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ON SPACES OF MATRICES WITH A BOUNDED

NUMBER OF EIGENVALUES�

RAPHAEL LOEWYzy AND NIZAR RADWANz

Dedicated to Hans Schneider on the occasion of his seventieth birthday

Abstract. The following problem, originally proposed by Omladi�c and �Semrl [Linear Algebra

Appl., 249:29{46 (1996)], is considered. Let k and n be positive integers such that k < n. Let L
be a subspace of Mn(F ), the space of n � n matrices over a �eld F , such that each A 2 L has at
most k distinct eigenvalues (in the algebraic closure of F ). Then, what is the maximal dimension of
L. Omladi�c and �Semrl assumed that F = C and solved the problem for k = 1, k = 2 and n odd,
and k = n� 1 (under a mild assumption). In this paper, their results for k = 1 and k = n � 1 are
extended to any F such that char(F ) = 0, and a solution for k = 2 and any n, and for k = 3 is given.

Key words. Distinct eigenvalues; cornal ordering; irreducible polynomial.

AMS subject classi�cations. 15A42; 15A45.

1. Introduction. Let F be a �eld. Let Mm;n(F ) denote the space of all m � n

matrices over F , and Sn(F ) denote the space of all n � n symmetric matrices over
F . Let Mn(F ) = Mn;n(F ). In recent years there have been many works considering
spaces of matrices which satisfy certain properties. For example, given a positive
integer k, what can be said about a subspace L of Mm;n(F ) (or Sn(F )) if every
nonzero matrix in L has rank k. Or, what can be said if every matrix in L has rank
bounded above by k. One can consider also spectral properties. Gerstenhaber [G]
showed that every subspace L ofMn(F ) consisting of nilpotent matrices has dimension
bounded by

�
n
2

�
and if jF j � n and dim L =

�
n
2

�
, then L is conjugate to the algebra

of strictly upper triangular matrices; see also [Se] and [BC].
In this paper we consider the following problem. Let k and n be positive integers

such that k < n. Let L be a subspace of Mn(F ) such that every A 2 L has at most
k distinct eigenvalues (in the algebraic closure of F ). Then, what is the maximal
dimension of L? This problem was proposed by Omladi�c and �Semrl [OS]. Atkinson
[A] considered a subspace L of Mn(F ) with the property that every A 2 L has zero
eigenvalue of (algebraic) multiplicity at least r, where 1 � r < n; see Theorem 2.7.
Clearly such L has the property that every A 2 L has at most n � r + 1 distinct
eigenvalues. Omladi�c and �Semrl [OS] obtained the following results.

Theorem 1.1. (a) Let L be a subspace of Mn(C ) such that every A 2 L has
only one eigenvalue. Then, dim L �

�
n
2

�
+ 1.

(b) Let L be a subspace of Mn(C ) where n is odd and such that every A 2 L has at
most 2 distinct eigenvalues. Then, dim L �

�
n
2

�
+ 2.

(c) Let L be a subspace of Mn(C ) such that every A 2 L has at most n � 1 distinct
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eigenvalues. Assume that there exists some A 2 L which has exactly n � 1 distinct
eigenvalues. Then,

dimL �

�
n

2

�
+

�
n� 1

2

�
+ 1:

In each case Omladi�c and �Semrl also determined the structure of every L for
which the maximum dimension is attained. Of course, (a) is closely related to the
nilpotent case. It is our purpose to extend the results of Theorem 1.1 to any �eld
such that char(F ) = 0, complete the case k = 2 for any n, and give a solution to the
case k = 3. The results obtained seem to suggest the following conjecture.

Conjecture 1.2. Let k and n be integers, k < n, and let F be a �eld such that
char(F ) = 0. Let L be a subspace of Mn(F ) such that every A 2 L has at most k
distinct eigenvalues. Then,

dimL �

�
n

2

�
+

�
k

2

�
+ 1:

In Section 2 we bring some preliminary notations and results, while in Section 3
we give our main results of this paper.

