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PARTIAL CONVERGENCE AND SIGN CONVERGENCE OF

MATRIX POWERS VIA EIGEN C{ADS�

FRANK UHLIGy

Dedicated to Hans Schneider, 70 + �

Abstract. This paper investigates the convergence over the reals and in the sign +;�; 0 sense
of individual elements of matrix powers Ak as k ! 1 in dependence on the eigenvalues and left and
right (generalized) eigenvector structure of a given matrix A 2R

nn
theoretically and computation-

ally.
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1. Introduction. The convergence of matrix powers Ak has generally been
treated in a global, norm{wise sense. Standard theoretical knowledge relates the
spectral radius r(A) of A 2 Rnn to the convergence of the matrix powers Ak as fol-
lows.

If r(A) > 1, then kAkk !1 and Ak diverges as k !1.

r(A) < 1 if and only if Ak ! Onn as k!1.

This global approach says little about the convergence behaviour of individual ele-
ments of Ak over R or in the +;�; 0 sign sense. For example for triangular matrices
A nearly half of the entries of Ak never change with k. Thus many results may be
discovered for individual matrix entry convergence of matrix powers in either of the
two mentioned convergence senses.

After an introductory example we shall de�ne some elementary tools and deduce
a theoretical characterization of partial matrix power convergence over the reals, as
well as for sign convergence of the entries of matrix powers. These characterizations
involve the eigen c{ads of A, which we can prove to be unique for A.

Our introductory example involves the upper triangular matrix

A =

2
664

2 1 1 �1
0 �0:9 �2:9 2:9
0 0 3 0
0 0 0 1

3
775 :
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A right column eigenvector matrix X for A is

X =

2
664

1 1
2:9

�1 �1
�2:9 0 2:9 2:9
3:9 0 0 0
0 0 1:9 0

3
775 ; with Y = X�1 =

2
6664

0 0 1
3:9 0

2:9 1 0 0
0 0 0 1

1:9

0 1
2:9

1
3:9 � 1

1:9

3
7775

being the corresponding left row eigenvector matrix for the identical decreasing or-
dering of the eigenvalues of A so that Y X = I4.
Since Y AX = D = diag(3; 2; 1; �0:9) is diagonal, we can readily obtain the follow-
ing explicit formula for the matrix powers of A,

A
k = X D

k
Y =

=

2
664

2k 1

2:9
(2k � (�0:9)k) 1

3:9
(3k � (�0:9)k) 1

1:9
(�1 + (�0:9)k)

0 (�0:9)k 2:9

3:9
(�3k + (�0:9)k) 2:9

1:9
(1� (�0:9)k)

0 0 3k 0
0 0 0 1

3
775 :(1)

Thus as k!1,

Ak !

2
664
1 1 1 � 1

1:9

0 �0 �1 2:9
1:9

0 0 1 0
0 0 0 1

3
775 ;

i.e., all subdiagonal entries, the (2,2) entry and all entries in the last column of Ak

converge as elements in R, while in the +;�; 0 sign sense only the subdiagonal entries
and those of the last column of Ak converge. Clearly the spectral radius r(A) = 3
makes Ak norm{wise divergent. We note that numerically the last column of Ak

should become stationary at around

2
664
�0:52632
1:5263

0
1

3
775. Matlab for example computes

matrix powers of diagonalizable matricesA by evaluatingAk = X�Dk�X�1, where X
is a right eigenvector matrix for A and D is the diagonal eigenvalue matrix; see, e.g.,
[7, p. 294]. The theoretical stationary value of 1.5263... for the (2,4) entry is reached
in Matlab at approximatelyA100, when the value for the (1,4) entry has unfortunately
grown to �1013. In fact this (1,4) entry seems to approach its theoretical steady state
value of {0.52632... from below for exponents up to around k = 45, after which the
(1,4) entry increases slowly at �rst and diverges rapidly after k = 64.
This failed numerical convergence example involving such a simple matrix A seems
to indicate that computationally the problem of the convergence of matrix powers is
not too easily understood; see, e.g., [5] on oating point matrix power convergence
or divergence for matrices A with r(A) < 1 and [3] for some of the history of our
subject, as well as [8] for the related problem of evaluating matrix exponentials

Our theoretical analysis of the problem below shall be built on the Jordan Normal
Form of real matrices and on dyads and their generalizations, called c{ads by us, built
up from eigenvalues, left and right eigenvectors of A and their generalizations.
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2. c{adic Eigenvector Expansion of Matrices. If A 2 Rnn is real diagonal-
izable, i.e., if A = XDY with XY = Y X = In and D = diag(�1; :::;�n) 2 R

nn,
then we may expand Ak dyadically for any exponent k (see, e.g., [4, problem 11.1.3,
p. 545]) as follows,

Ak =

2
664

...
...

x1 : : : xn
...

...

3
775
2
64

�k
1

. . .

�k
n

3
75
2
64

: : : y1 : : :
...

: : : yn : : :

3
75

=
nX

i=1

2
664

...
xi
...

