THE POSSIBLE NUMBERS OF ZEROS IN AN ORTHOGONAL MATRIX*

G.-S. CHEON ${ }^{\dagger}$, C. R. JOHNSON \ddagger, S.-G. LEE ${ }^{\S}$, AND E. J. PRIBBLE ${ }^{〔}$

Abstract

It is shown that for $n \geq 2$ there is an $n \times n$ indecomposable orthogonal matrix with exactly k entries equal to zero if and only if $0 \leq k \leq(n-2)^{2}$.

Key words. orthogonal matrix, indecomposable matrix, zero-nonzero pattern

AMS subject classifications. 15A57, 05C50

1. Introduction. By a pattern we simply mean the arrangement of zero and nonzero entries in a matrix. An $n \times n$ pattern P is called orthogonal if there is a (real) orthogonal matrix U whose pattern is P. By $\#(U)$ or $\#(P)$ we mean the number of zero entries in the matrix U or pattern P. An $n \times n$ pattern (or matrix) P is called indecomposable if it has no $r \times q$ zero submatrix, $r+q=n$; equivalently, there do not exist permutation matrices Q_{1} and Q_{2} such that

$$
Q_{1} P Q_{2}=\left[\begin{array}{cc}
P_{11} & O \\
P_{21} & P_{22}
\end{array}\right]
$$

in which P_{11} and P_{22} are square and nonempty (or, equivalently the bipartite graph of P is connected). If P were an orthogonal pattern and there were such reducing blocks, then an elementary calculation shows that $P_{21}=O$ also. Since an $n \times n$ orthogonal matrix U is invertible, $\#(U) \leq n(n-1)$ (which is sharp because the identity is orthogonal), but to be indecomposable, U must have more nonzero entries. In [BBS], it was observed that the maximum number of zero entries in an $n \times n$ indecomposable orthogonal matrix, $n \geq 2$, is $(n-2)^{2}$, in response to a query made by [F].

What, then, about smaller numbers of zeros? It should be noted that if any single entry is changed to a nonzero in any indecomposable orthogonal pattern P that realizes $(n-2)^{2}$ zeros, $n \geq 5$, the resulting pattern is no longer orthogonal. Nonetheless, $(n-2)^{2}-1$ zeros can occur in an $n \times n$ indecomposable orthogonal matrix. It is our purpose here to show that there is an $n \times n$ indecomposable orthogonal matrix

[^0]U such that $\#(U)=k$ if and only if $0 \leq k \leq(n-2)^{2}$, thereby greatly strengthening earlier observations. The same is true for complex unitary matrices.
2. Numbers of Zeros from 0 to $\frac{1}{2}(n-2)(n-1)$. Let P be an $n \times n$ indecomposable orthogonal matrix with columns p_{1}, \ldots, p_{n}, and let
\[

A=\left[$$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right]
\]

be a 2×2 orthogonal matrix with no zero entries. Then it is easy to show that the matrix

$$
D_{i}(P)=\left[\begin{array}{cccccccc}
p_{1} & \cdots & p_{i-1} & a p_{i} & b p_{i} & p_{i+1} & \cdots & p_{n} \\
0 & \cdots & 0 & c & d & 0 & \cdots & 0
\end{array}\right]
$$

is an $(n+1) \times(n+1)$ indecomposable orthogonal matrix. This idea comes from the notions of matrix weaving and woven matrices which can be found in [C].

It should be clear at this point that the above notion may as well be applied to orthogonal patterns. Thus we obtain the following lemma.

Lemma 2.1. If P is an $n \times n$ indecomposable orthogonal pattern, then $D_{i}(P)$ is an $(n+1) \times(n+1)$ indecomposable orthogonal pattern.

