
The Electronic Journal of Linear Algebra.
A publication of the International Linear Algebra Society.
Volume 4, pp. 32-38, August 1998.
ISSN 1081-3810. http://math.technion.ac.il/iic/ela

ELA

Z-PENCILS�

JUDITH J. MCDONALDy , D. DALE OLESKYz , HANS SCHNEIDERx ,

MICHAEL J. TSATSOMEROS{, AND P. VAN DEN DRIESSCHEk

Abstract. The matrix pencil (A;B) = ftB � A j t 2 C g is considered under the assumptions
that A is entrywise nonnegative and B � A is a nonsingular M-matrix. As t varies in [0;1], the
Z-matrices tB � A are partitioned into the sets Ls introduced by Fiedler and Markham. As no
combinatorial structure of B is assumed here, this partition generalizes some of their work where
B = I. Based on the union of the directed graphs of A and B, the combinatorial structure of
nonnegative eigenvectors associated with the largest eigenvalue of (A;B) in [0;1) is considered.
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1. Introduction. The generalized eigenvalue problem Ax = �Bx for A =
[aij]; B = [bij] 2 R

n;n, with inequality conditions motivated by certain economics
models, was studied by Bapat et al. [1]. In keeping with this work, we consider the
matrix pencil (A;B) = ftB � A j t 2 C g under the conditions

A is entrywise nonnegative, denoted by A � 0(1)

bij � aij for all i 6= j(2)

there exists a positive vector u such that (B �A)u is positive:(3)

Note that in [1] A is also assumed to be irreducible, but that is not imposed here.
When Ax = �Bx for some nonzero x, the scalar � is an eigenvalue and x is the
corresponding eigenvector of (A;B). The eigenspace of (A;B) associated with an
eigenvalue � is the nullspace of �B �A.

A matrix X 2 Rn;n is a Z-matrix if X = qI � P , where P � 0 and q 2 R. If, in
addition, q � �(P ), where �(P ) is the spectral radius of P , then X is an M-matrix,
and is singular if and only if q = �(P ). It follows from (1) and (2) that when t 2 [0; 1],
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tB �A is a Z-matrix. Henceforth the term Z-pencil (A;B) refers to the circumstance
that tB �A is a Z-matrix for all t 2 [0; 1].

Let hni = f1; 2; : : : ; ng. If J � hni, then XJ denotes the principal submatrix of
X in rows and columns of J . As in [3], given a nonnegative P 2 Rn;n and an s 2 hni,
de�ne

�s(P ) = max
jJj=s

f�(PJ )g

and set �n+1(P ) =1. Let Ls denote the set of Z-matrices in Rn;n of the form qI�P ,
where �s(P ) � q < �s+1(P ) for s 2 hni, and �1 < q < �1(P ) when s = 0. This gives
a partition of all Z-matrices of order n. Note that qI � P 2 L0 if and only if q < pii
for some i. Also, �n(P ) = �(P ), and Ln is the set of all (singular and nonsingular)
M-matrices.

We consider the Z-pencil (A;B) subject to conditions (1){(3) and partition its
matrices into the sets Ls. Viewed as a partition of the Z-matrices tB � A for t 2
[0; 1], our result provides a generalization of some of the work in [3] (where B = I).
Indeed, since no combinatorial structure of B is assumed, our Z-pencil partition is a
consequence of a more complicated connection between the Perron-Frobenius theory
for A and the spectra of tB � A and its submatrices.

Conditions (2) and (3) imply that B �A is a nonsingular M-matrix and thus its
inverse is entrywise nonnegative; see [2, N38, p. 137]. This, together with (1), gives
(B � A)�1A � 0. Perron-Frobenius theory is used in [1] to identify an eigenvalue
�(A;B) of the pencil (A;B), de�ned as

�(A;B) =
�
�
(B � A)�1A

�
1 + � ((B � A)�1A)

:

Our partition involves �(A;B) and the eigenvalues of the subpencils (AJ ; BJ ). Our
Z-pencil partition result, Theorem 2.4, is followed by examples where as t varies in
[0; 1], tB � A ranges through some or all of the sets Ls for 0 � s � n. In Section 3
we turn to a consideration of the combinatorial structure of nonnegative eigenvectors
associated with �(A;B). This involves some digraph terminology, which we introduce
at the beginning of that section.