3
775�k

i

�
: : : yi : : :

�
=

nX
i=1

�k
i xi yi :(2)

This formula gives a dyadic expansion of Ak in terms of the eigenvalue powers �k
i

and the right times left eigenvector dyads xi yi of A for i = 1; :::; n. Looking again
at our example, we have for its eigenvalue �1 = 3 that

x1 y1 =

2
664

1
�2:9
3:9
0

3
775
�
0 0

1

3:9
0

�
=

2
664

0 0 1
3:9 0

0 0 �2:9
3:9 0

0 0 1 0
0 0 0 0

3
775 :

Comparing this with our earlier explicit formula (1) for Ak, we note that the powers of
�1 a�ect only the entries in A

k corresponding to non{zero entries in the corresponding
eigenvector dyad x1 y1, i.e., in the third column above its diagonal position with
precisely the coe�cients of the dyad. Likewise for �2 = 2 we have

x2 y2 =

2
664

1
2:9
0
0
0

3
775� 2:9 1 0 0

�
=

2
664

1 1
2:9 0 0

0 0 0 0
0 0 0 0
0 0 0 0

3
775 ;

and the powers of �2 in the expansion (2) of Ak occur only in positions (1,1) and
(1,2), again with their proper coe�cients. The same holds for �3 = 1,

x3 y3 =

2
664

0 0 0 � 1
1:9

0 0 0 2:9
1:9

0 0 0 0
0 0 0 1

3
775 ;

and likewise for �4 = �0:9.

As the powers of larger magnitude eigenvalues dominate those of lesser magni-
tudes in Ak as k ! 1, we see the need to proceed from the maximum modulus
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eigenvalue of our example matrix A on down when describing the asymptotic be-
haviour (disregarding the dyadic coe�cients for the moment) of

Ak �

2
664

2k 2k 3k �1=1:9
(�0:9)k �3k 2:9=1:9

3k 0
1

3
775

for example.
Before formalizing this process in sections 2.1, 2.2 and 3 below, we note that

our example matrix A was in some ways nongeneric: If B is any upper triangular
matrix with distinct eigenvalues and the eigenvalue �m appears in B's mth diagonal
position, then the right and left eigenvectors xm and ym for B will have the general

form xm =

2
66666666664

�
...
�

*
0
...
0

3
77777777775
 m and ym = [0; : : : ; 0; *

"
m

; �; : : : ; �], respectively, where

the symbol * denotes a strictly nonzero entry and the symbol � denotes possibly
nonzero entries. Thus the mth eigenvector dyad for a generic upper triangular matrix
B has the form

xm ym =

2
666666666664

0 : : : 0
.. .

...
0

����������

� : : : : : : �
...

...

�
...

* � : : : �
0 : : : 0

.. .
...
0

1
CCCCCCCCCCCA

] m ;

where the framed upper right block has dimensionsm�n�m+1. In our example, both
eigenvector dyads for �1 = 3 and �2 = 2 of A are rather special, allowing structural
zeros in their natural range of convergence dominance. These zero entries in x1 y1
and x2 y2 allow us to \see through" to the e�ect of the less dominant eigenvector dyad
for �3 = 1 in positions (1,4) and (2,4) of Ak. Precisely one of these special positions
apparently is eventually \wiped out" in the numerical Matlab computations, hinting
that the subtlety of the zero patterns of the dominant dyads x1 y1 and x2 y2 make
our given matrix A possibly ill{conditioned for these computations.

Following the above heuristics, we shall now introduce c{ads and associated pane
matrices, and study the uniqueness of the dyadic expansion (2) in full generality �rst.
Thereafter we shall treat elementwise matrix power convergence for the four cases of
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eigenvalues of A having modulus larger, equal to or less than 1, or being equal to
zero. Subsequently we shall deal with the question of elementwise sign convergence
of matrix powers.

We can generalize the concept of a dyad as follows.
Definition 2.1. If x1; :::; xc are column vectors in R

n and y1; :::; yc are row
vectors in Rn for c � 1 and a 2 Rcc is square, we call the matrix

Xc � a � Yc =

2
664

...
...

x1 : : : xc
...

...

3
775 � a �

2
64

: : : y1 : : :
...

: : : yc : : :

3
75 2 Rnn

the c{ad generated by the vectors xi and yi and the c� c `kernel matrix' a.
Our concept of c{ad generalizes that of a dyad, since any 1{ad in our notation is

a standard dyad. In our context the `kernel matrices' a of eigen c{ads will generally
consist of either the identity matrix Ic or of eigenvalue matrices, Jordan blocks or
Jordan chains of A.

Definition 2.2. For any matrix B = (bim) 2 R
nn we de�ne the pane matrix

P = (pim) 2 f0; 1; �1gnn by setting pim =

8<
:

0 if bim = 0
1 if bim > 0
�1 if bim < 0

.

The term \pane matrix" was chosen to remind us of a latticed n � n window
with n2 individual window panes, one for each of its entries. For a pane matrix, \0"
signi�es a clear window pane, while a \�1" denotes an opaque, possibly signed one. In
our applications below, we shall introduce the notion of a \regular" zero in a Jordan
c{ad generated matrix B for actually generating more meaningful \restricted" pane
matrices P , see Section 2.2.

2.1. Uniqueness of c{adic Jordan Chain Expansions. Our purpose here is
to show that for complete Jordan chain kernels C(�) used in the c{adic expansion of
A, each c{ad X �C(�) � Y is unique for the given matrix A. This will help us study
partial and sign convergence of matrix powers Ak in Section 3. It is clear that each
Jordan chain C(�) is uniquely de�ned for every eigenvalue � of A, once one has settled
on one consistent form for Jordan blocks. Why the converse should be true does not
seem obvious, and a simpler algebraic{geometric reasoning for this has eluded us so
far.

We assume at �rst that � is a real eigenvalue of a given matrix A 2 Rnn with
equal algebraic and geometric multiplicity. Such an eigenvalue shall be called non{
defective. Let m be the dimension of the associated eigenspace, with x1; :::; xm a basis
for the right eigenspace and y1; :::; ym the corresponding one for the left eigenspace
for � of A. With

X =

2
664

...
...

x1 : : : xm
...

