

THE POSSIBLE NUMBERS OF ZEROS IN AN ORTHOGONAL MATRIX*

G.-S. CHEON[†], C. R. JOHNSON[‡], S.-G. LEE[§], AND E. J. PRIBBLE[¶]

Abstract. It is shown that for $n \ge 2$ there is an $n \times n$ indecomposable orthogonal matrix with exactly k entries equal to zero if and only if $0 \le k \le (n-2)^2$.

Key words. orthogonal matrix, indecomposable matrix, zero-nonzero pattern

AMS subject classifications. 15A57, 05C50

1. Introduction. By a *pattern* we simply mean the arrangement of zero and nonzero entries in a matrix. An $n \times n$ pattern P is called *orthogonal* if there is a (real) orthogonal matrix U whose pattern is P. By #(U) or #(P) we mean the number of zero entries in the matrix U or pattern P. An $n \times n$ pattern (or matrix) P is called *indecomposable* if it has no $r \times q$ zero submatrix, r + q = n; equivalently, there do not exist permutation matrices Q_1 and Q_2 such that

$$Q_1 P Q_2 = \left[\begin{array}{cc} P_{11} & O \\ P_{21} & P_{22} \end{array} \right]$$

in which P_{11} and P_{22} are square and nonempty (or, equivalently the bipartite graph of P is connected). If P were an orthogonal pattern and there were such reducing blocks, then an elementary calculation shows that $P_{21} = O$ also. Since an $n \times n$ orthogonal matrix U is invertible, $\#(U) \leq n(n-1)$ (which is sharp because the identity is orthogonal), but to be indecomposable, U must have more nonzero entries. In [BBS], it was observed that the maximum number of zero entries in an $n \times n$ indecomposable orthogonal matrix, $n \geq 2$, is $(n-2)^2$, in response to a query made by [F].

What, then, about smaller numbers of zeros? It should be noted that if any single entry is changed to a nonzero in any indecomposable orthogonal pattern P that realizes $(n-2)^2$ zeros, $n \ge 5$, the resulting pattern is no longer orthogonal. Nonetheless, $(n-2)^2-1$ zeros can occur in an $n \times n$ indecomposable orthogonal matrix. It is our purpose here to show that there is an $n \times n$ indecomposable orthogonal matrix.

^{*}Received by the editors on 24 September 1998. Accepted for publication on 27 January 1999. Handling Editor: Daniel Hershkowitz.

[†]Department of Mathematics, Daejin University, Pocheon 487-711, Korea (gscheon@road.daejin.ac.kr).

[‡]Department of Mathematics, College of William & Mary, Williamsburg, VA 23187-8795, USA (crjohnso@math.wm.edu). The work of this author was supported by the National Science Foundation through NSF REU grant DMS-96-19577.

[§]Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea, BSRI-98-1420 (sglee@yurim.skku.ac.kr).

[¶]Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA (pribble@gladstone.uoregon.edu). The work of this author was supported by the National Science Foundation through NSF REU grant DMS-96-19577.

U such that #(U) = k if and only if $0 \le k \le (n-2)^2$, thereby greatly strengthening earlier observations. The same is true for complex unitary matrices.

2. Numbers of Zeros from 0 to $\frac{1}{2}(n-2)(n-1)$. Let P be an $n \times n$ indecomposable orthogonal matrix with columns p_1, \ldots, p_n , and let

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

be a 2×2 orthogonal matrix with no zero entries. Then it is easy to show that the matrix

$$D_i(P) = \begin{bmatrix} p_1 & \cdots & p_{i-1} & ap_i & bp_i & p_{i+1} & \cdots & p_n \\ 0 & \cdots & 0 & c & d & 0 & \cdots & 0 \end{bmatrix}$$

is an $(n + 1) \times (n + 1)$ indecomposable orthogonal matrix. This idea comes from the notions of matrix weaving and woven matrices which can be found in [C].

It should be clear at this point that the above notion may as well be applied to orthogonal patterns. Thus we obtain the following lemma.

LEMMA 2.1. If P is an $n \times n$ indecomposable orthogonal pattern, then $D_i(P)$ is an $(n+1) \times (n+1)$ indecomposable orthogonal pattern.

Since for each θ , $0 < \theta < \frac{\pi}{2}$,

$$B(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

is an orthogonal matrix, it is clear that there are full (i.e. indecomposable) 2×2 orthogonal matrices and that there are ones arbitrarily close to the identity matrix I_2 . It follows that for any $B(\theta)$ with a sufficiently small θ and for any vector $v \in \mathbb{R}^2$ with no zero components, the row vector $v^T B(\theta)$ has no zero components.

We denote by $K_{n,i}$ the $n \times n$ pattern whose only zero entries are the first *i* entries of the last row.

LEMMA 2.2. For $n \geq 2$, each $K_{n,i}$, $i = 0, \ldots, n-2$, is an indecomposable orthogonal pattern.