In [3], [5] and [7], interesting results on the spectra of matrices in Ls, and a
classi�cation in terms of the inverse of a Z-matrix, are established. These results are
of course applicable to the matrices of a Z-pencil; however, as they do not directly
depend on the form tB � A of the Z-matrix, we do not consider them here.

2. Partition of Z-pencils. We begin with two observations and a lemma used
to prove our result on the Z-pencil partition.

Observation 2.1. Let (A;B) be a pencil with B � A nonsingular. Given a real
� 6= �1, let � = �

1+� . Then the following hold.

(i) � 6= 1 is an eigenvalue of (A;B) if and only if � 6= �1 is an eigenvalue of
(B �A)�1A.
(ii) � is a strictly increasing function of � 6= �1.
(iii) � 2 [0; 1) if and only if � � 0.
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Proof. If � is an eigenvalue of (B � A)�1A, then there exists nonzero x 2 R
n

such that (B � A)�1Ax = �x. It follows that Ax = �(B � A)x and if � 6= �1, then
Ax = �

1+�Bx = �Bx. Notice that � cannot be 1 for any choice of �. The reverse

argument shows that the converse is also true. The last statement of (i) is obvious.
Statements (ii) and (iii) follow easily from the de�nition of �.

Note that � = 1 is an eigenvalue of (A;B) if and only if B � A is singular.
Observation 2.2. Let (A;B) be a pencil satisfying (2), (3). Then the following

hold.
(i) For any nonempty J � hni, BJ �AJ is a nonsingular M-matrix.
(ii) If in addition (1) holds, then the largest real eigenvalue of (A;B) in [0; 1) is
�(A;B).

Proof. (i) This follows since (2) and (3) imply that B � A is a nonsingular M-
matrix (see [2, I27, p. 136]) and since every principal submatrix of a nonsingular
M-matrix is also a nonsingular M-matrix; see [2, p. 138].

(ii) This follows from Observation 2.1, since � = �((B � A)�1A) is the maximal
positive eigenvalue of (B � A)�1A.

Lemma 2.3. Let (A;B) be a pencil satisfying (1)-(3). Let � = �
�
(B �A)�1A

�
and �(A;B) = �

1+� . Then the following hold.

(i) For all t 2 (�(A;B); 1], tB � A is a nonsingular M-matrix.
(ii) The matrix �(A;B)B � A is a singular M-matrix.
(iii) For all t 2 (0; �(A;B)), tB � A is not an M-matrix.
(iv) For t = 0, either tB �A is a singular M-matrix or is not an M-matrix.

Proof. Recall that (1) and (2) imply that tB�A is a Z-matrix for all 0 < t � 1. As
noted in Observation 2.2 (i), B�A is a nonsingular M-matrix and thus its eigenvalues
have positive real parts [2, G20, p. 135], and the eigenvalue with minimal real part
is real [2, Exercise 5.4, p. 159]. Since the eigenvalues are continuous functions of the
entries of a matrix, as t decreases from t = 1, tB � A is a nonsingular M-matrix for
all t until a value of t is encountered for which tB �A is singular. Results (i) and (ii)
now follow by Observation 2.2 (ii).