We assume throughout (unless explicitly stated otherwise) that F is a �eld such
that char (F ) = 0 and consider � = (�1; : : : ; �m) as an arbitrary point in Fm or as
a vector of indeterminates, according to our convenience.

2. PreliminaryNotations and Results. Let A 2Mn(F ). We denote by �(A)

the set of all eigenvalues of A in the algebraic closure of F . We denote by #
�
�(A)

�
the number of distinct eigenvalues of A. A subspace V ofMn(F ) is said to be a k-spect

subspace provided that k = max
n
#
�
�(A)

�
:A 2 V

o
. Let fA1; A2; : : : ; Amg be a set

of m linearly independent matrices in Mn(F ) and let p(t; �) = det (tI �
mX
i=1

�iAi).

We consider p(t; �) as a polynomial in t with coe�cients in F [�1; : : : ; �m], that is, a
polynomial in F [�1; : : : ; �m][t] which is a unique factorization domain. Then p(t; �)
can be split in F [�1; : : : ; �m][t] as follows:

p(t; �) = pk11 (t; �) � � �pk`` (t; �);

where pj(t; �) are monic distinct irreducible polynomials.
Denote nj =deg(pj). Then pj(t; �) is of the form

pj(t; �) = tnj + qj1t
nj�1 + � � �+ qj;nj�1t + qj;nj

;

where qj;r = qj;r(�1; : : : ; �m) is a homogeneous polynomial in �1; : : : ; �m of degree r
(r = 1; 2; : : : ; nj).

Clearly
X̀
j=1

kjnj = n.
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Denote k =
X̀
j=1

nj. If k < n and V is spanned by fA1; : : : ; Amg, then for every

A 2 V , #
�
�(A)

�
� k. In the following lemma we show that there exists A 2 V such

that #
�
�(A)

�
= k, that is V is a k-spect subspace of Mn(F ).

Lemma 2.1. Let F be a �eld with char(F ) = 0. Let V be a subspace of Mn(F )
and let fA1; : : : ; Amg be a basis of V . Let

p(t; �) = det (tIn �
mX
i=1

�iAi)

be split into monic distinct irreducible polynomials in F [�1; : : : ; �m][t]

p(t; �) = pk11 (t; �) � � �pk`` (t; �):

Denote nj = deg pj (j = 1; 2; : : :; `) and k =
X̀
j=1

nj . Then there exists a nonzero

polynomial '(�) in F [�1; : : : ; �m] such that any �̂ 2 Fm for which '(�̂) 6= 0 satis�es

#

 
�

 
mX
i=1

�̂iAi

!!
= k.

Proof. We can assume kj = 1 (j = 1; 2; : : : ; `). We shall proceed by induction
with respect to `. If ` = 1, then p(t; �) = p1(t; �) is irreducible. Thus p1(t; �)
and its derivative p01(t; �) with respect to t are relatively prime. Hence, there exist
polynomials q1(t; �) and q2(t; �) in F [�1; : : : ; �m][t] and a nonzero polynomial'(�) 2
F [�1; : : : ; �m] such that

q1(t; �)p1(t; �) + q2(t; �)p
0

1(t; �) = '(�):

Now, for any �̂ 2 Fm for which '(�̂) 6= 0, p1(t; �̂) and p01(t; �̂) are relatively prime
as polynomials in F [t]. Therefore, p1(t; �̂) has k = n1 distinct roots, which implies

#

 
�

 
mX
i=1

�̂iAi

!!
= k.

Assume ` > 1. As we have seen, there exists a nonzero polynomial '1(�) 2
F [�1; : : : ; �m] such that any �̂ 2 Fm for which '1(�̂) 6= 0 implies that p1(t; �̂) has
n1 distinct roots. By the induction hypothesis there exists a nonzero polynomial
'2(�) 2 F [�1; : : : ; �m] such that for any �̂ 2 Fm for which '2(�̂) 6= 0 the polynomial

p2(t; �) � � �p`(t; �) has
X̀
j=2

nj distinct roots.