Proof. First we show that if $K_{n,i}$ is an orthogonal pattern for $n \ge 2$ and some integer *i* satisfying $1 \le i \le n-2$, then $K_{n,i-1}$ is also an orthogonal pattern. For $n \ge 2$, suppose there exists an $n \times n$ orthogonal matrix $A = (a_{pq})$ and an integer *i* satisfying $1 \le i \le n-2$ so that A has pattern $K_{n,i}$. Define $R_j(\theta)$ to be the $n \times n$ orthogonal matrix with entries equal to the identity matrix except that

$$R_j(\theta)[\{j, j+1\}] = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

where the notation $A[\alpha]$ denotes the principal submatrix of A whose rows and columns are indexed by the set α .

ELA

Now form the product $AR_i(\theta)$. Note that A and $AR_i(\theta)$ are entrywise equal except for columns i and i + 1. These two columns of $AR_i(\theta)$ are

$$\begin{bmatrix} a_{1,i}\cos(\theta) + a_{1,i+1}\sin(\theta) \\ \vdots \\ a_{n-1,i}\cos(\theta) + a_{n-1,i+1}\sin(\theta) \\ a_{n,i+1}\sin(\theta) \end{bmatrix}$$
 and
$$\begin{bmatrix} -a_{1,i}\sin(\theta) + a_{1,i+1}\cos(\theta) \\ \vdots \\ -a_{n-1,i}\sin(\theta) + a_{n-1,i+1}\cos(\theta) \\ a_{n,i+1}\cos(\theta) \end{bmatrix}$$

respectively. Since both A and $R_i(\theta)$ are orthogonal, the product $AR_i(\theta)$ is orthogonal. Now we only need to choose some θ sufficiently close to 0 so that we do not create any extra zero entries in $AR_i(\theta)$. Thus $AR_i(\theta)$ is an orthogonal matrix with pattern $K_{n,i-1}$.

Next we prove the lemma using the above result. We proceed by induction. Assume that for $n \ge 2$ there exists a full $n \times n$ orthogonal pattern P. Note that there is such a pattern for n = 2. By Lemma 2.1, $D_n(P)$ is also an orthogonal pattern. $D_n(P)$ has pattern $K_{n+1,(n+1)-2}$. By the above result, $K_{n+1,i}$, $i = 0, \ldots, (n+1)-2$, is also an orthogonal pattern. And $K_{n+1,0}$ is an $(n + 1) \times (n + 1)$ full orthogonal pattern, which completes the induction. Note that for i satisfying $0 \le i \le n-2$, $K_{n,i}$ is indecomposable as well. \Box

We now know that iterative application of the operator $D_j()$ to a $K_{n,i}$, $0 \le i \le n-2$, will produce indecomposable orthogonal patterns. Certain of these will be of particular interest.

For $2 \leq m \leq n$ and $0 \leq i \leq m - 2$, we let

$$H_{n,m,i} = D_{n-1}(D_{n-2}(\cdots D_m(K_{m,i})\cdots)).$$

Then we obtain the following immediate corollary to Lemmas 2.1 and 2.2.

COROLLARY 2.3. Each $H_{n,m,i}$, $2 \le m \le n$, $0 \le i \le m-2$ is an indecomposable orthogonal pattern.

We note that since $H_{n,2,0}$ is the full $n \times n$ (upper) Hessenberg pattern, it follows that this pattern with $\#(H_{n,2,0}) = \frac{1}{2}(n-2)(n-1)$ is orthogonal. This is the sparsest pattern among the $H_{n,m,i}$ and its indecomposable orthogonality will also be used in the next section.

COROLLARY 2.4. For each $k = 0, ..., \frac{1}{2}(n-2)(n-1)$, there is an $n \times n$ indecomposable orthogonal matrix with exactly k zero entries.

Proof. We count the number of zeros in each $H_{n,m,i}$ where $2 \leq m \leq n$ and $0 \leq i \leq m-2$. $K_{m,i}$ has i zeros, $D_m(K_{m,i})$ has i + ((m+1)-2) zeros and so on. So we have

$$#(H_{n,m,i}) = i + ((m+1)-2) + ((m+2)-2) + \dots + ((m+(n-m))-2)$$

= i + (m-1) + m + \dots + (n-2)
= i + \frac{1}{2}(n-2)(n-1) - \frac{1}{2}(m-2)(m-1).

Now it is clear that we do indeed get all numbers of zeros between 0 and $\frac{1}{2}(n-2)(n-1)$ as we let *m* and *i* vary. \Box

3. Remaining Numbers of Zeros. From Corollary 2.3 we know that $H_{n,2,0}$, the $n \times n$ full upper Hessenberg pattern, is an indecomposable orthogonal pattern. Note that column *i* of $H_{n,2,0}$ has exactly n-1-i zeros as long as $1 \le i \le n-1$. We will need this fact in the proof of the next lemma.

