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P*-MATRICES AND LYAPUNOV SCALAR STABILITY*

DANIEL HERSHKOWITZ! AND NIRA MASHALf

Abstract. For partitions a of {1,...,n}, the classes of P*-matrices are defined, unifying the
classes of the real P-matrices and of the real positive definite matrices. Lyapunov scalar stability of
matrices is defined and characterized, and it is shown also that every real Lyapunov a-scalar stable
matrix is a P*-matrix. Implication relations between Lyapunov scalar stability and H-stability are
discussed.

Key words. P-matrices, P*-matrices, stability, scalar stability, positive definite matrices, H-
stability

AMS subject classifications. 15A15, 15A18, 15A57

1. Introduction. In this paper we relate two well known classes of matrices,
that is, the class of P-matrices consisting of the matrices with all principal minors
positive, and the class of positive definite matrices. While a matrix A is positive
definite if and only if for every nonzero vector v in C™ the product v* Av is positive,
real P-matrices are known to be characterized by the fact that they do not reverse the
sign of all components of a nonzero vector, that is, for every nonzero vector v in R"
there exists k such that v, (Av), > 0. Motivated by this, for partitions « of {1,...,n}
we define the class of P*-matrices of all real matrices A such that for every nonzero
vector v in R” there exists k such that v[ag]T (Av)[ag] > 0. Our definition thus unifies
the classes of the real P-matrices and of the real positive definite matrices.

In Section 2 we discuss some properties of P®-matrices. In Section 3 we define
Lyapunov scalar stability of matrices and we prove that every real Lyapunov a-scalar
stable matrix is a P®-matrix, generalizing the known result that every real Lyapunov
diagonally stable matrix is a P-matrix. We also prove two different theorems that
characterize Lyapunov a-scalar stability. One of these theorems involves P*-matrices.
Both theorems generalize known characterizations of Lyapunov diagonal stability. In
Section 4 we show that Lyapunov a-scalar stability implies H («)-stability, another
new specific type of matrix stability which generalizes the notion of H-stability.

2. P%-matrices .

DEFINITION 2.1. A real nxn matrix A is said to be positive definite [semidefinite]
if for every nonzero vector v in R” the product v” Av is positive [nonnegative].

Note that in many references positive (semi)definite matrices are assumed to be
Hermitian. This is not the case in this article.

DEFINITION 2.2. An n X n complex matrix A is said to be a P-matrix if all the
principal minors of A are positive.

The following is a well known characterization of real P-matrices, e.g. [7].
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PROPOSITION 2.3. A real n X n matriz A is a P-matriz if and only if for every
nonzero vector v in R™ there exists k € {1,...,n} such that vi(Av); > 0.

Motivated by Proposition 2.3 we now define a generalization of the real P-matrices
as well as of the real positive definite matrices.

NOTATION 2.4. Let v be a vector in R™ and let v be a subset of {1,...,n}. We
denote by v[y] the subvector of v indexed by +.

DEFINITION 2.5. Let a = {a1,...,a,} be a partition of {1,...,n}. Arealn xn
matrix A is said to be a P*-matriz if for every nonzero vector v in R" there exists
k€ {1,...,p} such that v[ag]T (Av)[ay] > 0.

Note that the real P-matrices are exactly the P{{}--{nt_matrices, while the
real positive definite matrices are exactly the P17} _matrices.

DEFINITION 2.6. Let o = {aq,...,ap} and § = {f1,...,5,} be partitions of
{1,...,n}. We say that 8 C a if every set 3; of § is contained in some set «; of a.

The following proposition follows immediately from Definitions 2.5 and 2.6.

PROPOSITION 2.7. Let a and 3 be partitions of {1,...,n} such that 8 C a. Then
every P®-matriz is a P°-matriz.

REMARK 2.8. It follows from Proposition 2.7 that for every partition a of
{1,...,n}, every P®-matrix is a P-matrix.

The converse of the statement in Remark 2.8 does not hold in general, as is
demonstrated by the following example.

EXAMPLE 2.9. The matrix

4 4
A:[g 10]

is a P-matrix. However, A is not a PH{L:2H matrix, since for the vector v = { _23 ]
we have vT Av = -2 < 0.