Since p1(t; �) and p2(t; �) � � �p`(t; �) are relatively prime, there exist q̂1(t; �) and
q̂2(t; �) in F [�1; : : : ; �m][t] such that

q̂1(t; �)p1(t; �) + q̂2(t; �)p2(t; �) � � �p`(t; �) = '3(�);

where '3(�) is a nonzero polynomial in F [�1; : : : ; �m].
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For any �̂ 2 Fm for which '3(�̂) 6= 0, p1(t; �̂) and p2(t; �̂) � � �p`(t; �̂) are relatively
prime as polynomials in F [t]. Hence, they have no common root.
De�ne '(�) = '1(�)'2(�)'3(�). For any �̂ 2 Fm for which '(�̂) 6= 0, the polynomial

p(t; �̂) has k distinct roots. Thus, A=
mX
i=1

�̂iAi satis�es #
�
�(A)

�
=k.

The next lemmaallows us to obtain, under some condition, an (m�1)-dimensional
`-spect subspace from an m-dimensional k-spect subspace where ` � k � 1.

Lemma 2.2. Let F be a �eld with char(F ) = 0. Let V be a k-spect subspace of
Mn(F ) and let fA1; : : : ; Amg be a basis of V . Suppose that in the splitting of

p(t; �) = det (tIn �
mX
i=1

�iAi)

into monic irreducible polynomials, there occur two distinct linear polynomials. Then,
V contains an `-spect subspace of dimension m � 1, where ` � k � 1.

Proof. Let

p(t; �) = pk11 (t; �)pk22 (t; �) � � �pkrr (t; �);

where pj(t; �) are distinct monic irreducible polynomials in F [�1; : : : ; �m][t]. Suppose
p1 and p2 are linear. We can write

p1(t; �) = t� �1(�) and p2(t; �) = t� �2(�);

where

�1(�) =
mX
i=1

ai�i and �2(�) =
mX
i=1

bi�i:

Clearly ai and bi are eigenvalues of Ai (i = 1; : : : ;m).
Since p1(t; �) and p2(t; �) are relatively prime, there exists i0, 1 � i0 � m, such

that ai0 6= bi0 . For any ~� = (�1; : : : ; �i0�1; �i0+1; : : : ; �m) 2 Fm�1 there exists a
unique �̂i0 2 F which satis�es

mX
i=1
i6=i0

�i(ai � bi) + �̂i0(ai0 � bi0) = 0:

Denote Bi = Ai�
ai�bi

ai0�bi0
Ai0 , i = 1; : : : ;m, i 6= i0 and V̂ = span fBig

m
i=1

i6=i0

. Clearly,

V̂ is a subspace of V of dimension m � 1. For ~� = (�1; : : : ; �i0�1; �i0+1; : : : ; �m) in
Fm�1 we have

mX
i=1

i 6=i0

�iBi =
mX
i=1

i6=i0

�iAi �
1

ai0 � bi0

mX
i=1

i6=i0

�i(ai � bi)Ai0 =
mX
i=1

i6=i0

�iAi + �̂i0Ai0 :

Hence, �1(�) = �2(�) for all � = (�1; : : : ; �i0�1; �̂i0; �i0+1; : : : ; �m) 2 Fm.
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It follows from Lemma 2.1 that V̂ is an `-spect subspace, where ` � k � 1.

We introduce now a linear ordering on the elements of [n] � [n], where [n] =
f1; 2; : : : ; ng.

Definition 2.3. A linear ordering � on [n]� [n] is said to be a cornal ordering
if it satis�es the following three conditions.
(I) (i1; 1)<

�
(i2; 1) i� i1 > i2.

(II) (1; j1)<
�
(1; j2) i� j1 < j2.

(III) (p; 1)<
�
(i; j) <

�
(1; q) for all i; j; p > 1 and q � 1.

