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THE POSSIBLE NUMBERS OF ZEROS IN AN ORTHOGONAL

MATRIX�
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Abstract. It is shown that for n � 2 there is an n� n indecomposable orthogonal matrix with
exactly k entries equal to zero if and only if 0 � k � (n� 2)2.
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1. Introduction. By a pattern we simply mean the arrangement of zero and
nonzero entries in a matrix. An n � n pattern P is called orthogonal if there is a
(real) orthogonal matrix U whose pattern is P . By #(U) or #(P ) we mean the
number of zero entries in the matrix U or pattern P . An n � n pattern (or matrix)
P is called indecomposable if it has no r � q zero submatrix, r + q = n; equivalently,
there do not exist permutation matrices Q1 and Q2 such that

Q1PQ2 =

�
P11 O

P21 P22

�
;

in which P11 and P22 are square and nonempty (or, equivalently the bipartite graph
of P is connected). If P were an orthogonal pattern and there were such reducing
blocks, then an elementary calculation shows that P21 = O also. Since an n � n

orthogonal matrix U is invertible, #(U) � n(n � 1) (which is sharp because the
identity is orthogonal), but to be indecomposable, U must have more nonzero entries.
In [BBS], it was observed that the maximum number of zero entries in an n � n

indecomposable orthogonal matrix, n � 2, is (n � 2)2, in response to a query made
by [F].

What, then, about smaller numbers of zeros? It should be noted that if any
single entry is changed to a nonzero in any indecomposable orthogonal pattern P

that realizes (n � 2)2 zeros, n � 5, the resulting pattern is no longer orthogonal.
Nonetheless, (n�2)2�1 zeros can occur in an n�n indecomposable orthogonal matrix.
It is our purpose here to show that there is an n�n indecomposable orthogonal matrix
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U such that #(U) = k if and only if 0 � k � (n� 2)2, thereby greatly strengthening
earlier observations. The same is true for complex unitary matrices.

2. Numbers of Zeros from 0 to 1
2 (n� 2)(n� 1). Let P be an n�n indecom-

posable orthogonal matrix with columns p1; : : : ; pn, and let

A =

�
a b

c d

�

be a 2� 2 orthogonal matrix with no zero entries. Then it is easy to show that the
matrix

Di(P ) =

�
p1 � � � pi�1 api bpi pi+1 � � � pn
0 � � � 0 c d 0 � � � 0

�

is an (n+ 1)� (n+ 1) indecomposable orthogonal matrix. This idea comes from the
notions of matrix weaving and woven matrices which can be found in [C].

It should be clear at this point that the above notion may as well be applied to
orthogonal patterns. Thus we obtain the following lemma.

Lemma 2.1. If P is an n� n indecomposable orthogonal pattern, then Di(P ) is

an (n+ 1)� (n+ 1) indecomposable orthogonal pattern.

Since for each �, 0 < � < �
2 ,

B(�) =

�
cos(�) � sin(�)
sin(�) cos(�)

�

is an orthogonal matrix, it is clear that there are full (i.e. indecomposable) 2 � 2
orthogonal matrices and that there are ones arbitrarily close to the identity matrix
I2. It follows that for any B(�) with a su�ciently small � and for any vector v 2 R2

with no zero components, the row vector vTB(�) has no zero components.

We denote by Kn;i the n�n pattern whose only zero entries are the �rst i entries
of the last row.

Lemma 2.2. For n � 2, each Kn;i, i = 0; : : : ; n � 2, is an indecomposable

orthogonal pattern.

Proof. First we show that if Kn;i is an orthogonal pattern for n � 2 and some
integer i satisfying 1 � i � n � 2, then Kn;i�1 is also an orthogonal pattern. For
n � 2, suppose there exists an n � n orthogonal matrix A = (apq) and an integer i
satisfying 1 � i � n � 2 so that A has pattern Kn;i. De�ne Rj(�) to be the n � n

orthogonal matrix with entries equal to the identity matrix except that

Rj(�)[fj; j + 1g] =

�
cos(�) � sin(�)
sin(�) cos(�)

�

where the notation A[�] denotes the principal submatrix of A whose rows and columns
are indexed by the set �.
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Now form the product ARi(�). Note that A and ARi(�) are entrywise equal
except for columns i and i+ 1. These two columns of ARi(�) are2

6664
a1;i cos(�) + a1;i+1 sin(�)

...
an�1;i cos(�) + an�1;i+1 sin(�)

an;i+1 sin(�)

3
7775 and

2
6664

�a1;i sin(�) + a1;i+1 cos(�)
...

�an�1;i sin(�) + an�1;i+1 cos(�)
an;i+1 cos(�)

3
7775 ;

respectively. Since both A and Ri(�) are orthogonal, the product ARi(�) is orthog-
onal. Now we only need to choose some � su�ciently close to 0 so that we do not
create any extra zero entries in ARi(�). Thus ARi(�) is an orthogonal matrix with
pattern Kn;i�1.

Next we prove the lemma using the above result. We proceed by induction.
Assume that for n � 2 there exists a full n�n orthogonal pattern P . Note that there
is such a pattern for n = 2. By Lemma 2.1, Dn(P ) is also an orthogonal pattern.
Dn(P ) has pattern Kn+1;(n+1)�2. By the above result, Kn+1;i, i = 0; : : : ; (n+1)� 2,
is also an orthogonal pattern. And Kn+1;0 is an (n + 1) � (n + 1) full orthogonal
pattern, which completes the induction. Note that for i satisfying 0 � i � n� 2, Kn;i

is indecomposable as well.
We now know that iterative application of the operator Dj() to a Kn;i, 0 � i �

n � 2, will produce indecomposable orthogonal patterns. Certain of these will be of
particular interest.