NoTtaTioN 2.10. Let A be an n x n matrix and let v be a subset of {1,...,n}.
We denote by A[y] the principal submatrix of A with rows and columns indexed by
.

NotaTION 2.11. Let A be a real n x n matrix and let o = {a1,...,ap} be a
partition of {1,...,n}. We denote by A% the matrix defined by

~ %7 iajeakakzla"'ap
Af =
aij , otherwise
THEOREM 2.12. Let a be a partition of {1,...,n}. A real n X n matriz A is a

P%-matriz if and only if the matriz A® is a P*-matriz.
Proof. Let S* be the skew-symmetric n X n matrix defined by
Wi jEag, k=1,...,p
S =
0, otherwise
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Note that A% = A + S, Since S® is a real skew-symmetric block diagonal matrix

with diagonal blocks indexed by a1, ..., ap, it follows that for every vector v in R"
we have v[ag](S%v)[ax] = 0, k = 1,...,p. Therefore, we have v[ag](Av)[ag] =
v[ag](A%)[ax], kK =1,...,p, and in view of Definition 2.5 our claim follows.l

It follows from Theorem 2.12 and Remark 2.8 that if A is a P®-matrix then A® is
a P-matrix. The converse is not true even in the class of Z-matrices, that is, matrices
with nonpositive off-diagonal elements, as is shown in the following example.
EXAMPLE 2.13. Let a = {{1,2},{3}}. The Z-matrix

2 -1 -1
A=] -1 1 0
0 -1 11

is a P-matrix. It also satisfies A = A°. Nevertheless, A is not a P®-matrix, since for

the vector v = { 1%3 ] we have
L1 ]
1.1

vl )T (Av)[ay] = —0.01;  v[as]? (Av)[as] = —0.099 .

3. Lyapunov scalar stability .

DEFINITION 3.1. A complex square matrix A is said to be (positive) stable if the
spectrum of A lies in the open right half-plane.

Lyapunov, called by Gantmacher “the founder of the modern theory of stability”,
studied the asymptotic stability of solutions of differential systems. In 1892 he proved
in his paper [13] a theorem which yields the following necessary and sufficient condition
for stability of a complex matrix. The matrix formulation of Lyapunov’s Theorem is
apparently due to Gantmacher [8].

THEOREM 3.2. A complex square matriz A is stable if and only if there exists
a positive definite Hermitian matriz H such that the matriz AH + HA* is positive
definite.

We remark that Theorem 3.2 was proved in [8] for a real matrix A, however, as
was also remarked in [8], the generalization to the complex case is immediate.

A special case of stable matrices which plays an important role in many disciplines,
such as predator-prey systems in ecology, e.g. [9], economics, e.g. [10], and dynamical
systems, e.g. [1], is the following.

DEFINITION 3.3. A real square matrix A is said to be Lyapunov diagonally stable
if there exists a positive diagonal matrix D such that AD + DAT is positive definite.

In this section we generalize Lyapunov diagonal stability. For this purpose we
define

DEFINITION 3.4. i) A scalar multiple of the identity matrix is said to be a scalar
matriz.

ii) Let a = {aa,...,ap} be a partition of {1,...,n}. A diagonal n x n matrix D is
said to be an a-scalar matrix if D[ay] is a scalar matrix for every k € {1,...,p}.
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NoOTATION 3.5. For a positive definite Hermitian matrix H we say that H > 0.

DEFINITION 3.6. Let « be a partition of {1,...,n}. A complex n x n matrix A is
said to be Lyapunov a-scalar stable if there exists a positive definite a-scalar matrix
D such that AD + DA* > 0.

REMARK 3.7. Note that the Lyapunov {{1},...,{n}}-scalar stable matrices are
the (complex) Lyapunov diagonally stable matrices, while the Lyapunov {1,...,n}-
scalar stable matrices are the (not necessarily Hermitian) positive definite matrices.

It is well known that real Lyapunov diagonally stable matrices are P-matrices,
e.g. [6]. The generalization of this result to the a-scalar case is the following.

