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Abstract. The following problem, originally proposed by Omladic and Semrl [Linear Algebra
Appl., 249:29-46 (1996)], is considered. Let k and n be positive integers such that k& < n. Let L
be a subspace of My, (F'), the space of n X n matrices over a field F, such that each A € L has at
most k distinct eigenvalues (in the algebraic closure of F). Then, what is the maximal dimension of
L. Omladi¢ and Semrl assumed that F = C and solved the problem for k = 1, k = 2 and n odd,
and k = n — 1 (under a mild assumption). In this paper, their results for k =1 and k = n — 1 are
extended to any F' such that char(F') = 0, and a solution for k£ = 2 and any n, and for k = 3 is given.
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1. Introduction. Let F be a field. Let M, ,(F') denote the space of all m x n
matrices over F', and S, (F') denote the space of all n x n symmetric matrices over
F. Let M,(F) = My »(F). In recent years there have been many works considering
spaces of matrices which satisfy certain properties. For example, given a positive
integer k, what can be said about a subspace L of M, ,(F) (or S,(F)) if every
nonzero matrix in L has rank k. Or, what can be said if every matrix in L has rank
bounded above by k. One can consider also spectral properties. Gerstenhaber [G]
showed that every subspace L of M, (F') consisting of nilpotent matrices has dimension
bounded by (g) and if |F'| > n and dim L = (g), then L is conjugate to the algebra
of strictly upper triangular matrices; see also [Se] and [BC].

In this paper we consider the following problem. Let k& and n be positive integers
such that & < n. Let L be a subspace of M, (F') such that every A € L has at most
k distinct eigenvalues (in the algebraic closure of F'). Then, what is the maximal
dimension of L7 This problem was proposed by Omladi¢ and Semrl [OS]. Atkinson
[A] considered a subspace L of M, (F') with the property that every A € L has zero
eigenvalue of (algebraic) multiplicity at least r, where 1 < r < n; see Theorem 2.7.
Clearly such L has the property that every A € L has at most n — r + 1 distinct
eigenvalues. Omladi¢ and Semrl [OS] obtained the following results.

THEOREM 1.1. (a) Let L be a subspace of M, (C) such that every A € L has
only one etgenvalue. Then, dim L < (g) + 1.

(b) Let L be a subspace of M, (C) where n is odd and such that every A € L has at
most 2 distinct eigenvalues. Then, dim L < (") + 2.

2
(¢) Let L be a subspace of My(C) such that every A € L has at most n — 1 distinct
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eigenvalues. Assume that there exists some A € L which has exactly n — 1 distinct

eigenvalues. Then,
amz < (") + ("7 41
mL <, 5 .

In each case Omladi¢ and Semrl also determined the structure of every L for
which the maximum dimension is attained. Of course, (a) is closely related to the
nilpotent case. It is our purpose to extend the results of Theorem 1.1 to any field
such that char(F) = 0, complete the case k = 2 for any n, and give a solution to the
case k = 3. The results obtained seem to suggest the following conjecture.

CONJECTURE 1.2. Let k and n be integers, k < n, and let F' be a field such that
char(F') = 0. Let L be a subspace of Mp(F) such that every A € L has at most k

distinct eigenvalues. Then,
n k
dim L < 1.
iml < (2) + (2) +

In Section 2 we bring some preliminary notations and results, while in Section 3
we give our main results of this paper.

We assume throughout (unless explicitly stated otherwise) that F' is a field such
that char (F') = 0 and consider o = (a1, ..., ) as an arbitrary point in F'™ or as
a vector of indeterminates, according to our convenience.

2. Preliminary Notations and Results. Let A € M, (F'). We denote by o(A)
the set of all eigenvalues of A in the algebraic closure of F'. We denote by #(U(A))

the number of distinct eigenvalues of A. A subspace V of M, (F') is said to be a k-spect
subspace provided that k = maX{#(U(A)) cA € V}. Let {A1, As,... Ay} be aset

of m linearly independent matrices in M, (F') and let p(t, ) = det (t1 — Z%’Az’)~
i=1

We consider p(?, «) as a polynomial in ¢ with coefficients in Flaq, ..., ap], that is, a
polynomial in Flay, ..., ap][t] which is a unique factorization domain. Then p(¢, o)
can be split in Flag, ..., an][t] as follows:
_ k1 ke

p(t, a) =P (t’ a) Py (t’ Oz),

where p;(t, @) are monic distinct irreducible polynomials.
Denote n; =deg(p;). Then p;(¢, «) is of the form
p](ta OZ) =" + qjltnj_l + -+ qj,nj—lt + qj,nja

where ¢; , = ¢j (a1, ..., @) is a homogeneous polynomial in a1, . . ., o, of degree r

(r=1,2,...,n5).