...

3
775 ; Y =

2
64

: : : y1 : : :
...

: : : ym : : :

3
75 and Y X = Im;
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we have AX = X� and Y A = �Y for � = diag(�) 2 Rmm, and thus Y AX = � = �I.
By enlarging the two corresponding partial eigenvector basis fxjg and fyjg for A

to full left and right Jordan Normal Form basis of A, it follows that the powers Ak of
A can be expressed as a sum of certain c{ads, much like formula (2) above. In our
circumstances, this sum will contain one term of the form X �k Y = �kXY . We will
now show that the matrix product XY , used to generate Ak in (2), is unique for A,
� 2 R and arbitrary m.

Theorem 2.3. If X and Y are any two corresponding column and row eigen-
vector matrices for a non{defective real eigenvalue � of multiplicity 1 � m � n of
A 2 Rnn with Y X = Im, then their m{ad product matrix XY 2 R

nn is uniquely
determined.

Proof. If X0 2 R
mm and Y0 2 R

mm are two other matrices comprised of corre-
sponding column and row eigenvectors for � 2 R and A, then spanfX0g = spanfXg
and spanfY0g = spanfY g. Hence X0 = X �A for some nonsingular matrix A 2 Rmm,
and likewise Y0 = B � Y for some B 2 Rmm nonsingular.
By assumption Im = Y0X0 = BY XA = BA, since Y X = Im. Thus since both A
and B are square m �m matrices, AB = Im as well, making X0Y0 = XABY = XY
uniquely determined.

If � = a+ bi =2 R is a complex and non{defective eigenvalue of A 2 Rnn of multi-
plicity ` with 2 � 2` � n, then there are ` linearly independent complex eigenvectors
zj = pj + iqj with pj; qj 2 R

n, so that Azj = �zj . This implies that the following
real matrix equations hold for A and all j = 1; :::; `,

A

2
664

...
...

pj qj
...

...

3
775 =

2
664

...
...

pj qj
...

...

3
775
�

a b
�b a

�
:

With the symbol � now interpreted as the 2 � 2 real matrix � =

�
a b
�b a

�
for

� = a+ bi =2 R, we thus obtain by analogy from above for the corresponding real and
imaginary parts `eigenvector matrices' X and Y (= X�1) that

Y AX =

2
64

�
...

�

3
75
2`�2`

:

The ideas of Theorem 2.3 can be carried over to the complex non{defective eigenvalue
case: The resulting 2`{ad Xdiag(�; :::;�)Y 2 Rnn in the analogous sum representa-
tion of Ak in (2) is unique as well for non{defective eigenvalues � 2 C of A of
arbitrary multiplicity.

Theorem 2.4. If X and Y are any two corresponding real column and row
eigenvector matrices for a non{defective nonreal eigenvalue � = a+bi of multiplicity `
with 1 � 2` � n of A 2 Rnn with Y X = I2`, then their 2`{ads Xdiag(�; :::;�)Y 2 Rnn

and XY are uniquely determined, where � =

�
a b
�b a

�
.
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Proof. The matrices

X =

2
664

...
...

...
...

p1 q1 : : : p` q`
...

...
...

...

3
775 and Y =

2
666664

: : : r1 : : :
: : : s1 : : :

...
: : : r` : : :
: : : s` : : :

3
777775

made up of the real and imaginary parts pi; qi 2 R
n and ti; si 2 R

n of the complex
right or left eigenvectors of A for � are unique only up to right (and left) multiplication
by nonsingular 2` � 2` matrices A (and B for Y ), which are composed of \complex

type" 2�2 blocks of the form

�
x y
�y x

�
2 R22 throughout. Note that such matrices

naturally commute with diag(�; :::;�) for any real � =

�
a b
�b a

�
; see, e.g., [9,

Theorem 6]. With X0 and Y0 denoting any thus modi�ed Jordan basis for � and
since Y X = I implies Y0X0 = BA = I2`, we have that

X0 diag(�; :::;�) Y0 = X A diag(�; :::;�) B Y

= X diag(�; :::;�) AB Y

= X diag(�; :::;�) Y;

and clearly X0Y0 = XABY = XY .
We can summarize these two results as follows. For each simple eigenvalue � 2

R or C of A 2 Rnn of arbitrary multiplicity c there is a unique real c{ad (or 2c{ad
in the complex case) generated by two sets of corresponding right and left, possibly
generalized, real eigenvectors, that generate one term of the matrix power Ak in the
expansion (2) as

2
664

...
...

x1 : : : xd
...

...

3
775
2
64

�k

. . .

�k

3
75
2
64

: : : y1 : : :
...

: : : yd : : :

3
75 ;

where � 2 R or � =

�
a b
�b a

�
2 R2;2, respectively, and d = c if � 2 R or d = 2c if

� =2 R.
For defective eigenvalues of A, i.e., for those with di�ering algebraic and geometric

multiplicities, the same qualitative results hold, as can easily be seen by rephrasing
Theorems 2.3 and 2.4 for Jordan blocks instead of (possibly block) diagonal eigenvalue
matrices. For example we have the following theorem.