THEOREM 3.8. Let a be a partition of {1,...,n}. Then every real Lyapunov
a-scalar stable matrixz is a P“-matriz.

Proof. Let o = {aq,...,ap} be a partition of {1,...,n} and let A be a Lyapunov
a-scalar stable matrix. By Definition 3.6 there exists a positive definite a-scalar
matrix D such that AD + DAT > 0. Let E be the positive definite a-scalar matrix
defined by e;; = /di;, i = 1,...,n. Since AD + DAT > 0 it follows that E~'AE +
EAE~! = E-Y(AD+DAT)E~! > 0, implying that E~! AFE is positive definite. Now,
let v be a nonzero vector in R". We have vT E~1 AEv > 0, implying that there exists
ke {1,...,p} such that

(1) vjar]T(E~ AEv)[ay] > 0.

Since E is a diagonal matrix and since E[ag] is a scalar matrix, the inequality (1) is
v[ag]T (Av)[ar] > 0, and hence A is a PY-matrix. [

The converse of Theorem 3.8 does not hold when oo = {{1},...,{n}}, that is, P-
matrices are not necessarily Lyapunov diagonally stable. They are not even necessarily
stable, e.g. [11]. The converse of Theorem 3.8 does hold when a = {1,...,n} since
in this case Lyapunov a-scalar stability and being a P®-matrix are both equivalent
to being a positive definite matrix.

The Lyapunov diagonally stable matrices were characterized in [3], where it is
proven that

THEOREM 3.9. A complex n X n matriz A is Lyapunov diagonally stable if and
only if for every complex nonzero positive semidefinite Hermitian n X n matriz H the
matriz HA has a diagonal element with positive real part.

The following generalization of Theorem 3.9 provides a characterization for Lya-
punov a-scalar stable matrices.

THEOREM 3.10. Let a = {aq,...,ap} be a partition of {1,...,n}, and let A be
a complex n X n matriz. The following are equivalent:

(i) The matriz A is Lyapunov a-scalar stable.

(ii) There exists a positive semidefinite a-scalar matriz D such that AD + DA* > 0.
(iii) For every nonzero positive semidefinite Hermitian n X n matriz H there exists
ke {1,...,p} such that the trace of the matriz (HA)[ay] has a positive real part.

Proof. Let V be the real vector space of all a-scalar real matrices, let C' be the
(convex) subset of V' consisting of all nonnegative a-scalar matrices, let W be the real
vector space of all complex Hermitian n x n matrices, let D be the (convex) subset
of W consisting of all positive semidefinite complex Hermitian n X n matrices, and
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let T : V — W be the Lyapunov map La, defined by La(H) = AH + HA*. We
assume that V and W are inner product vector spaces with the usual inner product
(A, B) = trace(AB) (note that A and B are both Hermitian). It is easy to verify that
the dual set C* of C, defined by

C*={HeV: (H,D)>0,VD e C},

is the set {H € V' : trace(H[ag]) >0, k=1,...,p}. Also, it is easy to verify that
T* = Ly-. Therefore, our statements (i),(ii) and (iii) are respectively statements (o),
(i) and (iii) in Theorem (2.7) in [4] and the result follows.O

If in the proof of Theorem 3.10 we choose W to be the real vector space of all
real symmetric n x n matrices and redefine D and T accordingly then we obtain
the following characterization of real Lyapunov a-scalar stable matrices.

THEOREM 3.11. Let a = {aq,...,ap} be a partition of {1,...,n}, and let A be
a real n X n matriz. The following are equivalent:

(i) The matriz A is Lyapunov a-scalar stable.

(ii) There exists a positive semidefinite a-scalar matriz D such that AD + DAT > 0.
(iii) For every nonzero positive semidefinite real symmetric n x n matriz H there
exists k € {1,...,p} such that the trace of the matriz (H A)[ay,] is positive.

REMARK 3.12. Note that in the case that « = {1,...,n}, Theorem 3.10 asserts
that a matrix A is positive definite if and only if for every nonzero positive semidefinite
Hermitian matrix H the trace of the matrix HA has a positive real part. This is
essentially the well known fact that the cone of positive semidefinite matrices is self
dual in the real vector space of Hermitian matrices.