Since for each $\theta, 0<\theta<\frac{\pi}{2}$,

$$
B(\theta)=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

is an orthogonal matrix, it is clear that there are full (i.e. indecomposable) 2×2 orthogonal matrices and that there are ones arbitrarily close to the identity matrix I_{2}. It follows that for any $B(\theta)$ with a sufficiently small θ and for any vector $v \in \mathbb{R}^{2}$ with no zero components, the row vector $v^{T} B(\theta)$ has no zero components.

We denote by $K_{n, i}$ the $n \times n$ pattern whose only zero entries are the first i entries of the last row.

LEMMA 2.2. For $n \geq 2$, each $K_{n, i}, i=0, \ldots, n-2$, is an indecomposable orthogonal pattern.

Proof. First we show that if $K_{n, i}$ is an orthogonal pattern for $n \geq 2$ and some integer i satisfying $1 \leq i \leq n-2$, then $K_{n, i-1}$ is also an orthogonal pattern. For $n \geq 2$, suppose there exists an $n \times n$ orthogonal matrix $A=\left(a_{p q}\right)$ and an integer i satisfying $1 \leq i \leq n-2$ so that A has pattern $K_{n, i}$. Define $R_{j}(\theta)$ to be the $n \times n$ orthogonal matrix with entries equal to the identity matrix except that

$$
R_{j}(\theta)[\{j, j+1\}]=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

where the notation $A[\alpha]$ denotes the principal submatrix of A whose rows and columns are indexed by the set α.

Now form the product $A R_{i}(\theta)$. Note that A and $A R_{i}(\theta)$ are entrywise equal except for columns i and $i+1$. These two columns of $A R_{i}(\theta)$ are

$$
\left[\begin{array}{c}
a_{1, i} \cos (\theta)+a_{1, i+1} \sin (\theta) \\
\vdots \\
a_{n-1, i} \cos (\theta)+a_{n-1, i+1} \sin (\theta) \\
a_{n, i+1} \sin (\theta)
\end{array}\right] \text { and }\left[\begin{array}{c}
-a_{1, i} \sin (\theta)+a_{1, i+1} \cos (\theta) \\
\vdots \\
-a_{n-1, i} \sin (\theta)+a_{n-1, i+1} \cos (\theta) \\
a_{n, i+1} \cos (\theta)
\end{array}\right],
$$

respectively. Since both A and $R_{i}(\theta)$ are orthogonal, the product $A R_{i}(\theta)$ is orthogonal. Now we only need to choose some θ sufficiently close to 0 so that we do not create any extra zero entries in $A R_{i}(\theta)$. Thus $A R_{i}(\theta)$ is an orthogonal matrix with pattern $K_{n, i-1}$.

Next we prove the lemma using the above result. We proceed by induction. Assume that for $n \geq 2$ there exists a full $n \times n$ orthogonal pattern P. Note that there is such a pattern for $n=2$. By Lemma 2.1, $D_{n}(P)$ is also an orthogonal pattern. $D_{n}(P)$ has pattern $K_{n+1,(n+1)-2}$. By the above result, $K_{n+1, i}, i=0, \ldots,(n+1)-2$, is also an orthogonal pattern. And $K_{n+1,0}$ is an $(n+1) \times(n+1)$ full orthogonal pattern, which completes the induction. Note that for i satisfying $0 \leq i \leq n-2, K_{n, i}$ is indecomposable as well. \square

We now know that iterative application of the operator $D_{j}()$ to a $K_{n, i}, 0 \leq i \leq$ $n-2$, will produce indecomposable orthogonal patterns. Certain of these will be of particular interest.

For $2 \leq m \leq n$ and $0 \leq i \leq m-2$, we let

$$
H_{n, m, i}=D_{n-1}\left(D_{n-2}\left(\cdots D_{m}\left(K_{m, i}\right) \cdots\right)\right)
$$

Then we obtain the following immediate corollary to Lemmas 2.1 and 2.2.
Corollary 2.3. Each $H_{n, m, i}, 2 \leq m \leq n, 0 \leq i \leq m-2$ is an indecomposable orthogonal pattern.