Theorem 2.5. If X and Y are any two corresponding column and row princi-
pal vector matrices for a defective real eigenvalue � of A 2 Rnn of algebraic multi-
plicity 1 � m � n and geometric multiplicity 1 with Y X = Im, then their m{ads
XJm(�)Y 2 R

nn and XY are uniquely determined, where Jm(�) denotes the m{
dimensional Jordan block for �.
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Proof. To �nd X with Y AX = Jm(�) and Y X = Im, one usually starts with a
nonzero highest order principal vector vm with (A��I)m�1vm 6= 0 and (A��I)mvm =
0. From vm one constructs vm�1 = (A � �I)vm , etc., and obtains the principal

vector matrix X as

2
664

...
...

v1 : : : vm
...

...

3
775 for an upper triangular Jordan block Jm(�),

and likewise for Y . As the geometric multiplicity of � is assumed to be one here,
vm is unique up to scaling. Thus any other right principal vector matrix X0 for �
has the form X � cIm. Likewise, any other left principal vector matrix Y0 has the
form dIm � Y , and Y0X0 = I = Y X makes d = c�1. Thus X0JmY0 = XJmY and
X0Y0 = XABY = XY are indeed unique.

A similar argument carries through for a complex defective geometric multiplicity
version of Theorem 2.4.

Theorem 2.6. If X and Y are any two corresponding real column and row
principal vector matrices for a defective nonreal eigenvalue � = a + bi of geometric
multiplicity one and algebraic multiplicity ` with 1 � 2` � n of A 2 Rnn with Y X =
I2`, then their 2`{ads XJ2`(�)Y 2 R

nn and XY are uniquely determined, where

J2`(�) denotes the real Jordan block with ` 2� 2 blocks � =

�
a b
�b a

�
on its main

block diagonal and `�1 I2 blocks on its upper block co{diagonal.
Finally we need to consider defective eigenvalues with multiple Jordan blocks of

dimensions greater than one for one eigenvalue � of A.
We shall indicate how uniqueness of the c{ads made up of the principal left and

right vectors for � and its associated full Jordan chain C(�) can be proven. For
brevity, we shall not state explicit analogues of our previous theorems 2.5 or 2.6, but
rather just indicate a proof for the case of two Jordan blocks. This will be followed
by Theorem 2.7, which is a summary statement on the uniqueness of a full Jordan
chain c{ad expansion of A such as (2).

Assume that � 2 R is a real eigenvalue of A that is defective and whose Jordan
chain contains precisely two Jordan blocks Jm(�) and Jk(�), m � k. There are two
chains of principal column vectors v1; :::; vm and u1; :::; uk and two chains of principal
row vectors w1; :::; wm and z1; :::; zk that obtain Jm(�) and Jk(�), respectively, from
A, where v1 and u1, and w1 and z1 are the (only) eigenvectors in the lot. (The others
are principal vectors of level j.)

As before, we need to consider the right and left principal vector matrices

X =

2
666666664

...
...

...
...

...
...

...
...

v1 : : : vm u1 : : : uk
...

...
...

...
...

...
...

...

3
777777775

and Y =

2
666666664

: : : wm : : :
...

: : : w1 : : :
: : : zk : : :

...
: : : z1 : : :

3
777777775

for A and � which satisfy Y X = Im+k . Note speci�cally the reverse ordering of the
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principal vectors in the left principal vector matrix Y here. This is necessary when
using the upper triangular form Jordan blocks and when the index ` of w` and z`,
etc., is to indicate vector level consistently.

Recall that the vi and ui are determined from Ker(A� �I)j for decreasing expo-

nents j. If m � k, then any other two such Jordan reducing matrices X0 2 R
n;m+k

and Y0 2 R
m+k;n for A and � must have the form

X0 = X �H =

2
666666664

...
...

...
...

...
...

...
...

v1 : : : vm u1 : : : uk

...
...

...
...

...
...

...
...

3
777777775
�

2
66666666664

c e

. . .
. . .

. .. e

c

d

O
. . .

d

3
77777777775

 k

 m

and Y0 = G � Y =

2
666666666664

p
. . . O

. . .

p

r q
. . .

. . .

r q

3
777777777775

�

2
666666664

: : : wm : : :
...

: : : w1 : : :
: : : zk : : :

...
: : : z1 : : :

3
777777775

for nonzero coe�cients c; d; p and q, and yet unspeci�ed scalar entries e and r. To
reduce A to partial Jordan form Jm(�) � Jk(�) via X0 and Y0, we must have

Im+k(= Y X) = Y0X0 = GH =

2
666666666664

pc pe
. . .

. . .
. . . pe

pc

rc
. . . �

rc

3
777777777775

;

implying e = r = 0, and thus p = c�1 and ultimately d = q�1. Thus

X0 (Jm(�) � Jk(�))Y0 = X (Jm(�)� Jk(�)) Y and X0Y0 = XY;

since clearly H (Jm(�) � Jk(�))G = Jm(�)� Jk(�) and HG = Im+k .
The ideas that we have detailed in the three proofs above completely su�ce to

establish the following result which itself will not be proved simply for fear of triple
and quadruple indices.
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Theorem 2.7. If � 2 R or C is an eigenvalue of algebraic multiplicity ` for A
and

C(�) = Jm1
(�) � : : :� Jms

(�)

is the full Jordan chain associated with �,
sP

i=1
mi = `, where the Jordan blocks J::(�)

are taken over the reals, as 2{block generalized Jordan blocks if necessary, then the
`{ads

X � C(�) � Y and X � Y

are unique, no matter how the Jordan form producing eigen{ or principal vectors
making up X and Y have been chosen as long as Y X = I`.