Definition 2.4. Let � be a linear ordering on [n]� [n] and let A = (aij) be a
nonzero matrix in Mn(F ). We denote d�(A) = (p; q), where (p; q) = minf(i; j); aij 6=
0g and the minimum is taken with respect to �.

Let V be a subspace of Mn(F ) and let fA1; : : : ; Amg be a basis of V . Let � be a
linear ordering on [n]� [n]. We may think of a matrix in Mn(F ) as an n2-tuple taken
in the order speci�ed by �. Performing Gaussian elimination on fA1; : : : ; Amg with
respect to �, we get a basis fB1; : : : ; Bmg of V which satis�es d�(Bi)<

�
d�(Bj) for all

1 � i < j � m and each matrix Bi has an entry equal to 1 in the position d�(Bi).
We call that 1 the leading 1 of Bi with respect to �. We may assume that for all
i; j = 1; : : : ;m, i 6= j, Bj has a zero entry in the position of the leading 1 of Bi.

Definition 2.5. Let V be a subspace of Mn(F ) and let � be a linear ordering
on [n] � [n]. We say that the basis fB1; : : : ; Bmg of V is a �-ordered basis if it is
obtained from some basis of V by Gaussian elimination with respect to the order �.

We use the technique of the leading one's described above to obtain the following
useful lemma.

Lemma 2.6. Let � be a cornal ordering on [n]� [n] and let Ar and As be matrices
in Mn(F ) such that d�(Ar) = (`; 1) and d�(As) = (1; `) for some 2 � ` � n. Then
the coe�cient of tn�2 in

p(t; �r; �s) = det [tIn � (�rAr + �sAs)]

must depend on �s.

Proof. The coe�cient of tn�2 in p(t; �r; �s) equals �2(�rAr + �sAs), where
�2(�rAr + �sAs) is the sum of the principal minors of order 2 of the matrix �rAr +
�sAs. It follows from the choice of � that the term ��r ��s must appear in �2(�rAr+
�sAs).

Finally, we quote a theorem due to Atkinson [A], and establish an immediate
corollary.

Theorem 2.7. Let F be a �eld, jF j � n, let r be an integer, r < n, and let
V be a subspace of Mn(F ) with the property that every A 2 V has at least r zero
eigenvalues. Then dimV � 1

2r(r � 1) + n(n � r).

Remark 2.8. We notice that if A 2Mn(F ) has at least r zero eigenvalues, then

#
�
�(A)

�
� n � r + 1. From [A] we can deduce that if equality holds in Theorem

2.7, then there exists A 2 V such that #
�
�(A)

�
= n� r+1. Therefore V is k-spect,
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where k = n� r + 1. For k = n� r + 1, straightforward computation shows that

1

2
r(r � 1) + n(n� r) =

�
n

2

�
+

�
k

2

�
:

Thus, if we adjoin the identity matrix to a subspace of the maximum dimension
having that property, we get a k-spect subspace of the maximum dimension in our
conjecture.

Corollary 2.9. Let V be a subspace of Mn(F ), char(F ) = 0, that includes the
identity matrix. Let fA1; : : : ; Amg be a basis of V in which Am = In. Denote

p(t; �) = det (tIn �
mX
i=1

�iAi):

Assume p(t; �) splits in F [�1; : : : ; �m][t] in the form p(t; �) = Q(t; �) � qr(t; �), where
q(t; �) is monic and linear. Then, dimV � 1

2r(r � 1) + n(n � r) + 1.
Proof. Write q(t; �) = t� �(�), where

�(�) =
mX
i=1

ai�i:

Since ai is an eigenvalue of Ai, we have am = 1.
De�ne Bi = Ai � aiIn, i = 1; 2; : : : ;m and V̂ = span fBig

m
i=1. Clearly dim V̂ =

m � 1. For every �i 2 F , i = 1; 2; : : :;m � 1,

m�1X
i=1

�iBi =
m�1X
i=1

�i(Ai � aiIn) =
m�1X
i=1

�iAi �

m�1X
i=1

�iaiIn:

Now, denote �p(t; ��) = det (tIn �
m�1X
i=1

�iBi), where �� = (�1; : : : ; �m�1) 2 Fm�1.