‘
Clearly ijnj =n.

ji=1
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‘
Denote k = an. If k¥ < n and V is spanned by {A4;,..., 4}, then for every
ji=1
AeV, #(U(A)) < k. In the following lemma we show that there exists A € V such
that #(U(A)) =k, that is V is a k-spect subspace of M, (F).
LEMMA 2.1. Let F be a field with char(F) = 0. Let V be a subspace of My (F)
and let {Ay,..., Ay} be a basis of V. Lel

p(t, ) = det (¢, — Z%’Az’)

i=1
be split into monic distinct irreducible polynomials in Flay, ..., an][t]
k k
p(ta OZ) = pll(ta OZ) o 'pzl(t’ OZ).
‘
Denote nj = degp; (7 = 1,2,...,0) and k = an. Then there exists a nonzero
ji=1

polynomial () in Flay, ..., an] such that any & € F™ for which (&) # 0 satisfies

TES

Proof. We can assume k; = 1 (j = 1,2,...,£). We shall proceed by induction
with respect to £. If £ = 1, then p(t,«) = pi(¢,«) is irreducible. Thus p;i(¢, @)
and its derivative p) (¢, @) with respect to ¢ are relatively prime. Hence, there exist
polynomials ¢; (¢, &) and ¢2(¢, &) in Flay, ..., ap][t] and a nonzero polynomial ¢(«) €
Flaq, ..., am] such that

Q1(ta Oz)pl(t, a) + q2(t’ O‘)pll(t’ a) = 30(0‘)'

Now, for any & € F™ for which ¢(&) # 0, p1(¢, &) and pi(t, &) are relatively prime
as polynomials in F'[t]. Therefore, pi(t,&) has k = ny distinct roots, which implies

L)

Assume ¢ > 1. As we have seen, there exists a nonzero polynomial ¢(«) €
Flag, ..., am] such that any & € F™ for which ¢1(&) # 0 implies that py(¢, &) has
ny distinct roots. By the induction hypothesis there exists a nonzero polynomial

pa(a) € Flag, ..., apm] such that for any & € F™ for which pa(&) # 0 the polynomial
¢

pa(t, ) - -pe(t, &) has Z n; distinct roots.
ji=2
Since p1(t, ) and pa(t, o) - - - pe(t, @) are relatively prime, there exist ¢;(¢, &) and
Ja(t, &) in Flag,. .., an][t] such that

(jl(t’ O‘)pl(t’ a) + (jZ(t’ a)pZ(ta a) o ~pz(t, a) = 303(a)’

where ¢3(«) is a nonzero polynomial in Flaq,. .., am].
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For any & € F'™ for which p3(&) # 0, p1(t, &) and pa(t, &) - - - pe(t, &) are relatively
prime as polynomials in F[{]. Hence, they have no common root.
Define p(a) = ¢1(a)pa(a)ps(a). For any & € F™ for which ¢(&) # 0, the polynomial

p(t, &) has k distinct roots. Thus, A= Zo?iAi satisfies #(U(A)):k. O
i=1
_ The next lemma allows us to obtain, under some condition, an (m—1)-dimensional
l-spect subspace from an m-dimensional k-spect subspace where £ <k — 1.
LEMMA 2.2. Let F be a field with char(F') = 0. Let V be a k-spect subspace of
Mp(F) and let {Ay, ..., An} be a basis of V. Suppose that in the splitting of

m

p(t o) = det (tI, = > aiAy)

i=1

into monic irreducible polynomials, there occur two distinct linear polynomials. Then,
V' contains an (-spect subspace of dimension m — 1, where £ <k — 1.
Proof. Let

p(t, a) = pllcl(t’ O‘)plzw(t’ a) o 'pl;T(t’ Oz),

where p; (¢, o) are distinct monic irreducible polynomialsin Flaq, . .., ap]t]. Suppose
p1 and py are linear. We can write

p1(t,a) =t —pi(a) and po(t, o) =t — pa(a),

where
m m
(o) = Zaiai and  pa(a) = sz’ai~
i=1 i=1
Clearly a; and b; are eigenvalues of A; (i = 1,...,m).