We note that since $H_{n, 2,0}$ is the full $n \times n$ (upper) Hessenberg pattern, it follows that this pattern with $\#\left(H_{n, 2,0}\right)=\frac{1}{2}(n-2)(n-1)$ is orthogonal. This is the sparsest pattern among the $H_{n, m, i}$ and its indecomposable orthogonality will also be used in the next section.

Corollary 2.4. For each $k=0, \ldots, \frac{1}{2}(n-2)(n-1)$, there is an $n \times n$ indecomposable orthogonal matrix with exactly k zero entries.

Proof. We count the number of zeros in each $H_{n, m, i}$ where $2 \leq m \leq n$ and $0 \leq i \leq m-2$. $K_{m, i}$ has i zeros, $D_{m}\left(K_{m, i}\right)$ has $i+((m+1)-2)$ zeros and so on. So we have

$$
\begin{aligned}
\#\left(H_{n, m, i}\right) & =i+((m+1)-2)+((m+2)-2)+\cdots+((m+(n-m))-2) \\
& =i+(m-1)+m+\cdots+(n-2) \\
& =i+\frac{1}{2}(n-2)(n-1)-\frac{1}{2}(m-2)(m-1) .
\end{aligned}
$$

Now it is clear that we do indeed get all numbers of zeros between 0 and $\frac{1}{2}(n-2)(n-1)$ as we let m and i vary.
3. Remaining Numbers of Zeros. From Corollary 2.3 we know that $H_{n, 2,0}$, the $n \times n$ full upper Hessenberg pattern, is an indecomposable orthogonal pattern. Note that column i of $H_{n, 2,0}$ has exactly $n-1-i$ zeros as long as $1 \leq i \leq n-1$. We will need this fact in the proof of the next lemma.

Lemma 3.1. For $n \geq 2$, there exists an $n \times n$ indecomposable orthogonal matrix with k zeros, $k=\frac{1}{2}(n-2)(n-1), \ldots,(n-2)^{2}$.

Proof. We proceed by induction. Suppose that there exists an $n \times n$ indecomposable orthogonal pattern P_{k} with exactly k zeros, $k=\frac{1}{2}(n-2)(n-1), \ldots,(n-2)^{2}$. Also suppose that P_{k} has a column, namely column $j(k)$, with exactly $n-2$ zeros. It is easily verified that these conditions hold for $n=2$.

First note that we may take $P_{\frac{1}{2}(n-2)(n-1)}$ to be $H_{n, 2,0}$. Form $D_{i}\left(H_{n, 2,0}\right), i=$ $1, \ldots, n-1$. Now we count zeros. $H_{n, 2,0}$ has $\frac{1}{2}(n-2)(n-1)$ zeros, we double a column with $n-1-i$ zeros and we add $n-1$ zeros along the bottom of the pattern.

$$
\begin{aligned}
\#\left(D_{i}\left(H_{n, 2,0}\right)\right) & =(n-1-i)+(n-1)+\#\left(H_{n, 2,0}\right) \\
& =-i+(n-1)+(n-1)+\frac{1}{2}(n-2)(n-1) \\
& =-i+(n-1)+\frac{1}{2}(n-1)(n) \\
& =-i+((n+1)-2)+\frac{1}{2}((n+1)-2)((n+1)-1)
\end{aligned}
$$

Since i ranges from 1 to $n-1, \#\left(D_{i}\left(H_{n, 2,0}\right)\right)$ ranges from $\frac{1}{2}((n+1)-2)((n+1)-1)$ to $((n+1)-3)+\frac{1}{2}((n+1)-2)((n+1)-1)$. Also note that the last row of $D_{i}\left(H_{n, 2,0}\right)$ has $(n+1)-2$ zeros so that $\left(D_{i}\left(H_{n, 2,0}\right)\right)^{T}$ is an indecomposable orthogonal pattern with a column that has exactly $(n+1)-2$ zeros, $i=1, \ldots, n-1$.