The following example illustrates the assertions of Theorems 3.8 and 3.10.

ExaMPLE 3.13. Let

2 0
A=1 2 0
3 1

(o W N =

Since the matrix A + AT is not positive definite, the matrix A is not Lyapunov
{{1,2,3}}-scalar stable. The matrix A is, however, Lyapunov {{1,2},{3}}-scalar
stable since for the diagonal matrix D = diag(1, 1, 2) the matrix AD+DAT is positive
definite.

U1
To see that A is a PUL2H33 matrix let v = | vy | be a nonzero vector in R”.
U3
We have
(2) v[{1,2}]7 (Av)[{1,2}] = 2(v1 + v2)* — V103,
and
(3) v[3]7 (Av)[3] = 3v1v3 + 3vavz + 3v2.

Note that the right hand side of (2) is positive unless v1 = v2 = 0, in which case, since
v is nonzero, we must have vz # 0 and the right hand side of (3) becomes 3v2 > 0.
By Definition 2.5, A is a PHL2H {3 matrix.
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To demonstrate the implication (i)=-(ii) in Theorem 3.10 let

hir hiz his
H =1 hiz2 ha hy
hiz haz  hss

be a nonzero positive semidefinite Hermitian matrix. The diagonal elements of H A
are (HA)H = 2h11 + 2h12 + 3hy3, (HA)22 = his + 2hss + 3ho3 and (HA)33 = 3hs3.
If h3z > 0 then we are done. Otherwise, since H is positive semidefinite, it follows
that hs3 = 0 and hence also h13 = hog3 = 0. We thus have

(4) trace((HA)[{l, 2}]) = 2h11 + 2h12 + 77,12 + 2h22.

Since H is positive semidefinite we have hiihas > |hi2|?, implying that Re(his)
|hi2| < Vhithae < Btk and it follows from (4) that trace((HA)[{1,2}]) >
Furthermore, it is easy to verify that trace((HA)[{1,2}]) = 0 only if hyy = hi»
hos = 0, which is not the case since H is nonzero.

NoTATION 3.14. Let m and n be positive integers and let A and B be m x n
matrices. We denote by A o B the Hadamard product of A and B, that is, the m x n
matrix whose elements are the products of the corresponding elements of A and B.

We now prove another characterization of Lyapunov a-scalar stability in terms
of P*-matrices, generalizing Theorem 1.2 in [12]. Our proof is similar to the proof
given in [12].

THEOREM 3.15. Let a be a partition of {1,...,n}, and let A be a real n x n
matriz. The following are equivalent:

(i) The matriz A is Lyapunov a-scalar stable.

(ii) The matriz A o H is a P*-matriz for every positive semidefinite real symmetric
matrix H with nonzero diagonal elements.

(iii) The matriz A o H is a P*-matriz for every positive semidefinite real symmetric
matriz H with diagonal elements all equal to 1.

Proof. (i)=>(ii). The proof of this implication is essentially the same as the proof
of the corresponding implication Theorem 1.2 of [12].

(if)==(iii) is clear.

(iii)=>(i). Let H be a nonzero positive semidefinite real symmetric n x n matrix
and let D the diagonal matrix defined by dj; = vhii, @ = 1,...,n. Since H is a
positive semidefinite matrix, if for some ¢ we have h;; = 0 then also h;; = hj; = 0 for

<IN

all j. Therefore, we can define a nonzero symmetric n X n matrix H by
\/% i #j and hij #0
hij =< o, i#j and hij =0
1, =7

The matrix H is positive semidefinite since H= D{HD{ + D5, where Dy and D, are
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the nonnegative diagonal matrices defined by

(D1)ii = ' , (D2)iy =
0, hy=0 1, hy=0

Note that H = DHD. Let e be the vector in R” all of whose entries are 1 and
let v = De. Also, let @ = {ai1,...,ap}. By (iii), The matrix Ao H is a P*-
matrix. Therefore, in view of Definition 2.5 there exists k € {1,...,p} such that
v[ag]T ((A o H)v)[ag] > 0. Since

vlar]" (A o H)v)ew] = (eD)[en]" (4 o H)(De))[ax] = efar]" (A o (DHD))e)ax] =

= elon]" (Ao H)e) ] = D Y aijhyi = trace((HA)[ax)),

i€ay j=1
(i) follows by Theorem 3.11.0

4. H-stability . In this section we study another specific type of matrix stability,
which is defined in [14].

DEFINITION 4.1. A complex n X n matrix A is said to be H -stable if the product
AH is stable for every positive definite Hermitian n X n matrix H.