On an historical note, eigen{dyads and their generalizations have apparently not
entered much into the standard literature such as Gantmacher [2] or the monographs
of Horn and Johnson [6]. However, they appear in the more numerically inclined
literature such as in [4, p. 545] and in [1, p. 111, 170 �, 273 � and 307 �], but not
with as detailed an analysis as we have provided here. Of course, a di�erent kind of
dyadic matrix expansion is standard with the singular value decomposition of A.

2.2. Large Powers of Jordan Chain c{ads. The aim of this section is to
study large powers

(XCm(�)Y )
k = X(Cm(�))

kY

of Jordan chain m{ads XCm(�)Y associated with a real matrix Ann, where `large'
means k � n, in order to enable us to understand partial and sign convergence of
matrix powers theoretically.

Case 1. If � = 0 is an eigenvalue of A, then its associated Jordan chain C(0) is
nilpotent of order at most n. Hence Ck(0) = 0 for all relevant k � n and its c{ad
eventually does not contribute to Ak in the c{adic expansion analogous to (2). Thus
we are left to consider Jordan chain c{ad powers for � 6= 0 only.

Next we deal with non{defective nonzero eigenvalues � 2 R or C of A, i.e.,
those eigenvalues of A for which the associated Jordan chain has the form Cm(�) =
diag(�; :::;�) 2 R

mm and � 6= 0 2 R, or C2`(�) = diag(�; :::;�) 2 R
2`;2` and

� =

�
a b
�b a

�
2 R22 if � = a+ bi =2 R.

Case 2. If � = � 2 R, then Cm(�) = �Im and XCk
m(�)Y = �kXY . This Jordan

chain m{ad will have a zero entry for all k precisely when there is a row in the right
eigenvector matrix X that is orthogonal to a column of the left eigenvector matrix Y
for � and A. We will call such a zero in XY \regular". Note further that the sign
pattern of XCk

m(�)Y will be equal to that of XY if � > 0, and it will reverse itself
for alternate powers k if � < 0.
If j�j < 1 then this m{ad will converge to zero, possibly alternating in sign in the
nonzero positions of XY if � < 0. If � = 1, the m{ad powers are stationary for all k,
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and if j�j > 1, then the m{ad powers will diverge, possibly alternatingly (if � � �1)
in all nonzero positions of XY .

Case 3. If � =

�
a b
�b a

�
for a non{defective eigenvalue � = a + bi =2 R of A,

then m = 2` and

XCk
m(�)Y =

2
664

...
...

...
...

p1 q1 : : : p` q`
...

...
...

...

3
775
2
64

�k

. . .

�k

3
75

2
666664

: : : r1 : : :
: : : s1 : : :

...
: : : r` : : :
: : : s` : : :

3
777775

for the real and imaginary parts of the left and right generalized real eigenvector pairs

ri; si and qj; pj for � of A, see Section 2.1. Note that each power �k =

�
Ak Bk

�Bk Ak

�

is the 2 � 2 real matrix representation of �k = Ak + Bki 2 C . If B1 := b 6= 0 as
assumed, then the set

�
�k
	
1

k=1
� C lies on a `spiral' that tightens to 0 if j�j < 1, or

which loosens to 1 if j�j > 1, and it is contained on the unit circle in C otherwise.

If � =2 R and
�

j�j
is a root of unity, then there are only �nitely many, but at least

four ratios for
Ak

Bk

and all powers �k lie on the �nitely many rays generated by these

ratios through the origin of C . Otherwise

����
�
Ak

Bk

����� = 1. Associating the 2`{ad as

follows, X
�
Ck
m(�)Y

�
, we note that a partial right product

�
Ak Bk

�Bk Ak

� �
: : : rh : : :
: : : sh : : :

�

will have at least two linearly independent 2{vectors (the worst case happens if � = ��i

with � 6= 0 2 R) in each column as k !1, even if
�

j�j
is a root of unity, which cannot

all be perpendicular to every row in R2 of any

2
664

...
...

pj qj
...

...

3
775, unless such a column or

row is zero from the start. Due to the `spiraling' in or out of the powers �k, a zero
can thus occur in position (h; j) of XCk

m(�)Y only if the leading part of a pair of
rows of X and the matching trailing part of a pair of columns of Y is zero, i.e., if
ph;1 = qh;1 = � � � = ph;u = qh;u = 0 = ru+1;j = su+1;j = � � � = rm;j = sm;j = 0 for
some index u. We again call such a zero occurrence inXY \regular", thus discounting
zeros in XY that are obtained by mere orthogonality of rows and columns. With no
such regular zero row and column pattern matching present in XY , all entries of
the m{ad powers XCk

m(�)Y will converge to zero with a diverging sign pattern if
j�j < 1; � =2 R, and they will simply diverge otherwise.
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Finally, we treat defective eigenvalues. If Jm(�) is a real Jordan block for a real
or complex eigenvalue j�j � 1 of Ann, then for the associated left and right, possibly
generalized principal vector matrices Y = (yij) and X = (xij) with Y X = Im, the
m{ad XJk

m(�)Y will diverge to in�nity as k ! 1 in all positions, except in those
positions (i; j) for which xi;1 = : : : = xi;p = yp+1;j = : : : = ym;j = 0 for some index
p, resulting in a \regular" zero. This follows readily from the known Toeplitz matrix
expansion of

J
k

m(�) =

2
6666666666664

�k k�k�1
k(k � 1)�k�2

2!
: : : : : :

k(k � 1) : : : (k �m+ 1)�k�m+1

(m� 1)!
. . .

. . .
. . .

...
. . .

. . .
. . .

...

O
. . .