Then �p(t; ��) splits in the form

�p(t; ��) = �Q(t; ��) � tr :

Hence, every A 2 V̂ has at least r zero eigenvalues. By Theorem 2.7

dim V̂ �
1

2
r(r � 1) + n(n� r);

thus, dimV � 1
2r(r � 1) + n(n� r) + 1.

3. Main Results. The upper bound of 1-spect subspaces is achieved by the
following result.

Theorem 3.1. Let F be a �eld with char(F ) = 0. Let V be a 1-spect subspace

of Mn(F ). Then dimV � n(n�1)
2 + 1 and if equality holds then V is conjugate to the

space of all upper triangular matrices having equal diagonal entries.
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Proof. We may assume that In 2 V . Let fA1; : : : ; Amg be a basis of V . Denote

p(t; �) = det (tIn �
mX
i=1

�iAi):

By Lemma 2.1, p(t; �) splits in F [�1; : : : ; �m][t] in the following form:

p(t; �) = (t �
mX
i=1

ai�i)
n:

For i = 1; : : : ;m de�ne

Bi = Ai � aiIn:

Let V̂ = span fBig
m
i=1. Clearly V̂ is a space of nilpotent matrices of dimension m�1.

The assertion follows from Gerstenhaber's result.
For 2-spect subspaces we have the following theorem.
Theorem 3.2. Let F be a �eld with char(F ) = 0, and n � 3. Let V be a 2-spect

subspace of Mn(F ). Then

dimV �
n(n� 1)

2
+ 2:

Proof. We may assume In 2 V . Let � be a cornal ordering on [n]� [n] and let
fA1; : : : ; Amg be a �-ordered basis of V . Denote

p(t; �) = det (tIn �
mX
i=1

�iAi):

By Lemma 2.1, p(t; �) splits in F [�1; : : : ; �m][t] in one of the following two forms.
Case 1: p(t; �) = pk11 (t; �) � pk22 (t; �), where p1(t; �) and p2(t; �) are linear and

distinct. Hence, by Lemma 2.2, V contains a 1-spect subspace of dimension m � 1.
Now, the assertion follows from Theorem 3.1.

Case 2: p(t; �) = qn=2(t; �) (in this case n must be even), where q(t; �) is
quadratic and irreducible of the form

q(t; �) = t2 + q1(�)t+ q2(�);

where q1(�) and q2(�) are homogeneous in �1; : : : ; �m.
Claim: There do not exist 1 � r < s � m and 2 � ` � n such that Ar and As

have leading one's with respect to �, in the positions (`; 1) and (1; `) respectively.
Proof of claim: Suppose d�(Ar) = (`; 1) and d�(As) = (1; `) for some 2 � ` � n

and 1 � r < s � m. Denote �̂ = �rer + �ses 2 Fm. Thus

q(t; �̂) = t2 + q1(�r; �s)t+ q2(�r; �s);
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where q1(�r; �s) and q2(�r; �s) are of the form

q1(�r; �s) = a1�r + b1�s;

q2(�r; �s) = a11�
2
r + a12�r�s + a22�

2
s;

a1; b1; a11; a12; a22 2 F:

Since q1(0; �s) = q2(0; �s) = 0 for all �s, the coe�cients b1 and a22 must vanish.
We have det (�rAr +�sAs) = [q2(�r; �s)]n=2 = (a11�2r + a12�r�s)n=2, but on the

other hand det (�rAr + �sAs) is either linear or independent of �s. Hence, a12 must
vanish also. It follows that q1(�r; �s) and q2(�r; �s) are independent of �s which
contradicts Lemma 2.6.

Now, denote

S = fAi: d�(Ai) = (1; q) or d�(Ai) = (p; 1) for some 2 � p; q � ng:

By our claim jSj � n� 1.
De�ne V1 = span (fA1; : : : ; Amg n S). We have dimV1 � dimV � (n � 1).