DEFINITION 4.2. Let a = {au,...,a,} be a partition of {1,...,n}. A block

diagonal matrix with diagonal blocks indexed by a1, ..., q, is said to be a-diagonal.
We now define a generalization of H-stability.
DEFINITION 4.3. Let a = {ay,...,ap} be a partition of {1,...,n}. A complex

n X n matrix A is said to be H(«)-stable if the product AH is stable for every a-
diagonal positive definite Hermitian matrix H.

Note that the real H({{1},...,{n}})-stable matrices are exactly the D-stable
matrices, e.g. [10], while the real H({{1,...,n}})-stable matrices are the H-stable
matrices.

It is well known that Lyapunov diagonal stability implies D-stability, e.g. [6]. In
our terminology, Lyapunov {{1},...,{n}}-scalar stability implies H({{1},...,{n}})-

stability. A similar implication for the case of &« = {{1,...,n}} follows from Corollary
3 in [14]. We now show that the same implication holds for a general partition a.
THEOREM 4.4. Let a be a partition of {1,...,n}. Then every real Lyapunov

a-scalar stable matriz is an H(a)-stable matriz.

Proof. Let A be real Lyapunov a-scalar stable matrix and let D be a positive
definite a-scalar matrix such that AD + DA* > 0. Let H be an a-diagonal positive
definite Hermitian matrix. Note that H~' is also an a-diagonal positive definite
Hermitian matrix, and since D is a positive definite a-scalar matrix it follows that
H7'D is an (a-diagonal) positive definite Hermitian matrix. Also, H D = DH !,
It now follows that

AH(H 'D)+ (H 'D)(AH)* = AD + DA* > 0,
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and by Theorem 3.2 the matrix AH is stable.l

Theorem 4.4 provides a sufficient condition for H («a)-stability of real matrices.
We do not know of any necessary and sufficient condition for H («)-stability. In
particular, it would be interesting to generalize the following characterization of H-
stability, proven in [5].

THEOREM 4.5. A complex matrix A is H-stable if and only if the following
conditions hold:
(i) The matriz A+ A* is positive semidefinite.
(ii) For every vector x we have

z*(A+A")z =0 = 2" (A—-A%z =0

(iii) A is nonsingular.

An interesting result that follows from Theorem 4.5 is the following.

THEOREM 4.6. Let A be a complex H-stable n x n matrixz. Then A + K is
H -stable for every positive definite matriz K.

Proof. Let A be a complex H-stable matrix and let K be a positive definite
matrix. By Theorem 4.5.i we have

(5) (A+ K)+ (A+ K)* = (A+ A") + 2K > 0.

Now, let x be a vector satisfying *((A+ K) + (4 + K)*)x = 0. By (5) it follows that
x =0 and so clearly z*((A + K) — (A 4+ K)*)z = 0. Therefore, we have

(6) T(A+K)+(A+K))2=0 = 2°(A+K)— (A+K)")z =0.
Finally, we have
(7) A+ K= (AK"'+ K.

Since A is H-stable, the matrix AK ! is stable. Therefore, the matrix AK ! + I is
stable, and it follows from (7) that

(8) A+ K is nonsingular.

By Theorem 4.5, it now follows from (5), (6) and (8) that A + K is H-stable.l

We conclude by remarking that Theorem 4.6 does not hold in general when H-
stability is replaced by H (a)-stability and when K is a-diagonal. Moreover, it is
shown in [2] that in the case a = {{1},...,{n}}, if A is H(«a)-stable then A + K is
not even necessarily stable for every positive definite matrix a-diagonal matrix K.
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