Mk�1] [ [�mk�1;1]; or
[�1;mk�1] [ [Mk�1;1];

we can use (4.9) and (4.10) with POS(k) as de�ned in (4.4). Hence,

Dk =

(
[a

(�)
k � Gk

Mk�1

; a
(+)
k ] [ (a

(+)
k � gk

mk�1

; a
(�)
k )(c) if POS;

[a
(�)
k ; a

(+)
k + Gk

Mk�1

] [ (a
(+)
k ; a

(�)
k + gk

mk�1

)(c) if :POS:

This implies more simply that

Dk =

(
(a

(+)
k � gk

mk�1

; a
(�)
k � Gk

Mk�1

)(c); if POS;

(a
(+)
k + Gk

Mk�1

; a
(�)
k + gk

mk�1

)(c): if :POS;
(4.11)

with INCL(k)=.FALSE.
2. Now we can use (4.11) to conclude that

Dk =

(
[a

(�)
k � Gk

Mk�1

;1] if POS;

[�1; a
(+)
k + Gk

Mk�1

] if :POS;

with POS as de�ned in (4.6).
3. Finally, we have

Dk�1 = [�1;�Lk�1] [ [Mk�1;1];

to which we can again apply (4.9). Hence,

Dk =

(
[a

(�)
k � Gk

Lk�1
; a

(+)
k ] [ [a

(�)
k ; a

(+)
k + Gk

Mk�1

] if :GPOS;

[a
(�)
k ; a

(+)
k + Gk

Lk�1
] [ [a

(�)
k � Gk

Mk�1

; a
(+)
k ] if GPOS,
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and therefore

Dk =

(
[a

(�)
k � Gk

Lk�1
; a

(+)
k + Gk

Mk�1

]; if :GPOS;

[a
(�)
k � Gk

Mk�1

; a
(+)
k + Gk

Lk�1
]; if GPOS:

Similarly, for GZER(k)=.TRUE. we then get, the whole line for the �rst two cases
above (1 and 2), and

Dk = [a
(�)
k �

Gk

mk�1
; a

(+)
k +

Gk

mk�1
];

with mk�1 = min(Lk�1;Mk�1) for the last.

5. Numerical Examples. In this section we present some numerical examples
for checking the radius of nonsingularity of tridiagonal matrices. The examples are
listed in Table 5.1, numbered from 0 to 8, and the description of each is self explana-
tory. We used double precision, i.e. �̂ = 2�53 � 10�16 to compute the radius of
nonsingularity as

� = sup
n
� j � = 2i�̂; T = T + �T; j�T j � �jT j; det(T ) 6= 0

o
:

The results, depicted in Table 5.2, show that the matrix 2 is highly nonsingular
whereas the matrices 4 and 6 become quickly singular as n grows.

b a c
0 rand rand rand
1 -1 2 -1
2 1 4 1
3 -0.5 2; a(1)=1 -2
4 -1; b(2),b(n)=1 1 2
5 1 1 1
6 2 3; a(1)=1 1
7 -1 2; a(n)=1 -1
8 1; b(2)=-1 1 2

Table 5.1

Test Examples.

Acknowledgement. The author would like to thank Bruno Codenotti and
Mauro Leoncini for their helpful advice.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM,
Philadelphia, USA, 1992.

[2] I. Bar-On, B. Codenotti, and M. Leoncini. Checking robust non-singularity of a general tridi-
agonal matrix in linear time. BIT, 36:206{220, 1996.



ELA

Ilan Bar-On 19

n = 10 n = 102 n = 103 n = 104

0 1.56E-02 3.91E-03 4.88E-04 1.53E-05
1 1.56E-02 1.22E-04 1.91E-06 1.49E-08
2 2.50E-01 2.50E-01 2.50E-01 2.50E-01
3 3.91E-03 6.10E-05 4.77E-07 3.73E-09
4 1.56E-02 4.44E-16 2.22E-16 2.22E-16
5 6.25E-02 3.91E-03 4.88E-04 6.10E-05
6 1.22E-04 2.22E-16 2.22E-16 2.22E-16
7 3.91E-03 6.10E-05 4.77E-07 3.73E-09
8 6.25E-02 3.91E-03 4.88E-04 1.22E-04

Table 5.2

Radius of Nonsingularity.

[3] I. Bar-On and M. Leoncini. Well de�ned tridiagonal systems. Manuscript, April 1996.
[4] I. Bar-On and M. Leoncini. Stable solution of tridiagonal systems. Numerical Algorithms,

18:361{388, 1998.
[5] I. Bar-On and M. Leoncini. Reliable solution of bidiagonal systems with applications to tridi-

agonal systems. BIT, 39:403{416, 1999.
[6] I. Bar-On and M. Leoncini. Reliable solution of tridiagonal systems of linear equations. Revised

and resubmitted for publication, 1999.
[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, 1989.
[8] Konrad Knopp. Elements of the Theory of Functions. Dover, New York, 1952.
[9] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood

Cli�s, N.J., 1974.
[10] S. Poljak and J. Rohn. Checking robust nonsingularity is NP-Hard. Mathematics of Control,

Signals, and Systems, 6:1{9, 1993.
[11] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, Great

Britain, 1965. Reprinted in Oxford Science Publications, 1988.


