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Z-PENCILS”

JUDITH J. MCDONALD!, D. DALE OLESKY?, HANS SCHNEIDERS,
MICHAEL J. TSATSOMEROSY, AND P. VAN DEN DRIESSCHEI

Abstract. The matrix pencil (4,B) = {tB — A | t € C} is considered under the assumptions
that A is entrywise nonnegative and B — A is a nonsingular M-matrix. As ¢ varies in [0, 1], the
Z-matrices tB — A are partitioned into the sets L. introduced by Fiedler and Markham. As no
combinatorial structure of B is assumed here, this partition generalizes some of their work where
B = I. Based on the union of the directed graphs of A and B, the combinatorial structure of
nonnegative eigenvectors associated with the largest eigenvalue of (A4, B) in [0,1) is considered.
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1. Introduction. The generalized eigenvalue problem Az = ABz for A =
la;;], B = [bj;] € R™", with inequality conditions motivated by certain economics
models, was studied by Bapat et al. [1]. In keeping with this work, we consider the
matrix pencil (A4, B) = {tB — A |t € C} under the conditions

(1) A is entrywise nonnegative, denoted by A > 0
(2) bij S (25 for all 7 75_]
(3) there exists a positive vector u such that (B — A)u is positive.

Note that in [1] A is also assumed to be irreducible, but that is not imposed here.
When Az = ABz for some nonzero z, the scalar A is an eigenvalue and z is the
corresponding eigenvector of (A, B). The eigenspace of (A, B) associated with an
eigenvalue X is the nullspace of AB — A.

A matrix X € R"" is a Z-matriz if X = ¢I — P, where P > 0 and ¢ € R. If, in
addition, ¢ > p(P), where p(P) is the spectral radius of P, then X is an M-matriz,
and is singular if and only if ¢ = p(P). Tt follows from (1) and (2) that when ¢ € [0, 1],
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tB — Ais a Z-matrix. Henceforth the term Z-pencil (A, B) refers to the circumstance
that tB — A is a Z-matrix for all ¢ € [0, 1].

Let (n) = {1,2,...,n}. If J C (n}), then X denotes the principal submatrix of
X in rows and columns of J. As in [3], given a nonnegative P € R™" and an 5 € {n),

define

ps(P) = gllgg{p(PJ)}
and set pp41(P) = co. Let Ly denote the set of Z-matrices in R™™ of the form ¢I — P,
where ps(P) < ¢ < ps41(P) for s € {n), and —oco < ¢ < p1(P) when s = 0. This gives
a partition of all Z-matrices of order n. Note that ¢/ — P € Ly if and only if ¢ < py;
for some 4. Also, p,(P) = p(P), and Ly, is the set of all (singular and nonsingular)
M-matrices.

We consider the Z-pencil (A4, B) subject to conditions (1)—(3) and partition its
matrices into the sets L;. Viewed as a partition of the Z-matrices tB — A for ¢t €
[0, 1], our result provides a generalization of some of the work in [3] (where B = I).
Indeed, since no combinatorial structure of B is assumed, our Z-pencil partition is a
consequence of a more complicated connection between the Perron-Frobenius theory
for A and the spectra of tB — A and its submatrices.

Conditions (2) and (3) imply that B — A is a nonsingular M-matrix and thus its
inverse is entrywise nonnegative; see [2, N3g, p. 137]. This, together with (1), gives
(B — A)~'A > 0. Perron-Frobenius theory is used in [1] to identify an eigenvalue
p(A, B) of the pencil (A, B), defined as

p((B—4)""4)
1+ p((B—A)1A)

p(A, B) =

Our partition involves p(A4, B) and the eigenvalues of the subpencils (A, By). Our
Z-pencil partition result, Theorem 2.4, 1s followed by examples where as ¢t varies in
[0,1], tB — A ranges through some or all of the sets L, for 0 < s < n. In Section 3
we turn to a consideration of the combinatorial structure of nonnegative eigenvectors
associated with p(A, B). This involves some digraph terminology, which we introduce
at the beginning of that section.

In [3], [5] and [7], interesting results on the spectra of matrices in L, and a
classification in terms of the inverse of a Z-matrix, are established. These results are
of course applicable to the matrices of a Z-pencil; however, as they do not directly
depend on the form ¢t B — A of the Z-matrix, we do not consider them here.

2. Partition of Z-pencils. We begin with two observations and a lemma used
to prove our result on the Z-pencil partition.