Since p1(t, @) and p2(?, @) are relatively prime, there exists ip, 1 < iy < m, such
that a;, # b;,. For any & = (a1,..., -1, Qig41,- -, ¥m) € F™7! there exists a
unique &;, € F' which satisfies

m
Z ai(ai — bz) + o?iu(aiu — biu) =0.
o

Denote B; = Ai—ﬁfliu, i=1,...,m,i#ipand V =span {Bi}”,zfl . Clearly,
izio
V is a subspace of V of dimension m — 1. For & = (a1, ..., ®jg—1, Qigt1, .-, Q) IN
Fm=1 we have

m m 1 m m
E oa;B; = E ;A — — b E ai(ai — bi)AiD = E a; A + aiDAiD~
i=1 i=1 Gig — Vig 3 i=1
i#ig i#ig i#ig i#ig

Hence, p1 (o) = pa(a) for all o = (g, ..., @501, Gigy Qigt1s - -5 ) € F™.
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It follows from Lemma 2.1 that V is an f-spect subspace, where £ < k — 1. 0

We introduce now a linear ordering on the elements of [n] x [n], where [n] =
{1,2,...,n}.

DEFINITION 2.3. A linear ordering , on [n] x [n] is said to be a cornal ordering
if it satisfies the following three conditions.

(I) (il, 1)? (iz, 1) it iy > 11,
(IT) (1,j1)§ (1,72) iff j1 < jo.
(1) (p. D)< (i,3) < (Lq) for all i, j.p > Land ¢ > 1.

DEFINITION 2.4. Let , be a linear ordering on [n] x [n] and let A = (a;;) be a
nonzero matrix in M, (F'). We denote dr(A) = (p, ¢), where (p, ¢) = min{(4, j), a;; #
0} and the minimum is taken with respect to , .

Let V' be a subspace of My, (F) and let {Ay,..., An} be a basis of V. Let , be a
linear ordering on [n] x [n]. We may think of a matrix in M, (F) as an n?-tuple taken
in the order specified by , . Performing Gaussian elimination on {4;,..., 4,,} with
respect to , , we get a basis {By, ..., By, } of V which satisfies dp(Bi)§ dr(B;) for all

1 < i< j < m and each matrix B; has an entry equal to 1 in the position dp(B;).
We call that 1 the leading 1 of B; with respect to , . We may assume that for all
t,7=1,...,m,%+# j, B; has a zero entry in the position of the leading 1 of B;.

DEFINITION 2.5. Let V' be a subspace of M,(F) and let , be a linear ordering
on [n] x [n]. We say that the basis {Bj,..., By} of V is a | -ordered basis if it is
obtained from some basis of V' by Gaussian elimination with respect to the order , .

We use the technique of the leading one’s described above to obtain the following
useful lemma.

LEMMA 2.6. Let, be a cornal ordering on [n] x [n] and let A, and As be matrices
in Mp(F) such that dr(A,) = (4, 1) and dr(As) = (1,£) for some 2 < ¢ < n. Then
the coefficient of t"~2 in

p(t, ap, a5) = det [t1, — (o Ar + s Ag)]

must depend on «s.

Proof. The coefficient of t"~2 in p(t, a,, as) equals oa(ar A, + asAs), where
oa(ay Ar + a5 As) is the sum of the principal minors of order 2 of the matrix o, 4, +
asAs. Tt follows from the choice of , that the term —a,. -5 must appear in o2(a, A, +
asA;s). O

Finally, we quote a theorem due to Atkinson [A], and establish an immediate
corollary.

THEOREM 2.7. Lel I be a field, |F| > n, lel v be an integer, r < n, and lel
V' be a subspace of My (F) with the property that every A € V has at least v zero
eigenvalues. Then dimV < %r(r — D +n(n—r).