To prove (iii), consider t 2 (0; �(A;B)). Since (B � A)�1A � 0, there exists
an eigenvector x � 0 such that (B � A)�1Ax = �x. Then Ax = �(A;B)Bx and
(tB � A)x = (t� �(A;B))Bx � 0 since Bx = 1

�(A;B)Ax � 0. By [2, A5, p. 134],

tB � A is not a nonsingular M-matrix. To complete the proof (by contradiction),
suppose �B � A is a singular M-matrix for some � 2 (0; �(A;B)). Since there are
�nitely many values of t for which tB �A is singular, we can choose � 2 (�; �(A;B))
such that �B � A is nonsingular. Let � = ���

�
. Then (1 + �)(�B � A) is a singular

M-matrix and

(1 + �)(�B �A) + 
I = �B � A� �A+ 
I � �B � A+ 
I

since A � 0 by (1). By [2, C9, p. 150], �B �A � �A+ 
I is a nonsingular M-matrix
for all 
 > 0; and hence �B � A + 
I is a nonsingular M-matrix for all 
 > 0 by [4,
2.5.4, p. 117]. This implies that �B � A is also a (nonsingular) M-matrix ([2, C9,
p. 150]), contradicting the above. Thus we can also conclude that �B � A cannot
be a singular M-matrix for any choice of � 2 (0; �(A;B)), establishing (iii). For (iv),
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�A is a singular M-matrix if and only if it is, up to a permutation similarity, strictly
triangular. Otherwise, �A is not an M-matrix.

Theorem 2.4. Let (A;B) be a pencil satisfying (1)-(3). For s = 1; 2; : : : ; n let

�s = max
jJ j=s

f�
�
(BJ �AJ )

�1AJ

�
g; �s =

�s
1 + �s

;

and �0 = 0. Then for s = 0; 1; : : :; n� 1 and �s � t < �s+1, the matrix tB �A 2 Ls.
For s = n and �n � t � 1, the matrix tB � A 2 Ln.

Proof. Fiedler and Markham [3, Theorem 1.3] show that for 1 � s � n � 1,
X 2 Ls if and only if all principal submatrices of X of order s are M-matrices, and
there exists a principal submatrix of order s + 1 that is not an M-matrix. Consider
any nonempty J � hni and t 2 [0; 1]. Conditions (1) and (2) imply that tBJ � AJ

is a Z-matrix. By Observation 2.2 (i), BJ � AJ is a nonsingular M-matrix. Let
�J = �

�
(BJ �AJ )

�1AJ

�
. Then by Observation 2.2 (ii), �J = �J

1+�J
is the largest

eigenvalue in [0; 1) of the pencil (AJ ; BJ ). Combining this with Observation 2.2 (i)
and Lemma 2.3, the matrix tBJ �AJ is an M-matrix for all �J � t � 1; and tBJ �AJ

is not an M-matrix for all 0 < t < �J . If 1 � s � n � 1 and jJ j = s, then tBJ � AJ

is an M-matrix for all �s � t � 1. Suppose �s < �s+1. Then there exists K � hni
such that jKj = s + 1 and tBK � AK is not an M-matrix for 0 < t < �s+1. Thus
by [3, Theorem 1.3] tB � A 2 Ls for all �s � t < �s+1. When s = n, since B � A
is a nonsingular M-matrix, tB � A 2 Ln for all t such that �(A;B) = �n � t � 1 by
Lemma 2.3 (i). For the case s = 0, if 0 < t < �1, then tB �A has a negative diagonal
entry and thus tB � A 2 L0. For t = 0, tB � A = �A. If aii 6= 0 for some i 2 hni;
then �A 2 L0; if aii = 0 for all i 2 hni, then �1 = �0 = 0, namely, �A 2 Ls for some
s � 1.

We continue with illustrative examples.
Example 2.5. Consider

A =

�
1 2
1 0

�
and B =

�
2 2
1 1

�
;

for which �2 = 2=3 and �1 = 1=2. It follows that

tB � A 2

8>>>><
>>>>:

L0 if 0 � t < 1=2

L1 if 1=2 � t < 2=3

L2 if 2=3 � t � 1.

That is, as t increases from 0 to 1, tB �A belongs to all the possible Z-matrix classes
Ls.