OBSERVATION 2.1. Let (A, B) be a pencil with B — A nonsingular. Given a real
pw#E—1, let A= H’f . Then the following hold.
i) A # 1 is an eigenvalue of (A, B) if and only if p # —1 is an eigenvalue of

(
(B—A)~
(11) Aisa stmctly increasing function of p £ —1.
(iii) A € [0,1) if and only if p > 0.
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Proof. If p is an eigenvalue of (B — A)~!'A, then there exists nonzero z € R"
such that (B — A)"' Az = px. 1t follows that Az = u(B — A)x and if p # —1, then
Az = ﬁBaj = ABz. Notice that A cannot be 1 for any choice of . The reverse
argument shows that the converse is also true. The last statement of (i) is obvious.
Statements (ii) and (iii) follow easily from the definition of A. O

Note that A = 1 is an eigenvalue of (A, B) if and only if B — A is singular.

OBSERVATION 2.2. Let (A, B) be a pencil satisfying (2), (3). Then the following
hold.

(i) For any nonempty J C (n), By — Ay is a nonsingular M-matriz.
(ii) If in addition (1) holds, then the largest real eigenvalue of (A, B) in [0,1) is
p(A, B).

Proof. (i) This follows since (2) and (3) imply that B — A4 is a nonsingular M-
matrix (see [2, Iz7, p. 136]) and since every principal submatrix of a nonsingular
M-matrix is also a nonsingular M-matrix; see [2, p. 138].

(ii) This follows from Observation 2.1, since g = p((B — A)~!A) is the maximal
positive eigenvalue of (B — A)~'A. O

LEMMA 2.3. Let (A, B) be a pencil satisfying (1)-(3). Let p = p ((B — A)_lA)
and p(A, B) = ﬁ Then the following hold.

(i) For allt € (p(A, B), 1], tB — A is a nonsingular M-matriz.

(ii) The matriz p(A, B)B — A is a singular M-matriz.

(iii) For allt € (0,p(A, B)), tB — A is not an M-matriz.

(iv) Fort =0, either tB — A is a singular M-matriz or is not an M-matriz.

Proof. Recall that (1) and (2) imply that tB— A is a Z-matrix forall 0 < ¢ < 1. As
noted in Observation 2.2 (i), B— A is a nonsingular M-matrix and thus its eigenvalues
have positive real parts [2, Gap, p. 135], and the eigenvalue with minimal real part
is real [2, Exercise 5.4, p. 159]. Since the eigenvalues are continuous functions of the
entries of a matrix, as ¢ decreases from ¢t = 1, tB — A is a nonsingular M-matrix for
all ¢ until a value of ¢ is encountered for which ¢B — A is singular. Results (i) and (ii)
now follow by Observation 2.2 (ii).

To prove (iii), consider ¢ € (0, p(A4, B)). Since (B — A)"1A > 0, there exists
an eigenvector > 0 such that (B — A)"'Ax = px. Then Ar = p(A, B)Bz and
(tB—A)x = (t— p(4,B)) Bx < 0 since Bx = mAx > 0. By [2, A5, p. 134],
tB — A is not a nonsingular M-matrix. To complete the proof (by contradiction),
suppose aB — A is a singular M-matrix for some o € (0, p(4, B)). Since there are
finitely many values of ¢ for which ¢t B — A is singular, we can choose 3 € («, p(A, B))
such that 3B — A is nonsingular. Let € = ﬁ?Ta Then (1 + ¢)(aB — A) is a singular
M-matrix and

(I+e)(aB—A)+yI =pB—-—A—cA+~yI < BB —A+~]

since 4 > 0 by (1). By [2, Co, p. 150], 8B — A — €A+ ~I is a nonsingular M-matrix
for all v > 0, and hence 3B — A + ~I is a nonsingular M-matrix for all v > 0 by [4,
2.5.4, p. 117]. This implies that 3B — A is also a (nonsingular) M-matrix ([2, Co,
p. 150]), contradicting the above. Thus we can also conclude that B — A cannot
be a singular M-matrix for any choice of « € (0, p(A4, B)), establishing (iii). For (iv),
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—A 18 a singular M-matrix if and only if it is, up to a permutation similarity, strictly
triangular. Otherwise, —A is not an M-matrix. O
THEOREM 2.4. Let (A, B) be a pencil satisfying (1)-(3). For s =1,2,...,n let

Ts

7o = maxte (By = ANTA} - mo= 0

and 1 =0. Then fors=0,1,...;n—1 and 7, <1 < 7541, the matriztB — A € L;.
Fors=mn and 7, <t <1, the matriz tB — A € L.