For 2 � m � n and 0 � i � m� 2, we let

Hn;m;i = Dn�1(Dn�2(� � �Dm(Km;i) � � �)):

Then we obtain the following immediate corollary to Lemmas 2.1 and 2.2.
Corollary 2.3. Each Hn;m;i, 2 � m � n, 0 � i � m� 2 is an indecomposable

orthogonal pattern.

We note that since Hn;2;0 is the full n� n (upper) Hessenberg pattern, it follows
that this pattern with #(Hn;2;0) =

1
2 (n� 2)(n� 1) is orthogonal. This is the sparsest

pattern among the Hn;m;i and its indecomposable orthogonality will also be used in
the next section.

Corollary 2.4. For each k = 0; : : : ; 12 (n � 2)(n � 1), there is an n � n inde-

composable orthogonal matrix with exactly k zero entries.

Proof. We count the number of zeros in each Hn;m;i where 2 � m � n and
0 � i � m� 2. Km;i has i zeros, Dm(Km;i) has i+ ((m+1)� 2) zeros and so on. So
we have

#(Hn;m;i) = i+ ((m+ 1)� 2) + ((m+ 2)� 2) + � � �+ ((m+ (n�m))� 2)

= i+ (m� 1) +m+ � � �+ (n� 2)

= i+
1

2
(n� 2)(n� 1)�

1

2
(m� 2)(m� 1):

Now it is clear that we do indeed get all numbers of zeros between 0 and 1
2 (n�2)(n�1)

as we let m and i vary.
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3. Remaining Numbers of Zeros. From Corollary 2.3 we know that Hn;2;0,
the n � n full upper Hessenberg pattern, is an indecomposable orthogonal pattern.
Note that column i of Hn;2;0 has exactly n� 1� i zeros as long as 1 � i � n� 1. We
will need this fact in the proof of the next lemma.

Lemma 3.1. For n � 2, there exists an n� n indecomposable orthogonal matrix

with k zeros, k = 1
2 (n� 2)(n� 1); : : : ; (n� 2)2.

Proof. We proceed by induction. Suppose that there exists an n�n indecompos-
able orthogonal pattern Pk with exactly k zeros, k = 1

2 (n � 2)(n � 1); : : : ; (n � 2)2.
Also suppose that Pk has a column, namely column j(k), with exactly n� 2 zeros. It
is easily veri�ed that these conditions hold for n = 2.

First note that we may take P 1

2
(n�2)(n�1) to be Hn;2;0. Form Di(Hn;2;0), i =

1; : : : ; n� 1. Now we count zeros. Hn;2;0 has 1
2 (n � 2)(n � 1) zeros, we double a

column with n� 1� i zeros and we add n� 1 zeros along the bottom of the pattern.

#(Di(Hn;2;0)) = (n� 1� i) + (n� 1) +#(Hn;2;0)

= �i+ (n� 1) + (n� 1) +
1

2
(n� 2)(n� 1)

= �i+ (n� 1) +
1

2
(n� 1)(n)

= �i+ ((n+ 1)� 2) +
1

2
((n+ 1)� 2)((n+ 1)� 1):

Since i ranges from 1 to n�1, #(Di(Hn;2;0)) ranges from
1
2 ((n+ 1)� 2)((n+ 1)� 1)

to ((n+1)�3)+ 1
2 ((n+1)�2)((n+1)�1). Also note that the last row of Di(Hn;2;0)

has (n+ 1)� 2 zeros so that (Di(Hn;2;0))
T is an indecomposable orthogonal pattern

with a column that has exactly (n+ 1)� 2 zeros, i = 1; : : : ; n� 1.
Next, for each k = 1

2 (n � 2)(n � 1) + 1; : : : ; (n � 2)2, form Dj(k)(Pk): Again we
count zeros. Pk has k zeros, we double a column with n� 2 zeros and we add n� 1
zeros along the bottom of the pattern.

#(Dj(k)(Pk)) = k + (n� 1) + (n� 2):

Since k ranges from 1
2 (n � 2)(n � 1) + 1 up to (n � 2)2, we have that #(Dj(k)(Pk))

ranges from

1

2
(n� 2)(n� 1) + 1 + (n� 1) + (n� 2) =

1

2
(n� 1)(n) + (n� 1)

=
1

2
((n+ 1)� 2)((n+ 1)� 1) + ((n+ 1)� 2)

up to

(n� 2)2 + (n� 1) + (n� 2) = (n2 � 4n+ 4) + (n� 1) + (n� 2)

= n2 � 2n+ 1

= (n� 1)2

= ((n+ 1)� 2)2:
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Note that since Dj(k)(Pk) has a row with exactly (n+1)�2 zeros, (Dj(k)(Pk))
T is an

indecomposable orthogonal pattern that has a column with exactly (n+1)� 2 zeros.
Combining the two ranges of constructed (n+1)�(n+1) indecomposable orthog-

onal patterns gives us matrices with numbers of zeros from 1
2 ((n+1)�2)((n+1)�1)

up to ((n+1)� 2)2. And since each of the transposes of these matrices has a column
with exactly (n+ 1)� 2 zeros, the induction is complete.

Theorem 3.2. For n � 2, there is an n � n indecomposable orthogonal matrix

with exactly k zeros if and only if 0 � k � (n� 2)2.
Proof. The theorem follows immediately from Corollary 2.4, Lemma 3.1 and the

result of [BBS].
Remark 3.3. It follows from Theorem 3.2 that for n � 4, there exists an n� n

orthogonal matrix with exactly k zeros if and only if 0 � k � n(n � 1) � 4 or
k = n(n� 1)� 2 or k = n(n� 1).
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