Example 2.6. Consider the matrices in [1, Example 5.3], that is,

A =

2
64
1 0 0 0
1 1 0 0
0 0 1 0
0 1 0 1

3
75 and B =

2
64

4 0 �2 0
0 3 0 �1
�2 0 4 0
0 �2 0 4

3
75 :
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Referring to Theorem 2.4, �4 = �(A;B) = 4+
p
6

10 = �3 = �2 and �1 = 1=3. It follows
that

tB � A 2

8>>>><
>>>>:

L0 if 0 � t < 1=3

L1 if 1=3 � t < 4+
p
6

10

L4 if 4+
p
6

10
� t � 1.

Notice that for t 2 [0; 1], tB �A ranges through only L0, L1 and L4.
Example 2.7. Now let

A =

�
0 1
0 0

�
and B =

�
1 1
0 1

�
:

In contrast to the above two examples, tB � A 2 L2 for all t 2 [0; 1]. Note that, in
general, tB � A 2 Ln for all t 2 [0; 1] if and only if �(A;B) = 0.

3. Combinatorial Structure of the Eigenspace Associated with �(A;B).
Let � = (V;E) be a digraph, where V is a �nite vertex set and E � V � V is the
edge set. If �0 = (V;E0), then � [ �0 = (V;E [ E0). Also write �0 � � when
E0 � E. For j 6= k, a path of length m � 1 from j to k in � is a sequence of vertices
j = r1; r2; : : : ; rm+1 = k such that (rs; rs+1) 2 E for s = 1; : : : ;m. As in [2, Ch. 2],
if j = k or if there is a path from vertex j to vertex k in �, then j has access to k
(or k is accessed from j). If j has access to k and k has access to j, then j and k
communicate. The communication relation is an equivalence relation, hence V can
be partitioned into equivalence classes, which are referred to as the classes of �.

The digraph of X = [xij] 2 R
n;n, denoted by G(X) = (V;E), consists of the

vertex set V = hni and the set of directed edges E = f(j; k) j xjk 6= 0g. If j has
access to k for all distinct j; k 2 V , then X is irreducible (otherwise, reducible). It
is well known that the rows and columns of X can be simultaneously reordered so
that X is in block lower triangular Frobenius normal form, with each diagonal block
irreducible. The irreducible blocks in the Frobenius normal form of X correspond to
the classes of G(X).

In terminology similar to that of [6], given a digraph �, the reduced graph of �,
R(�) = (V 0; E0), is the digraph derived from � by taking

V 0 = fJ j J is a class of �g

and

E0 = f(J;K) j there exist j 2 J and k 2 K such that j has access to k in �g:

When � = G(X) for some X 2 Rn;n, we denote R(�) by R(X).
Suppose now that X = qI � P is a singular M-matrix, where P � 0 and q =

�(P ). If an irreducible block XJ in the Frobenius normal form of X is singular, then
�(PJ ) = q and we refer to the corresponding class J as a singular class (otherwise,
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a nonsingular class). A singular class J of G(X) is called distinguished if when J is
accessed from a class K 6= J in R(X), then �(PK) < �(PJ ). That is, a singular class
J of G(X) is distinguished if and only if J is accessed only from itself and nonsingular
classes in R(X).

We paraphrase now Theorem 3.1 of [6] as follows.
Theorem 3.1. Let X 2 R

n;n be an M-matrix and let J1; : : : ; Jp denote the
distinguished singular classes of G(X). Then there exist unique (up to scalar multiples)
nonnegative vectors x1; : : : ; xp in the nullspace of X such that

xij

�
= 0 if j does not have access to a vertex in Ji in G(X)
> 0 if j has access to a vertex in Ji in G(X)

for all i = 1; 2; : : :p and j = 1; 2; : : :; n. Moreover, every nonnegative vector in the
nullspace of X is a linear combination with nonnegative coe�cients of x1; : : : ; xp.