Proof. Fiedler and Markham [3, Theorem 1.3] show that for 1 < s < n — 1,
X € Ly if and only if all principal submatrices of X of order s are M-matrices, and
there exists a principal submatrix of order s + 1 that is not an M-matrix. Consider
any nonempty J C (n) and ¢ € [0,1]. Conditions (1) and (2) imply that {By — Ay
is a Z-matrix. By Observation 2.2 (i), By — Ay is a nonsingular M-matrix. Let
iy = p((BJ —AJ)_lAJ>. Then by Observation 2.2 (ii), 77 = lizju is the largest
eigenvalue in [0,1) of the pencil (As, By). Combining this with Observation 2.2 (i)
and Lemma 2.3, the matrix tBy — Ay 1s an M-matrix for all 7y <t < 1, and tBy — Ay
is not an M-matrix for all 0 <t < 77. If 1 < s <n—1and |J| = s, then {By — A;
is an M-matrix for all 7, < ¢ < 1. Suppose 7y < 7541. Then there exists K C (n)
such that |K| = s+ 1 and {Bg — Ak is not an M-matrix for 0 < ¢ < 7541. Thus
by [3, Theorem 1.3]t{B — A € L, for all 7, <t < 7541. When s = n, since B — A
is a nonsingular M-matrix, tB — A € L, for all ¢ such that p(4,B) =7, <t <1 by
Lemma 2.3 (i). For the case s = 0,if 0 < ¢t < 7, then tB — A has a negative diagonal
entry and thus tB— A € Ly. Fort =0,tB— A = —A. If a;; # 0 for some { € {n},
then —A € Lg; if a;; = 0 for all ¢ € (n), then 7 = 75 = 0, namely, —A4 € L, for some
s>1.0

We continue with illustrative examples.

ExaMmpLE 2.5. Consider

1 2 2 2
A_[l 0] and B_[l 1],

for which 5 = 2/3 and 7 = 1/2. Tt follows that
Ly if0<t<1/2
tB—A € Ly if1/2<t<2/3
Lo if2/3<t<1.

That 1s, as ¢ increases from 0 to 1, {B — A belongs to all the possible Z-matrix classes
Ls.
EXAMPLE 2.6. Consider the matrices in [1, Example 5.3], that is,

100 0 4 0 -2 0
1 10 0 0 3 0 -1
A=l 01 ol ™ B=1_49 ¢ 4 o
01 0 1 0 -2 0 4
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Referring to Theorem 2.4, 74 = p(A, B) = 4"1—})/6 =713 =1 and 1y = 1/3. It follows
that

Lo if0<t<1/3
tB—A € { L if1/3<t< 48

Ly if 45 <4 <1,

Notice that for ¢ € [0,1], tB — A ranges through only Lo, L1 and La.
EXAMPLE 2.7. Now let

0 1 1 1
A_[O 0] and B_[O 1].

In contrast to the above two examples, tB — A € Lo for all ¢ € [0,1]. Note that, in
general, tB — A € L, for all t € [0, 1] if and only if p(A4, B) = 0.

3. Combinatorial Structure of the Eigenspace Associated with p(A, B).
Let , = (V, E) be a digraph, where V is a finite vertex set and & C V x V is the
edge set. If |/ = (V,E'), then , U’ = (V,EUE'). Also write ,” C , when
E' C E. For j # k, a path of length m > 1 from j to k in , is a sequence of vertices
J=7r1,72, ..., "my1 = k such that (r;,r41) € Efor s = 1,...,m. Asin [2, Ch. 2],
if 5 = k or if there 1s a path from vertex j to vertex k in , , then 5 has access to k
(or k is accessed from j). If j has access to k and k has access to j, then j and k
communicate. The communication relation is an equivalence relation, hence V' can
be partitioned into equivalence classes, which are referred to as the classes of | .

The digraph of X = [z;;] € R™", denoted by G(X) = (V, E), consists of the
vertex set V = (n) and the set of directed edges E = {(j, k) | ;5 # 0}. If j has
access to k for all distinct j, k € V, then X is irreducible (otherwise, reducible). Tt
is well known that the rows and columns of X can be simultaneously reordered so
that X is in block lower triangular Frobenius normal form, with each diagonal block
irreducible. The irreducible blocks in the Frobenius normal form of X correspond to
the classes of G(X).

In terminology similar to that of [6], given a digraph , , the reduced graph of | |
R(, )= (V' E"), is the digraph derived from , by taking

V' ={J | Jisaclass of , }
and
E' = {(J,K) | there exist j € J and k € K such that j has access to k in , }.

When ;, = G(X) for some X € R™", we denote R(, ) by R(X).