Let V̂ denote the subspace of Mn�1(F ) obtained from V1 by deleting the �rst row
and column of every matrix in V1.

i) If there exists 1 � j � m such that d�(Aj) = (1; 1), then dim V̂ = dimV1 � 1

and V̂ is 1-spect subspace of Mn�1(F ). By Theorem 3.1

dim V̂ �
(n� 1)(n� 2)

2
+ 1:

Hence, dimV � (n�1)(n�2)
2 + 1 + (n� 1) + 1 = n(n�1)

2 + 2.

ii) If there is no 1 � j � m such that d�(Aj) = (1; 1), then dim V̂ = dimV1.

Since V̂ is either 2-spect or 1-spect subspace of Mn�1(F ) and n� 1 is odd, it follows
from the proof of Case 1 and Theorem 3.1 that

dim V̂ �
(n� 1)(n� 2)

2
+ 2;

which yields the assertion of the theorem.
For the case k = 3 we have the following result.
Theorem 3.3. Let F be a �eld with char(F ) = 0 and n � 4. Let V be a 3-spect

subspace of Mn(F ). Then dimV � n(n�1)
2 + 4.

Proof. As in our proof of Theorem 3.2, we may assume that In 2 V and
fA1; : : : ; Amg is a �-ordered basis of V , where � is a cornal ordering. We proceed by

induction with respect to n. Denote p(t; �) = det (tIn �
mX
i=1

�iAi). By Lemma 2.1

p(t; �) splits in F [�1; : : : ; �m][t] into a product of powers of distinct monic irreducible
polynomials and one of the following 3 possibilities occurs.

Case 1: p(t; �) = pk11 (t; �) � pk22 (t; �) � pk33 (t; �), where pi(t; �) (i = 1; 2; 3) are

linear. By Lemma 2.2, V includes an `-spect subspace V̂ of dimension m � 1, where

` = 1 or 2. By theorems 3.1 and 3.2, dim V̂ � n(n�1)
2 + 2 and the assertion follows.
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Case 2: p(t; �) = pk11 (t; �) � pk22 (t; �), where p1(t; �) is quadratic and p2(t; �) is
linear.

If k1 = 1, then k2 = n� 2, and by Corollary 2.9 (taking r = n� 2) we have

dimV �
1

2
(n� 2)(n� 3) + n � 2 + 1 =

n(n� 1)

2
+ 4:

Now the theorem follows for n = 4. Suppose n > 4 and k1 > 1. We have a similar
claim as in the proof of Theorem 3.2.

Claim: There do not exist 1 � r < s � m and 2 � ` � n such that d�(Ar) = (`; 1)
and d�(As) = (1; `).

Proof of claim: Denote �̂ = �rer + �ses 2 Fm.
We have p1(t; �̂) = t2 + q1(�r; �s)t+ q2(�r; �s), p2(t; �̂) = t + �(�r; �s), where

q1(�r; �s), q2(�r; �s) and �(�r; �s) are of the form

q1(�r; �s) = a1�r + a2�s;

q2(�r; �s) = a11�
2
r + a12�r�s + a22�

2
s;

�(�r; �s) = b1�r + b2�s:

Clearly a2, a22 and b2 must vanish.
We have det (�rAr + �sAs) = �(a11�2r + a12�r�s)k1(b1�r)k2 . Suppose b1 6= 0.

Since det (�rAr + �sAs) is either linear or independent of �s, a12 must vanish.
Thus q1(�r; �s), q2(�r; �s) and �(�r; �s) are independent of �s which contradicts
Lemma 2.6.

Suppose b1 = 0. Then q1(�r; �s) = a1�r, q2(�r; �s) = a11�
2
r + a12�r�s and

�(�r; �s) = 0. Thus p(t; �̂) = (t2 + a1�rt+ a11�
2
r + a12�r�s)k1 � tk2 . The coe�cient

of tn�4 in p(t; �̂) equals �4(�rAr + �sAs), where �4(�rAr + �sAs) is the sum of the
principal minors of order 4 of the matrix �rAr + �sAs, which must be either linear
or independent of �s. Thus a12 must vanish. Again we contradict Lemma 2.6.