We apply the above theorem to a Z-pencil, using the following lemma.
Lemma 3.2. Let (A;B) be a pencil satisfying (1) and (2). Then the classes of

G(tB � A) coincide with the classes of G(A) [ G(B) for all t 2 (0; 1).
Proof. Clearly G(tB �A) � G(A) [ G(B) for all scalars t. For any i 6= j, if either

bij 6= 0 or aij 6= 0, and if t 2 (0; 1), conditions (1) and (2) imply that tbij < aij
and hence tbij � aij 6= 0. This means that apart from vertex loops, the edge sets of
G(tB � A) and G(A) [ G(B) coincide for all t 2 (0; 1).

Theorem 3.3. Let (A;B) be a pencil satisfying (1){(3) and let

� =

8<
:

G(A) [ G(B) if �(A;B) 6= 0

G(A) if �(A;B) = 0.

Let J1; : : : ; Jp denote the classes of � such that for each i = 1; 2; : : : ; p,
(i) (�(A;B)B � A)Ji is singular, and
(ii) if Ji is accessed from a class K 6= Ji in R(�), then (�(A;B)B �A)K is nonsin-
gular.
Then there exist unique (up to scalar multiples) nonnegative vectors x1; : : : ; xp in the
eigenspace associated with the eigenvalue �(A;B) of (A;B) such that

xij

�
= 0 if j does not have access to a vertex in Ji in �
> 0 if j has access to a vertex in Ji in �

for all i = 1; 2; : : :; p and j = 1; 2; : : : ; n. Moreover, every nonnegative vector in
the eigenspace associated with the eigenvalue �(A;B) is a linear combination with
nonnegative coe�cients of x1; : : : ; xp.

Proof. By Lemma 2.3 (ii), �(A;B)B � A is a singular M-matrix. Thus

�(A;B)B � A = qI � P = X;

where P � 0 and q = �(P ). When �(A;B) = 0, the result follows from Theorem
3.1 applied to X = �A. When �(A;B) > 0, by Lemma 3.2, � = G(X). Class J
of � is singular if and only if �(PJ ) = q, which is equivalent to (�(A;B)B � A)J



ELA

38 J. J. McDonald, D. D. Olesky, H. Schneider, M. J. Tsatsomeros and P. van den Driessche

being singular. Also a singular class J is distinguished if and only if for all classes
K 6= J that access J in R(X), �(PK ) < �(PJ ), or equivalently (�(A;B)B � A)K is
nonsingular. Applying Theorem 3.1 gives the result.

We conclude with a generalization of Theorem 1.7 of [3] to Z-pencils. Note that
the class J in the following result is a singular class of G(A) [ G(B).

Theorem 3.4. Let (A;B) be a pencil satisfying (1){(3) and let t 2 (0; �(A;B)).
Suppose that J is a class of G(tB �A) such that �(A;B) = �

1+� , where � = �((BJ �

AJ )
�1AJ ). Let m = jJ j. Then tB �A 2 Ls with

s

�
� n � 1 if m = n
< m if m < n.

Proof. That tB � A 2 Ls for some s 2 f0; 1; : : : ; ng follows from Theorem 2.4.
By Lemma 2.3 (iii), if t 2 (0; �(A;B)), then tB � A 62 Ln since �(A;B) = �n.
Thus s � n � 1. When m < n, under the assumptions of the theorem, we have
�n = �(A;B) = �

1+� � �m and hence �m = �m+1 = : : : = �n. It follows that s < m.
We now apply the results of this section to Example 2.6, which has two classes.

Class J = f2; 4g is the only class of G(A)[G(B) such that (�(A;B)B�A)J is singular,
and J is accessed by no other class. By Theorem 3.3, there exists an eigenvector x of
(A;B) associated with �(A;B) with x1 = x3 = 0, x2 > 0 and x4 > 0. Since jJ j = 2,
by Theorem 3.4, tB � A 2 L0 [ L1 for all t 2 (0; �(A;B)), agreeing with the exact
partition given in Example 2.6.
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