Suppose now that X = ¢I — P is a singular M-matrix, where P > 0 and ¢ =
p(P). If an irreducible block X7 in the Frobenius normal form of X is singular, then
p(Py) = q and we refer to the corresponding class J as a singular class (otherwise,
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a nonsingular class). A singular class J of G(X) is called distinguished if when J is
accessed from a class K # J in R(X), then p(Pg) < p(Py). That is, a singular class
J of G(X) is distinguished if and only if .J is accessed only from itself and nonsingular
classes in R(X).

We paraphrase now Theorem 3.1 of [6] as follows.

THEOREM 3.1. Let X € R™" be an M-matriz and let Ji,...,J, denote the
distinguished singular classes of G(X). Then there exist unique (up to scalar multiples)
nonnegative vectors ', ... xP in the nullspace of X such that

i { =0 if j does not have access to a vertex in J; in G(X)

i >0 if j has access 1o a verter in J; in G(X)
for alli = 1,2,...p and j = 1,2,...,n. Moreover, every nonnegative vector in the
nullspace of X is a linear combination with nonnegative cocfficients of x*, ... «P.

We apply the above theorem to a Z-pencil, using the following lemma.

LEMMA 3.2. Let (A, B) be a pencil satisfying (1) and (2). Then the classes of
G(tB — A) coincide with the classes of G(A)UG(B) for allt € (0,1).

Proof. Clearly G(tB — A) C G(A)UG(B) for all scalars t. For any ¢ # j, if either
bi; # 0 or a;; # 0, and if ¢t € (0,1), conditions (1) and (2) imply that tb;; < a;;
and hence tb;; — a;; # 0. This means that apart from vertex loops, the edge sets of
G(tB — A) and G(A) UG(B) coincide for all ¢ € (0,1). O

THEOREM 3.3. Let (A, B) be a pencil satisfying (1)-(3) and let

G(A)LUG(B) o p(A,B) #0

G(A) if (A, B) = 0.

Let Ji, ..., Jp denote the classes of , such that for each i =1,2,...,p,

(i) (p(A,B)B — A)j, is singular, and

(ii) if J; is accessed from a class K # J; in R(, ), then (p(A, B)B — A)k is nonsin-
gular.

Then there exist unique (up to scalar multiples) nonnegative vectors x*, ... xP in the
eigenspace associated with the eigenvalue p(A, B) of (A, B) such that

i =0 if j does not have access to a vertex wn J; in |
J > 0 if j has access to a vertex in J; in |

forallt = 1,2,...,p and 5 = 1,2,...,n. Moreover, every nonnegative vector in
the eigenspace associated with the eigenvalue p(A, B) is a linear combination with
nonnegative coefficients of x', ... xP.

Proof. By Lemma 2.3 (ii), p(A, B)B — A is a singular M-matrix. Thus

p(A,BY B—A=qIl—-P=X,

where P > 0 and ¢ = p(P). When p(A, B) = 0, the result follows from Theorem
3.1 applied to X = —A. When p(A, B) > 0, by Lemma 3.2, , = G(X). Class J
of , is singular if and only if p(P;) = ¢, which is equivalent to (p(A, B)B — A);
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being singular. Also a singular class J is distinguished if and only if for all classes
K # J that access J in R(X), p(Px) < p(Py), or equivalently (p(A, B)B — A)k is
nonsingular. Applying Theorem 3.1 gives the result. O

We conclude with a generalization of Theorem 1.7 of [3] to Z-pencils. Note that
the class J in the following result is a singular class of G(A) U G(B).

THEOREM 3.4. Let (A, B) be a pencil satisfying (1)—(3) and lett € (0,p(A, B)).
Suppose that J is a class of G(tB — A) such that p(A, B) = where ;t = p((By —

Ay)"YAy). Let m = |J|. ThentB — A € L with

s { <n—-1 ifm=n

<m if m<n.

1+u’

Proof. That tB — A € L, for some s € {0,1,...,n} follows from Theorem 2.4.
By Lemma 2.3 (iii), if ¢t € (0,p(A, B)), then tB — A ¢ L, since p(A,B) = 7,.
Thus s < n — 1. When m < n, under the assumptions of the theorem, we have
T, = p(A,B) = 1+ < 1, and hence Tm = Tm41 = ... = Tp. It follows that s < m. O

We now apply the results of this section to Example 2.6, which has two classes.
Class J = {2,4} is the only class of G(A)UG(B) such that (p(A, B)B—A)y is singular,
and J is accessed by no other class. By Theorem 3.3, there exists an eigenvector z of
(A, B) associated with p(A, B) with 1 = 3 = 0, #2 > 0 and x4 > 0. Since |J| = 2,
by Theorem 3.4, tB — A € Ly U L for all t € (0, p(A4, B)), agreeing with the exact
partition given in Example 2.6.
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