. . .
k(k � 1)�k�1

2!
. . . k�k�1

�k

3
7777777777775

for k > m and � = � 2 R, see e.g. [4, Theorem 11.1.1], which easily generalizes to

� =

�
a b
�b a

�
2 R22 as well.

Case 4. If j�j � 1, then the upper upper{triangular entries of Jk
m(�) diverge in

nondependent ways, so that the second m{ad factor
�
Jk
m(�)Y

�
of X

�
Jk
m(�)Y

�
will

diverge in every position, unless a row in X has leading zeros that match the trailing
zeros of a column of Y as described above and called \regular" there, in which case
this zero entry will be preserved in all c{ad powers. As the o�{diagonal entries in
Jk
m(�) become dominant in magnitude from the right upper corner (1; n) element on

in, there will be eventual sign convergence for X
�
Jk
m(�)Y

�
from some exponent k0

on in the positive real case � 2 R, and sign divergence for � =2 R.

Case 5. If j�j < 1, then clearly Jk
m(�) ! Omm, with sign alternation in an

eventually �xed alternating pattern if �1 < � < 0 is real.

Clearly for complex Jordan chain m{ads, there can again be no sign pattern
convergence. For the simpler global convergence alternatives of matrix powers; see,
e.g., [5, Sect. 2, �rst paragraph].

3. Partial and Sign Convergence of Matrix Powers. Having established
the uniqueness of the Jordan chain c{adic expansion that generalizes (2) for real
matrices A and having studied the behaviour of large powers of such Jordan chain c{
ads, we observe from Section 2.2 that in our context it is enough to study the \regular"
zero{nonzero pattern of the unique matrices XY of the right and left generalized
eigenvectors associated with each eigenvalue � of A for each full Jordan chain C(�)
to decide on elementwise convergence in Ak as k ! 1. We shall use the concept
of our pane matrices and the well known dominant eigenvalue behaviour to establish
our main results on partial and sign matrix power convergence theoretically.

For this we shall order the eigenvalues �i of Ann by decreasing magnitudes, where
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we set r = n for nonsingular matrices A and de�ne

�1 = j�1j = ::: = j�kj > �2 = j�k+1j � ::: � j�rj > �r+1 = ::: = �n = 0:

To each set of equal magnitude eigenvalues j�::j = � 6= 0 of A we shall associate one
restricted pane matrix. It shall be the superposition of the restricted pane matrices,
where a pane entry of zero derives from a \regular" zero only, for the generalized
eigen{dyads XY associated with all Jordan chain c{ads for eigenvalues �:: of the same
magnitude � of A. We shall then arrange these Jordan chain{derived pane matrices in
order of their decreasing eigenvalue magnitudes. This allows us to interpret the n�n
panes from the front, or from the largest magnitude eigenvalues of A on down. If a
pane is `opaque' for the �rst time, i.e., if a restricted pane matrix entry contains a 1 or
{1 for the largest magnitude �i < �1 eigenvalues only, then the entry for the powers
of Ak at that position will behave as warranted by the combination of associated
maximum modulus Jordan chain c{ad powers for the �rst dominant magnitude level
�i from Section 2.2.

If one maximum modulus pane is `clear' for �1, i.e., if its entry is a \regular"
zero for all eigenvalues of A of maximummodulus �1, then we can look through this
pane to the next in magnitude set of eigenvalue pane matrices for A that generate
an opaque pane at that position. The eigenvalues and eigen{dyads with the �rst
magnitude opaque pane then govern the partial convergence of Ak at that entry.

Note that a pane can remain `clear' for the whole set of restricted pane matrices
and that superimposed `opaque' panes for identical magnitude eigenvalues need special
care which we shall not address completely here, except by example as follows. If
�1 = j�1j = j�2j and �1 6= �2; �2 for A, then there are two unique Jordan chain
c{ads X1Cm(�1)Y1 and X2C`(�2)Y2 for �1 that may `cloud' the pane matrix for Ak

jointly, depending on their mutual interaction. For example the matrix A =

�
0 4
1 0

�

has the same magnitude eigenvalues �1 = 2 and �2 = �2 with easily computed

right and left eigenvalue 1{ads
1

2

�
2 4
1 2

�
and

1

2

�
�2 4
1 �2

�
, respectively. Their

powers will alternately add up to a diagonal matrix with equal diagonal entries or
to a counterdiagonal matrix with a one in the left lower corner, which conform for
alternating powers with Ak.

We shall now state our �rst main result without proof, which follows readily from
the above, and then give several illustrative examples in the next section.

Theorem 3.1. (Partial Convergence of Matrix Powers) For A 2 Rnn the (i; j)

entry a
(k)
ij of Ak converges to a nonzero real number a as k ! 1 if and only if the

following three conditions hold.
1. 1 is an eigenvalue of A with at least one one{dimensional Jordan block in its

associated Jordan chain C(1),
2. the restricted pane matrices for all Jordan chain c{ads XY of A with j�j � 1,

� 6= 1; � 2 R or C , and the restricted pane matrix for the partial Jordan chain
c{ad comprised of all Jordan blocks of dimensions larger than one in C(1) are
\regularly" clear at position (i; j), and

3. the (i; j) entry of the partial Jordan chain c{ad XY of A generated by the
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one{dimensional Jordan blocks in C(1) has the value a 6= 0.

The (i; j) entry a
(k)
ij of Ak converges to zero as k!1 if and only if all Jordan chain

c{ads XY of A for eigenvalues � 2 R or C with j�j � 1 are \regularly" clear at
position (i; j).