Next, for each $k=\frac{1}{2}(n-2)(n-1)+1, \ldots,(n-2)^{2}$, form $D_{j(k)}\left(P_{k}\right)$. Again we count zeros. P_{k} has k zeros, we double a column with $n-2$ zeros and we add $n-1$ zeros along the bottom of the pattern.

$$
\#\left(D_{j(k)}\left(P_{k}\right)\right)=k+(n-1)+(n-2)
$$

Since k ranges from $\frac{1}{2}(n-2)(n-1)+1$ up to $(n-2)^{2}$, we have that $\#\left(D_{j(k)}\left(P_{k}\right)\right)$ ranges from

$$
\begin{aligned}
\frac{1}{2}(n-2)(n-1)+1+(n-1)+(n-2) & =\frac{1}{2}(n-1)(n)+(n-1) \\
& =\frac{1}{2}((n+1)-2)((n+1)-1)+((n+1)-2)
\end{aligned}
$$

up to

$$
\begin{aligned}
(n-2)^{2}+(n-1)+(n-2)= & \left(n^{2}-4 n+4\right)+(n-1)+(n-2) \\
= & n^{2}-2 n+1 \\
= & (n-1)^{2} \\
= & ((n+1)-2)^{2} \\
& 22
\end{aligned}
$$

Note that since $D_{j(k)}\left(P_{k}\right)$ has a row with exactly $(n+1)-2$ zeros, $\left(D_{j(k)}\left(P_{k}\right)\right)^{T}$ is an indecomposable orthogonal pattern that has a column with exactly $(n+1)-2$ zeros.

Combining the two ranges of constructed $(n+1) \times(n+1)$ indecomposable orthogonal patterns gives us matrices with numbers of zeros from $\frac{1}{2}((n+1)-2)((n+1)-1)$ up to $((n+1)-2)^{2}$. And since each of the transposes of these matrices has a column with exactly $(n+1)-2$ zeros, the induction is complete.

THEOREM 3.2. For $n \geq 2$, there is an $n \times n$ indecomposable orthogonal matrix with exactly k zeros if and only if $0 \leq k \leq(n-2)^{2}$.

Proof. The theorem follows immediately from Corollary 2.4, Lemma 3.1 and the result of [BBS].

Remark 3.3. It follows from Theorem 3.2 that for $n \geq 4$, there exists an $n \times n$ orthogonal matrix with exactly k zeros if and only if $0 \leq k \leq n(n-1)-4$ or $k=n(n-1)-2$ or $k=n(n-1)$.

REFERENCES

[BBS] L. B. Beasely, R. A. Brualdi and B. L. Shader, Combinatorial Orthogonality, in Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland and V. Klee, eds., Springer-Verlag, New York, pp. 207-218, 1993.
[C] R. Craigen, The craft of weaving matrices, Congressus Numerantium, 92:9-28, 1993.
[F] M. Fiedler, A question raised about the sparsity of orthogonal matrices, Oral communication during the IMA Linear Algebra year, Minneapolis, Minn., 1991.

[^0]: *Received by the editors on 24 September 1998. Accepted for publication on 27 January 1999. Handling Editor: Daniel Hershkowitz.
 ${ }^{\dagger}$ Department of Mathematics, Daejin University, Pocheon 487-711, Korea (gscheon@road.daejin.ac.kr).
 \ddagger Department of Mathematics, College of William \& Mary, Williamsburg, VA 23187-8795, USA (crjohnso@math.wm.edu). The work of this author was supported by the National Science Foundation through NSF REU grant DMS-96-19577.
 §Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea, BSRI-98-1420 (sglee@yurim.skku.ac.kr).
 ${ }^{\top}$ Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA (pribble@gladstone.uoregon.edu). The work of this author was supported by the National Science Foundation through NSF REU grant DMS-96-19577.