REMARK 2.8. We notice that if A € M, (F) has at least r zero eigenvalues, then
#(U(A)) <n—r+1. From [A] we can deduce that if equality holds in Theorem

2.7, then there exists A € V such that # (U(A)) =n—1r+1. Therefore V is k-spect,
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where k =n—r+ 1. For k = n — r + 1, straightforward computation shows that

%r(r— D+ n(n—r) = (Z) + (g)

Thus, if we adjoin the identity matrix to a subspace of the maximum dimension
having that property, we get a k-spect subspace of the maximum dimension in our
conjecture.

COROLLARY 2.9. Let V be a subspace of M, (F), char(F') =0, that includes the
identity matriz. Let {Ay, ..., Ay} be a basis of V in which A, = I,. Denole

p(t, ) = det (¢, — Z a; A;).
i=1
Assume p(t, «) splits in Flag, ..., an][t] in the form p(t, o) = Q(t,«) - ¢" (1, @), where
q(t, @) is monic and linear. Then, dimV < %r(r —D+nn—r)+1.
Proof. Write ¢(t, ) =t — p(«), where

m

pula) = Z a; .

i=1

Since a; 1s an eigenvalue of A;, we have a,, = 1.A R
Define B; = A; —ajl,, i = 1,2,...,m and V = span {B;}2,. Clearly dimV =
m—1. Forevery a; € F ;1 =1,2,...,m—1,

m—1 m—1 m—1 m—1
Z OziBi = Z az(Az — aiIn) = Z OziAZ' — Z oziaﬂn.
i=1 i=1 i=1 i=1
m—1
Now, denote p(t,&) = det (tI, — Z a;B;), where & = (a1,...,am_1) € F™7L
i=1

Then p(t, &) splits in the form
p(t,a) = Q(t,a) -t
Hence, every A € V has at least r zero eigenvalues. By Theorem 2.7

dimV < r(r—1)+n(n—r);

N | —

thus, dimV < ir(r— 1)+ n(n—r)+1. 0

3. Main Results. The upper bound of T-spect subspaces is achieved by the
following result.

THEOREM 3.1. Let F' be a field with char(F) = 0. Let V be a 1-spect subspace
of Mp(F). Then dimV < ﬂnz—_lz + 1 and if equality holds then V is conjugate to the
space of all upper triangular matrices having equal diagonal entries.
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Proof. We may assume that I, € V. Let {Ay,..., A} be a basis of V. Denote

p(t, ) = det (¢, — Z a; A;).

i=1

By Lemma 2.1, p(¢, &) splits in Flaq, ..., an][t] in the following form:

p(t,a) = (t — Zaiai)n.
i=1
Fori:=1,..., m define
Bi = Az — aiIn.

Let V = span {B;}~,. Clearly V is a space of nilpotent matrices of dimension m— 1.
The assertion follows from Gerstenhaber’s result. O

For 2-spect subspaces we have the following theorem.

THEOREM 3.2. Let F' be a field with char(F) = 0, and n > 3. Let V be a 2-spect
subspace of M, (F'). Then

dimV < @H.

Proof. We may assume I, € V. Let ; be a cornal ordering on [n] x [n] and let
{A1,..., An} be a, -ordered basis of V. Denote

p(t, ) = det (¢, — Z a; A;).

i=1

By Lemma 2.1, p(t, «) splits in Flaq, . .., an][t] in one of the following two forms.

Case 1: p(t,a) = plfl(t,oz) ~p§2(t,a), where p1(t,«) and ps(t, &) are linear and
distinct. Hence, by Lemma 2.2, V contains a I-spect subspace of dimension m — 1.
Now, the assertion follows from Theorem 3.1.