We have a simple corollary.

Corollary 3.2. If one entry in Ak converges to a nonzero value a as k !1,
then 1 is an eigenvalue of the given matrix A 2 Rnn.

Regarding partial sign convergence of matrix powers, we recall from Section 2.2
that dominant complex opaque panes generated by real Jordan chain c{ads for com-
plex eigenvalues cannot sign converge, while those generated by real eigenvalue Jordan
chain c{ads will eventually sign converge if the pane is dominated in its c{ad by a pos-
itive eigenvalue and will alternately sign converge otherwise. Here we call a position
in Ak sign convergent, if its entries eventually all have one sign + or {, and alternate
sign convergent if its entries will eventually alternate in sign with each subsequent
power of A. Similarly sign convergence to zero for one entry of Ak means that all
entries in that position will eventually become stationary at zero as k ! 1. This
last notion clearly di�ers from our notion of partial convergence to zero in being a
much more stringent requirement. Again we recuse ourselves from a detailed proof,
but rather state our main result and refer to the analysis of the previous section and
to the examples below.

Theorem 3.3. (Su�cient Conditions for Sign Convergence of Matrix Powers)

For A 2 Rnn the (i; j) entry a
(k)
ij of Ak converges in the +;�; 0 sign sense as k !1

if the following conditions hold.
1. for all complex eigenvalue Jordan chain c{ads XY of A, the (i; j) pane is

\regularly" clear, and
2a. for sign convergence to zero, all restricted pane matrices associated with Jordan

chain c{ads XY for nonzero real eigenvalues of A are \regularly" clear at position
(i; j), or

2b. for sign convergence to + or { ,
(i) the largest magnitude eigenvalue � of A is real positive and non{defective and

the (i; j) position in its Jordan chain c{ad XY is positive (for sign
convergence to +) or negative (for {), or

(ii) the largest magnitude real eigenvalue � of A is positive and defective and the
(i; j) position in its Jordan chain c{ad powers XC(�)kY becomes sign
stationary at + or at { .

Conditions 1. and 2a. are clearly necessary as well for sign convergence to zero.
In fact we have as a corollary that an entry in Ak sign converges to zero, i.e., it
equals zero for all powers Ak for k � k0, if and only if 1. and 2a. hold and k0 is
the dimension of the maximal Jordan block for the eigenvalue zero of A; see our
introductory example.

In case of +,{ sign convergence, various troublesome compensations with � Jor-
dan chain c{ads might happen for dominant real eigenvalues of opposite signs that we
shall not sort out here. Similarly we do not investigate alternating +,{ sign conver-
gence here, although the results are within reach if, for example, �1 = max j�ij = ��1
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is the only eigenvalue of A of this maximal magnitude.
The above results clearly show how sensitive partial or sign convergence is for

matrix powers. In essence, entries of Ak either converge to zero or 1 in magnitude.
Any other elementwise convergence of matrix powers is only possible if A has the
eigenvalue 1 with proper multiplicities and if all Jordan chain c{ads of A cooperate to
show this eigenvalue 1 c{ad o� properly. This, undoubtedly, is the cause of so much
numerical trouble in the computed examples above and below, and in [5].

4. Numerical Examples for Partial and Sign Convergence of Matrix

Powers. While the spectral approach of Jordan chain c{ads has proven valuable to
determine partial matrix convergence theoretically in this paper, it has nonetheless
been found computationally at best dubious in our introductory triangular example.
Computing all eigenvalues and eigenvectors of a diagonalizable real n � n matrix A
costs around 25 n3 operations with the QR algorithm; see, e.g., [4, p. 380]. Evaluating
Ak as Xdiag(�ki )Y will thus take around 26 n3 operations since one n�n matrix mul-
tiplication takes n3 operations if done the old fashioned way. The eigenvalue rounding
error and ill{conditioning e�ects inherent in �nding the eigenvalue and eigenvectors
of A are well documented as they a�ect the matrix exponential, e.g., in [8].

For our investigation these problems need not a�ect us at all, however, if we just
multiply A k times with itself to reach Ak, though other rounding and truncation
errors would be committed in �nite precision arithmetic. Such a method is the one
chosen for the analysis in [5]. A much better economy can be obtained by using binary

powering instead. If the exponent k is expressed as k =
mP
i=1

�i2
i with �i = 0 or 1 and

�m = 1, then the binary powers of A are computed as A2 = A�A; A4 = A2 �A2; etc.,
until A2m = A2m�1 �A2m�1 . For any k � 16; 383 = 214 � 1, e.g., one would need to
compute at most twelve powers of two of A involving 12 n3 operations, and at most
twelve subsequent matrix products to obtain Ak from A and the binary expansion of
k. This approach thus weights in at worst at � 24 n3 operations for all exponents
k < 214. The operations count would be much less on average since most k � 214

and the average binary expansion of k will have around half its coe�cients �i = 0;
see, e.g., [4, Ch. 11.2.5].

Note �nally that each of the above matrix power algorithms has quite di�erent
numerical convergence properties in oating point arithmetic; see, e.g., [5].

In our examples below, we have relied on a binary powering scheme to evaluate
Ak instead of using the Matlab function `A^k' or multiplying one factor at a time.