As in the proof of Theorem 3.2, we de�ne V1 = span (fA1; : : : ; Amg n S), where

S = fAi: d�(Ai) = (1; q) or d�(Ai) = (p; 1) for some 2 � p; q � ng

and V̂ is the subspace of Mn�1(F ) obtained from V1 by deleting the �rst row and
column of every matrix of V1.

i) If there exists 1 � j � m such that d�(Aj) = (1; 1), then there exists an `-spect

subspace V̂ ofMn�1(F ), where ` = 1 or 2 such that dim V̂ � dimV �n. By theorems

3.1 and 3.2 dim V̂ � (n�1)(n�2)
2 + 2, hence dimV � n(n�1)

2 + 3.

ii) If there is no 1 � j � m such that d�(Aj) = (1; 1), then there exists an `-spect

subspace V̂ ofMn�1(F ), where ` = 1; 2 or 3 such that dim V̂ � dimV �(n�1). If ` = 3

then by our induction hypothesis dim V̂ � (n�1)(n�2)
2 + 4, hence dimV � n(n�1)

2 + 4.
If ` = 1; 2 then the conclusion follows using theorems 3.1 and 3.2.

Case 3: p(t; �) = qk(t; �), where q(t; �) is cubic. Here n � 0 (mod 3) (so n � 6).
We have the same claim as in the previous case. In this case,

q(t; �̂) = t3 + q1(�r ; �s)t
2 + q2(�r; �s)t+ q3(�r; �s);
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where

q1(�r; �s) = a1�r + a2�s;

q2(�r; �s) = a11�
2
r + a12�r�s + a22�

2
s;

q3(�r; �s) = b1�
3
r + b2�

2
r�s + b3�r�

2
s + b4�

3
s:

By similar reasoning explained before we conclude that a2, a22, b2, b3, b4 must vanish.
Using �4(�rAr + �sAs) we imply that a12 vanishes, which yields a contradiction

to Lemma 2.6. As in the previous case the result follows immediately if there is 1 �
j � m such that d�(Aj) = (1; 1). Suppose that there is no such j; then there exists a

`-spect subspace V ofMn�1(F ), where ` = 1; 2 or 3 such that dim V̂ � dimV �(n�1).
Suppose ` = 3. Since (n� 1) 6� 0 (mod 3), then V belongs to either case 1 or case 2.

Thus dim V̂ �
(n�1)(n�2)

2 + 4 and the conclusion follows. If ` = 1 or 2 the conclusion
follows using theorems 3.1 and 3.2.

Finally, we give the following simple proof for the case k = n� 1.
Theorem 3.4. Let F be a �eld with char(F ) = 0 and n � 5. Let V be a

(n� 1)-spect subspace of Mn(F ). Then dimV �
�
n
2

�
+
�
n�1
2

�
+ 1.

Proof. We can assume In 2 V . Let fA1; : : : ; Amg be some basis of V in which

Am = In. Denote p(t; �) = det (tIn �
mX
i=1

�iAi).

By Lemma 2.1, p(t; �) splits into the following product

p(t; �) = q21(t; �) � q2(t; �) � � �qr(t; �);

where q1; : : : ; qr are distinct irreducible polynomials in F [�1; : : : ; �m][t] and q1 is
monic and linear. Now the assertion follows from Corollary 2.9 taking r = 2.

Remark 3.5. Let V be a subspace of Mn(F ) consisting of all matrices of the
form 2

6664
a �

. . . �
O a

O �

3
7775 ;

where a and stars are arbitrary elements of F , and the block in the lower right corner
has order k � 1. Clearly V is a k-spect subspace of dimension

�
n
2

�
+
�
k
2

�
+ 1.

This shows that the upper bounds given in theorems 3.2, 3.3 and 3.4 are sharp
(for the appropriate k).
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