Case 2: p(t,a) = ¢*/*(t,a) (in this case n must be even), where ¢(t,a) is
quadratic and irreducible of the form

q(t,a) =2 + qi(a)t + g2(a),

where q1(«) and ¢a2(«) are homogeneous in oy, ..., ap,.
CraiM: There do not exist 1 <r < s < m and 2 < ¢ < n such that A, and A,
have leading one’s with respect to , , in the positions (¢,1) and (1, £) respectively.
Proof of claim: Suppose dr(A,) = (¢,1) and dr(A;) = (1,¢) for some 2 < £ < n
and 1 <r < s <m. Denote & = aye, + azes € F. Thus

Q(ta é‘) = + fh(ar, as)t + Q2(Oér, as)a
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where q(ap, a5) and g2(a,, a;) are of the form

(o, ) = 10y + br oy,

_ 2 2
qa(ay, ag) = a0z + aracyas + assos,
ai, by, air,arz, azy € F.

Since q1(0, as) = ¢2(0, ars) = 0 for all a5, the coefficients b1 and az2 must vanish.
We have det (a, Ay + a5 45) = [q2(ay, ozs)]"/2 = (a110? + alzarozs)”/z, but on the
other hand det (a, A, 4+ @5 A;) is either linear or independent of ;. Hence, aj2 must
vanish also. Tt follows that ¢(e,, ;) and ga(e,, o;) are independent of «; which
contradicts Lemma 2.6.
Now, denote

S ={A4;:dr(4;) = (1,q) or dr(A;) = (p, 1) for some 2 < p,q < n}.

By our claim |S| < n— 1.
Define Vi = span ({A1,...,An}\ S). We have dimV; > dimV — (n — 1).
Let V' denote the subspace of M,,_1(F') obtained from V; by deleting the first row
and column of every matrix in V7. R
1) If there exists 1 < j < m such that dr(4;) = (1,1), then dimV = dimV; — 1
and V is T-spect subspace of Mp_1(F). By Theorem 3.1
dimy < 1= D=2 1)2(n —2 41
Hence, dimV < U=H0=2) g 4 (p 1) 41 =200 4 9
ii) If there is no 1 < j < m such that dr(4;) = (1,1), then dimV = dim V.
Since V is either 2-spect or T-spect subspace of Mp_1(F) and n— 1 is odd, it follows
from the proof of Case 1 and Theorem 3.1 that
- —(n-2
dim V < % 1o,
which yields the assertion of the theorem. O
For the case k = 3 we have the following result.
THEOREM 3.3. Let F be a field with char(F) =0 and n > 4. Let V be a 3-spect
subspace of M, (F). Then dimV < @ + 4.
Proof. As in our proof of Theorem 3.2, we may assume that 7, € V' and

{Aq,..., An} is a | -ordered basis of V, where | is a cornal ordering. We proceed by

induction with respect to n. Denote p(t, ) = det (¢, — Z%Az’)~ By Lemma 2.1
i=1
p(t, «) splits in Flay, ..., ap][t] into a product of powers of distinct monic irreducible

polynomials and one of the following 3 possibilities occurs.

Case 1: p(t,a) = plfl(t,oz) ~p§2(t,a) ~p§3(t,a), where p;(t, ) (i = 1,2,3) are
linear. By Lemma 2.2, V includes an f-spect subspace V of dimension m — 1, where
£ =1or 2. By theorems 3.1 and 3.2, dim V < ﬂnz—_lz + 2 and the assertion follows.
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Case 2: p(t,a) = plfl(t,oz) ~p§2(t,a), where pi(t, &) is quadratic and p2(?, ) is
linear.
If k1 = 1, then ks = n — 2, and by Corollary 2.9 (taking r = n — 2) we have

1 -1
dimvgi(n—Q)(n—i%)—l-nQ—l—l:%

+ 4.
Now the theorem follows for n = 4. Suppose n > 4 and k; > 1. We have a similar
claim as in the proof of Theorem 3.2.

CraIM: There donot exist 1 <r < s < mand 2 < ¢ < nsuch that dr(4,) = (¢, 1)
and dr(A4;s) = (1,4).

Proof of clatm: Denote & = a e, + ases € F™.

We have py(¢, &) = 1% + q1(ar, as)t + qa(ar, as), p2(t, &) =t + p(a,, ay), where
q(ar, as), g2(ar, a5) and par, o) are of the form

(o, o) = ar10, + asa,,

_ 2 2
qa(ay, a5) = ap10; + araoyas + asso,
plar, o) = bray + bacy,.

Clearly as, as2 and b5 must vanish.