Example 4.1. The matrix A =

2
4 �5 8 32

2 1 �8
�2 2 11

3
5 has non{defective eigenvalues

1 and 3, with 3 double. The complete eigen{dyads XY for the two eigenvalues 1 and
3 of A are

E(1) =

2
4 4 �4 �16
�1 1 4
1 �1 �4

3
5 and E(3) =

2
4 �9 12 48

3 0 �12
�3 3 15

3
5 ;

respectively. Here the dominant pane matrix for A has a regularly clear pane at the
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(2,2) position and the (2,2) entry of Ak must remain equal to 1 from the eigenvalue
1 dyad E(1) for all powers of A. Computationally, the (2,2) entry of Ak is 1 for all
exponents k � 32 in both the Matlab and the binary power algorithms. For all k > 32
it becomes 0 due to the fact that the real number 1 falls below the machine constant
in double precision relative to the other entries of Ak. In fact, the powers of E(1) all
remain stationary, while for E(3)k the (2,2) entry jumps to 12 for k = 33 in Matlab
powering and to 13 in binary powering from its `numerically more correct' entry of 0.
Finally, the computed large powers Ak keep the sign pattern of E(3), except for the
troublesome (2,2) spot.

We note that di�erent implementation of oating point arithmetic (IEEE compli-
ant or non{compliant) will generally a�ect all matrix power computations di�erently.

Example 4.2. The matrix A =

2
4 1 4 �2

4 �3 3
8 �12 9

3
5 has one non{defective eigen-

value 1 and one defective eigenvalue 3. The complete eigen{dyads XY for the two
eigenvalues 1 and 3 of A are

E(1) =

2
4 1 �2 1
�2 4 �2
�4 8 �4

3
5 and E(3) =

2
4 0 6 �3

6 �7 5
12 �20 13

3
5 ;

respectively. The dominant pane matrix for A has a regularly clear pane at the (1,1)
position and hence A's (1,1) entry must remain equal to 1 from the eigenvalue 1 dyad
E(1) for all powers of A. Computationally, the (1,1) entry of Ak is 1 for all exponents
k � 32 in both the Matlab and the binary power algorithms. For all k > 32 it should
be computed as 0 due to the fact that the real number 1 falls below the machine
constant in double precision relative to the other entries of Ak. In Matlab powering,
the (1,1) entry of Ak stays zero for k = 33 and 34 only, but then increases from 16 for
k = 35 to 4:5 104 and 5:4 109 for k = 40 and 50, respectively. In binary powering the
(1,1) entry remains `numerically correct' at 0 for all powers k � 33. In terms of sign
convergence, E(3)8 is the �rst power of E(3) that exhibits its limiting sign distribution2
4 0 + �

+ + �
+ + �

3
5 and all powers from A8 on exhibit that same sign distribution, except

of course for the troublesome (1,1) entry of Ak for k > 34 via Matlab powering.

Example 4.3. Our last example deals with the matrix A =

2
4 �5 3 �3

6 4 0
18 3 4

3
5

which has one real eigenvalue 1 and one complex conjugate eigenvalue pair 1 � 3i.
The two complete real eigen{dyads XY for the eigenvalues 1 � 3i and 1 of A are

E(1�3i) =

2
4 �6 5 �4

8 0 2
22 �5 8

3
5 and E(1) =

2
4 1 �2 1
�2 4 �2
�4 8 �4

3
5, respectively. Here the

dominant eigenvalue pane matrix for A has a clear pane at the (2,2) position which
is not regularly zero. Consequently the (2,2) entry cannot remain zero for the powers
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of E(1� 3i) and thus of Ak. Computational tests bear this out; the entries of Ak all
diverge. Likewise, the sign pattern in Ak does not appear to settle down at all.

This example leads us to the following open questions.
Open Question 4.4. There are 29 = 512 possible � sign patterns for the matrix

powers Ak of a 3� 3 matrix A. Do all of these actually occur in the sequence
�
Ak
	

in Example 4.3, and analogously for general non{sign converging matrix powers? Do
the sign patterns occurring in

�
Ak
	
have equal probability? If any of the 512 possible

sign patterns are excluded, which ones and why?
Open Question 4.5. For a given sign pattern, say that of the original A in

Example 4.3, what is the sequence of exponents ki for which the sign pattern of Aki

and that of A coincide? Likewise for A2 etc. What number theoretic relations hold
for those integer sequences ki that give A

ki one �xed sign pattern?

5. Outlook. This paper has dealt with elementwise convergence issues of real
matrix powers. Further results can be obtained by specializing to powers of structured
matrices, such as to real symmetric, orthogonal, nonnegative, stochastic, positive, etc.,
matrices. In many ways the ideas underlying this paper can shed new light on old
standards such as on stochastic matrices.

For example [1, Satz 2, p. 348] contains the following result and a one page proof
for it.

Theorem 5.1. If A is a nonnegative indecomposable matrix with constant column
sum 1 and eigenvalues �1 = 1 > j�ij for i = 2; :::; n, then the powers Ak converge to
the matrix X, comprised in each column of the normalized (column sum equal to 1)
right eigenvector of �1 = 1 for A

This follows instantly from (2) and our matrix power convergence results for the
dominant right eigenvector x, properly normalized, of A, since the corresponding left
eigenvector for A is (1,...,1).

Or on nonnegative matrices, we have the following reesult.
Theorem 5.2. If Ak > 0 for all k > k0 and A has a single dominant real

eigenvalue j�j = r(A), then � > 0 with elementwise positive right and left eigenvectors
x and y.

Using (2) on such a matrix A and � makes Ak � �kxy elementwise positive. As
Ak sign converges to + in every position, � > 0 by necessity and the corresponding
right and left eigenvectors x and y cannot have elements equal to zero, nor elements
of opposite signs.
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