LEMMA 3.1. For $n \ge 2$, there exists an $n \times n$ indecomposable orthogonal matrix with k zeros, $k = \frac{1}{2}(n-2)(n-1), \ldots, (n-2)^2$.

Proof. We proceed by induction. Suppose that there exists an $n \times n$ indecomposable orthogonal pattern P_k with exactly k zeros, $k = \frac{1}{2}(n-2)(n-1), \ldots, (n-2)^2$. Also suppose that P_k has a column, namely column j(k), with exactly n-2 zeros. It is easily verified that these conditions hold for n = 2.

First note that we may take $P_{\frac{1}{2}(n-2)(n-1)}$ to be $H_{n,2,0}$. Form $D_i(H_{n,2,0})$, $i = 1, \ldots, n-1$. Now we count zeros. $H_{n,2,0}$ has $\frac{1}{2}(n-2)(n-1)$ zeros, we double a column with n-1-i zeros and we add n-1 zeros along the bottom of the pattern.

$$\begin{aligned} \#(D_i(H_{n,2,0})) &= (n-1-i) + (n-1) + \#(H_{n,2,0}) \\ &= -i + (n-1) + (n-1) + \frac{1}{2}(n-2)(n-1) \\ &= -i + (n-1) + \frac{1}{2}(n-1)(n) \\ &= -i + ((n+1)-2) + \frac{1}{2}((n+1)-2)((n+1)-1). \end{aligned}$$

Since *i* ranges from 1 to n-1, $\#(D_i(H_{n,2,0}))$ ranges from $\frac{1}{2}((n+1)-2)((n+1)-1)$ to $((n+1)-3) + \frac{1}{2}((n+1)-2)((n+1)-1)$. Also note that the last row of $D_i(H_{n,2,0})$ has (n+1)-2 zeros so that $(D_i(H_{n,2,0}))^T$ is an indecomposable orthogonal pattern with a column that has exactly (n+1)-2 zeros, $i = 1, \ldots, n-1$.

Next, for each $k = \frac{1}{2}(n-2)(n-1) + 1, \ldots, (n-2)^2$, form $D_{j(k)}(P_k)$. Again we count zeros. P_k has k zeros, we double a column with n-2 zeros and we add n-1 zeros along the bottom of the pattern.

$$#(D_{j(k)}(P_k)) = k + (n-1) + (n-2).$$

Since k ranges from $\frac{1}{2}(n-2)(n-1) + 1$ up to $(n-2)^2$, we have that $\#(D_{j(k)}(P_k))$ ranges from

$$\frac{1}{2}(n-2)(n-1) + 1 + (n-1) + (n-2) = \frac{1}{2}(n-1)(n) + (n-1)$$
$$= \frac{1}{2}((n+1)-2)((n+1)-1) + ((n+1)-2)$$

up to

$$(n-2)^{2} + (n-1) + (n-2) = (n^{2} - 4n + 4) + (n-1) + (n-2)$$

= $n^{2} - 2n + 1$
= $(n-1)^{2}$
= $((n+1) - 2)^{2}$.

Note that since $D_{j(k)}(P_k)$ has a row with exactly (n+1)-2 zeros, $(D_{j(k)}(P_k))^T$ is an indecomposable orthogonal pattern that has a column with exactly (n+1)-2 zeros.

Combining the two ranges of constructed $(n+1) \times (n+1)$ indecomposable orthogonal patterns gives us matrices with numbers of zeros from $\frac{1}{2}((n+1)-2)((n+1)-1)$ up to $((n+1)-2)^2$. And since each of the transposes of these matrices has a column with exactly (n+1)-2 zeros, the induction is complete. \Box

THEOREM 3.2. For $n \ge 2$, there is an $n \times n$ indecomposable orthogonal matrix with exactly k zeros if and only if $0 \le k \le (n-2)^2$.

Proof. The theorem follows immediately from Corollary 2.4, Lemma 3.1 and the result of [BBS]. \Box

REMARK 3.3. It follows from Theorem 3.2 that for $n \ge 4$, there exists an $n \times n$ orthogonal matrix with exactly k zeros if and only if $0 \le k \le n(n-1) - 4$ or k = n(n-1) - 2 or k = n(n-1).

REFERENCES

- [BBS] L. B. Beasely, R. A. Brualdi and B. L. Shader, Combinatorial Orthogonality, in Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland and V. Klee, eds., Springer-Verlag, New York, pp. 207-218, 1993.
- [C] R. Craigen, The craft of weaving matrices, Congressus Numerantium, 92:9-28, 1993.
- [F] M. Fiedler, A question raised about the sparsity of orthogonal matrices, Oral communication during the IMA Linear Algebra year, Minneapolis, Minn., 1991.