We have det (a, A, + asAg) = +(aj1a? + ajzara,)F (b )¥2. Suppose by # 0.
Since det (A, + a;A;) is either linear or independent of «;, a;2 must vanish.
Thus ¢1(ar, @5), ga(or, o) and p(e,, a;) are independent of a, which contradicts
Lemma 2.6.

Suppose by = 0. Then qi(a,,a5) = aja,, g2(ar, as) = aja? + ajsa,a5 and
plar, as) = 0. Thus p(t, &) = (2 + aja,t + ayjra? + ajsaea)®t - t82. The coefficient
of t"=% in p(t, &) equals ga(ar A, + a5 As), where oa(a, Ay + agAg) is the sum of the
principal minors of order 4 of the matrix «, A, + as A, which must be either linear
or independent of a;. Thus a15 must vanish. Again we contradict Lemma 2.6.

As in the proof of Theorem 3.2, we define V; = span ({A41,..., An}\ 5), where
S ={A4;:dr(4;) = (1,q) or dpr(4;) = (p, 1) for some 2 < p,q < n}

and V is the subspace of M,,_1(F) obtained from V; by deleting the first row and
column of every matrix of V.

1) If there exists 1 < j < m such that dr(A4;) = (1, 1), then there exists an {-spect
subspace V of Mp_1(F), where £ = 1 or 2 such that dimV > dimV —n. By theorems
3.1 and 3.2 dimV < gn_—lén_—zg + 2, hence dim V' < ﬂnz—_lz + 3.

i) If there is no 1 < j < m such that dr(A4;) = (1,1), then there exists an f-spect
subspace V of My,,_1(F), where £ = 1,2 or 3 such that dimV > dim V—(n-1). If£=3
then by our induction hypothesis dimV < w 44, hence dimV < @ + 4.
If £ = 1,2 then the conclusion follows using theorems 3.1 and 3.2.

Case 3: p(t,a) = ¢*(t, @), where ¢(¢, @) is cubic. Here n = 0 (mod 3) (so n > 6).
We have the same claim as in the previous case. In this case,

Q(ta é‘) = + fh(ar, as)tz + Q2(Oér, as)t + Q3(Oér, as)a
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where

q1(or, o) = ar10, + asa,,

_ 2 2
qa(ay, ag) = a0z + aracyas + assos,

_ 3 2 2 3
g3(ar, o) = i) + boca, + baay o] + bacy).

By similar reasoning explained before we conclude that as, as2, ba, b3, ba must vanish.

Using o4(ay Ar + a; As) we imply that aio vanishes, which yields a contradiction
to Lemma 2.6. As in the previous case the result follows immediately if there 15 1 <
J < m such that dr(4;) = (1,1). Suppose that there is no such j; then there exists a
{-spect subspace V of M,,_1(F), where £ = 1,2 or 3 such that dimV > dim V—(n-1).
Suppose £ = 3. Since (n — 1) Z 0 (mod 3), then V belongs to either case 1 or case 2.
Thus dim V/ < w + 4 and the conclusion follows. If £ = 1 or 2 the conclusion
follows using theorems 3.1 and 3.2. O

Finally, we give the following simple proof for the case k = n — 1.

THEOREM 3.4. Let F' be a field with char(F) = 0 and n > 5. Let V be «
(n — 1)-spect subspace of Mp(F). Then dimV < (g) + (”;1) + 1.

Proof. We can assume I,, € V. Let {A;,..., A;,} be some basis of V' in which

Am = I,. Denote p(t, o) = det (¢tI, — Z a; A;).
i=1
By Lemma 2.1, p(¢, &) splits into the following product
plt, ) = ¢t o) qalt, @) - g (L, @),

where ¢i,...,q, are distinct irreducible polynomials in Flay, ..., an][t] and ¢ is
monic and linear. Now the assertion follows from Corollary 2.9 taking » = 2. O

REMARK 3.5. Let V' be a subspace of M, (F') consisting of all matrices of the
form

where @ and stars are arbitrary elements of 7', and the block in the lower right corner

has order k — 1. Clearly V is a k-spect subspace of dimension (g) + (g) + 1.

This shows that the upper bounds given in theorems 3.2, 3.3 and 3.4 are sharp
(for the appropriate k).
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